
© 2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current
or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective

works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

This is accepted version. Published version DOI: 10.1109/TELFOR56187.2022.9983710

Serverless Implementations of Real-time
Embarrassingly Parallel Problems

Dimitar Mileski
Innovation Dooel

Skopje, North Macedonia

Marjan Gusev
Faculty of Computer Science and Engineering

Ss. Cyril and Methodius University in Skopje, North Macedonia

Abstract—In this paper, we conduct experiments to deploy a
scalable serverless computing solution for real-time monitoring
of thousands of patients with streaming electrocardiograms as an
example of embarrassingly parallel tasks originally executed on
two virtual machines. The research question is to find the speedup
of such solution versus classical virtual machine approaches with
sequential or parallel threads.

The challenge of migrating an existing service to a serverless
solution is to adapt and reconfigure the code for serverless
platform, to write the code to invoke the service in parallel
and asynchronously, and to use other services in the cloud that
are needed for the whole solution to be functional and scalable.
Evaluation of developing various solutions matching migration
challenges to Google Cloud Run, Google Cloud Compute Engine,
and Google Cloud Storage (customization of code, the configura-
tion of services) shows that greater speedups can be achieved
by dividing the Embarrassingly Parallel tasks into sub-tasks
executed as a serverless service. We achieved highest speedup
of almost 40 for Serverless solution compared to a sequential
execution on a virtual machine solution, and speedup of 23 for
Serverless solution compared to a Parallel execution using virtual
machines.

Index Terms—serverless, containers, parallel, async, cloud
migration, public cloud, cloud storage, cloud computing

I. INTRODUCTION

Our initial solution of a real-time remote heart monitoring
center was designed as a classical web application hosted on
two virtual machines in a cloud [1]. We were challenged to re-
alize several experiments aiming at an optimal computing en-
vironment that can provide real-time monitoring for thousands
of simultaneous electrocardiogram (ECG) streams within the
CardioHPC project [2]. In addition to the requirement to
process thousands of patients simultaneously, the management
insisted on a scalable platform providing sufficient quality
(short response time) without worrying about the resources.

This paper describes the migration process of a classical
cloud service to existing serverless services offered by the
public clouds. The final goal is to achieve a more significant
speedup for smaller costs.

Software migration is the process of switching from one
operating environment to another that is considered better for
software execution [3]. One type of software migration is
cloud migration. A set of migration activities to support an
end-to-end cloud migration is needed for the cloud migration
process. Cloud migration defines a comprehensive perspective,
capturing business, technical and scientific concerns with
stakeholders with different backgrounds [4].

The higher speedup can be achieved by exploiting par-
allelism, and we classify our motivation task as an embar-
rassingly parallel computation with huge potential to run
concurrently thousands of threads. Serverless is a platform that
offers a scalable platform without worrying about resources.
We specify 3 processing architecture types VM Seq as a
sequential solution on a classical Virtual Machine (VM) ar-
chitecture, VM Parallel executing parallel threads on a VM,
and Serverless Parallel solution as testing environments.

Our research question was to find the speedup achieved by
the serverless and VM Parallel compared to the VM Seq
solution. In addition, we discuss challenges solved to migrat-
ing an Embarrassingly Parallel Problem or a Nearly Embar-
rassingly Parallel Problem to a parallel serverless implemen-
tation.

The paper follows the next structure. Related work and anal-
ysis of the state-of-the-art are presented in Section II. System
architecture, Experiments, and Evaluation methodology are
described in Section III, illustrating the technical solution and
approach that will achieve system scalability and how system
speed and speedup will be measured. Results are evaluated
and discussed in Section IV. Finally, Section V presents the
Conclusions and future work directions.

II. RELATED WORK

The idea of dividing a big computation into multiple inde-
pendent tasks that can be invoked concurrently and executed
on serverless infrastructure was exploited by Bharti et al. [5],
proving that serverless platforms can be used cost-effectively
for large-scale parallel processing applications. They propose
a new approach to parallel serverless computing that has
the benefit of successfully terminating the execution of AWS
Lambda that will otherwise fail. The limiting factor of this
approach was found to be that it is not applicable to problems
that can not be divided into multiple independent tasks.

Nazari et al. [6] presented a literature review and state
of the art on the serverless, pointing out how developers
can run thousands of function instances concurrently for
embarrassingly parallel jobs and gives a review of some
limitations of serverless processing of embarrassingly parallel
jobs. The research has shown that embarrassingly parallel
problems are a good fit for serverless computing. A new way
of developing data analytics applications with PyWren [7] on
top of Serverless infrastructure gives benefits to PySpark [8],

https://doi.org/10.1109/TELFOR56187.2022.9983710


Serverless 
Service

recv()

send() Slave 
Serverless 

Service
Master 

Serverless 
Service

Serverless 
Service

recv()

send() Slave 
Serverless 

Service
Master 

Serverless 
Service

Fig. 1. Embarrassingly parallel (left) and Nearly embarrassingly parallel
processing (right)

Hadoop [9] and other server-based distributed data analytic
systems [6].

Ichnowski et al. [10] use multi-core serverless lambda com-
puting for motion planning algorithms, exploiting both multi-
core parallelism within the lambda functions and scalability
of lambdas running in parallel, and conclude that serverless
computing can effectively scale. Regarding the multi-core
parallelism of serverless services, the performance of a par-
allelized function is limited by the allocated vCPUs, and the
number of CPU cores available to the function/container does
not always equal the number of allocated vCPUs [11]. That
is a limiting factor in how much we can parallelize individual
tasks inside embarrassingly parallel problems.

III. METHODS AND TECHNICAL SOLUTIONS

“Ideal” computational task can be divided into several
completely independent parts to be executed by a separate pro-
cessor (serverless service), a computational paradigm known
as an embarrassingly parallel computation [12]. A truly em-
barrassingly parallel computation suggests no communication
between the separate processes and hence requires no special
techniques or algorithms to obtain a working solution. The left
part of Fig. 1 shows truly embarrassingly parallel computation.

This paper focuses on serverless services instead of process
or processor. An embarrassingly parallel computation requires
no or very little communication [13]. Serverless services can
execute the specified tasks without any interaction with other
serverless services. In this ideal case, each serverless service
receives independent raw data and generates results from
these inputs without waiting for results from other serverless
services.

Nearly embarrassingly parallel computations are those ar-
chitectures that require intermediate calculations and results
to be distributed, collected, and combined in some way
[14]. Single serverless service must operate alone initially
and finally. For smooth operation of embarrassingly parallel
computation, a master serverless service is required in addition
to slave serverless services (the right part of Fig. 1). The master
serverless service is used for controlling the computational
sequence, such as distributing the tasks among the slave
serverless services and waiting for a process to be completed
before assigning subsequent tasks. The available slave service
instances conduct the computationally intensive tasks [14].
The computational load for each of the slave serverless service

instances is about the same. Nearly embarrassingly parallel
computation is achieved.

The master serverless service can use a static or a dynamic
task assignment [13]. In static task assignment, each serverless
service instance does a fixed part of the problem, known as
a priori. Moreover, with a dynamic task assignment, a work-
pool is maintained that serverless service instances consult to
get more work [13]. The work pool is a collection of tasks to
be executed. Serverless service instances execute new tasks as
soon as they finish previously assigned tasks.

A. Migration challenges

The existing service to be migrated to a serverless imple-
mentation is presented in Fig. 2. Two Windows Server virtual
machines are used in the existing solution as VMWare Cloud
instances [15]. For this research, we focussed on the Beat
Detection and Classification (BDC) service [16] as a compute-
intensive module and realized experiments to migrate it to
a serverless implementation. This service is invoked with an
ECG file and runs signal processing algorithms that output
annotations of detected and classified heartbeats. An ECG file
to be processed is uploaded to a Web application deployed on
a Windows Server 2012 R2. The web application is developed
in .NET Core and Javascript. The Web application initiates the
processing of the ECG file by calling the BDC Tomcat Web
Server [17]. The BDC service processes the attached file, uses
additional information (customized thresholds), and returns a
processing status. The web application reads the processed
files if the processing is completed successfully. Otherwise, it
displays an error message that the BDC processing did not
complete successfully.

Our earlier experiments showed that serverless Google
Cloud offers more concurrent resources than Amazon Web
Services [18], [19], and in this paper, we present the de-
velopment of a serverless version of the BDC service on
Google Compute Engine (GCE), Google Cloud Run (GCR),
and Google Cloud Storage (GCS). GCE is an infrastructure
service provided as a part of the Google Cloud Platform,
providing three major components: virtual machines, persistent
disks, and networks [20]. GCR is a fully managed computing
environment to deploy and scale serverless HTTP containers
without worrying about provisioning machines, configuring
clusters, or autoscaling [21]. To implement the BDC service on
GCR, we created a Docker [22] image of the BDC service and
hosted it on Google Container Registry [23]. Corresponding
ECG files are stored on GCS [24].

B. Solution architecture

The BDC serverless solution is shown in Fig. 3. It includes
3 services from Google GCE, GCR, and GCS. The serverless
solution is an implementation of the Nearly Embarrassingly
Parallel Problem, which means that in the solution, we will
have one master serverless service and many slave serverless
service instances.

The ECG file is uploaded to the web application. The web
application in Fig. 2 is the same application in Fig. 3. The



Web App 
.NET Core/Javascript

Task Async

Await

Service configuration

Input Generator
Module BDC

Memory 4Gib 512 MiB

vCPUs 8 1

Maximum requests
per container 1 1

Minimum number of
instances 0 0

Maximum number
of instances 1 1000

Write Results

Await WhenAll(Tasks)

Read/Write processed files

Init File Processing

VMWare Windows Server VM

BDC 
Tomcat Web Server

VM Local DiskECG file

Montioring Web App 
.NET Core/Javascript

ECG file

VMWare Windows Server VM

Google Compute Engine
 Windows Server VM

Processed ECG 
Cloud Storage

0-1000 Tasks

0-1000 Docker Instances 

BDC 
Java 
Cloud Run

Input Generator Module 
.NET Core Web API 
Cloud Run

1 Docker Instance 

Fig. 2. BDC VM service architecture in cloud

Web App 
.NET Core/Javascript

Task Async

Await

Service configuration

Input Generator
Module BDC

Memory 4Gib 512 MiB

vCPUs 8 1

Maximum requests
per container 1 1

Minimum number of
instances 0 0

Maximum number
of instances 1 1000

Write Results

Await WhenAll(Tasks)

Read/Write processed files

Init File Processing

VMWare Windows Server VM

BDC 
Tomcat Web Server

VM Local DiskECG file

Montioring Web App 
.NET Core/Javascript

ECG file

VMWare Windows Server VM

Google Compute Engine
 Windows Server VM

Processed ECG 
Cloud Storage

0-1000 Tasks

0-1000 Docker Instances 

BDC 
Java 
Cloud Run

Input Generator Module 
.NET Core Web API 
Cloud Run

1 Docker Instance 

Fig. 3. BDC serverless service architecture in cloud

web application is deployed in a Google Compute Engine
VM. The virtual machine has Windows Server 2022 operating
system installed. All requests in the new solution work with
JSON data-interchange format. The Input Generator Module
IGM) represents a master serverless service and, BDC is a
slave serverless service. The IGM is a .NET Core Web API.
A docker image was created from the IGM and is pushed to
Google Container Registry. BDC is a Java service with the
same code as BDC from Fig. 2. A docker image was created
from BDC that is pushed to Google Container Registry. The
detailed configuration of the IGM and BDC in GCR is given
in Table. I.

The IGM receives the data from the ECG file and divides
it into equal time measurements of the ECG signal. Input-
FileChunks is a list of ECG signal chunks created by dividing
the initial ECG file attached to the web application into equal
time chunks. Then for each ECG signal chunk, BDC is called
asynchronously.

Waiting for all asynchronous results from the BDC Slave
service is synchronized using Task.WhenAll(tasks). That cre-
ates a task that will be finish when all of the supplied
tasks have been completed. The results are collected from all
BDCAPI results. The results are then written to a GCS bucket,
and a JSON with processing status is returned.

1 var tasks = inputFileChunks.Select(async file => {
2 BDCAPIResult = await callBDC(param); //public

static async Task<BDCModuleOutputParam> callBDC(
param)

3 File.APIResult = BDCAPIResult;
4 return file;
5 });
6 foreach (var file in await Task.WhenAll(tasks)){
7 collectResults(file);
8 }

Listing 1. IGM C# code

C. Experiments

The real-time scenario is based on processing the 30s or
60s ECG signal expecting a near real-time response (response

TABLE I
CONFIGURATION OF SERVERLESS SERVICES ON GOOGLE CLOUD RUN

IGM BDC
Memory 4Gib 512MiB
vCPUs 8 1
Max requests per container 1 1
Min number of container instances 0 0
Max number of container instances 1 1000

time ≤ 3s).
There are 3 types of processingVM Seq, VM Parallel,

and Serverless Parallel. VM Seq and VM Parallel are
executed in the BDC VM service architecture shown in Fig. 2.
A Serverless Parallel is executed in BDC serverless service
architecture shown in Fig. 3.

D. Evaluation methodology

Two experiment test cases are specified with various exe-
cution configurations for durations of ECG files in minutes D
and workloads of simultaneous W ECG streaming files, with
the same total time of 500 minutes ECG measurement:

• Test case 1: where D = 0.5 and W = 1000,
• Test case 2: where D = 1 and W = 500.
The total execution time Ttotal is measured for each exper-

iment, as average response time (latency) for 5 executions of
the experiment.

To evaluate the impact of introducing the serverless paral-
lelization, for each experiment we measure the response time
TS(W ) and TP (W ), respectively for the VM sequential and
serverless parallel version for a specific load W , and calculate
the speedup S(W ) of the serverless service implementation
with respect to the sequential VM version of the service,
calculated by (1).

S(W ) =
TS(W )

TP (W )
(1)

IV. RESULTS AND DISCUSSION

Fig. 4 presents the achieved results of the total re-
sponse time Ttotal and speedup S(W ) for a given configura-
tion and different processing types. (VMSeq VMParallel,
VMParallel Serverless and, VMSeq Serverless) Ttotal

is represented by a box and whisker plot where each Ttotal

is a set of 5 executions of the experiment. Fig. 5 presents the
speedup S(W ) obtained due to the introduction of paralleliza-
tion.

Sequential processing in the VM has the largest Ttotal.
We observe that the configuration with D=1 W=500 in
all types of processing outperforms D=0.5 W=1000. It is
better to have 500 ECG files of 1 minute measurement
rather than 1000 files of 30 seconds. The lowest S(W )
is achieved for VMSeq VMParallel and the highest for
VMSeq Serverless. In all three types of real-time scenario
processing, the most significant speedup S(W ) is for W=0.5
D=1000. Although for the experiment D=0.5 W=1000, we
achieve a worse Ttotal for all processing types, still more W



0.5 1

Fig. 4. Total execution time for each experiment (latency)

0
5

10
15
20
25
30
35
40
45

VMSeq_VMParallel VMParallel_Serverless VMSeq_Serverless

Sp
e

e
d

u
p

 -
S(

W
)

Real-time scenario

D=0.5, W=1000 D=1, W=500

Fig. 5. Speedup

will cause more service requests, which means more serverless
instances will process in parallel. The highest speedup S(W )
of almost 40 is achieved for VMSeq Serverless, and 23 for
VMParallel Serverless.

V. CONCLUSION

We conducted experiments for three processing architecture
types VM Seq, VM Parallel and, Serverless Parallel.
The evaluation confirmed maximum speedup of S(W ) = 40
conducting the real-time experiments. Better speedup for real-
time requires larger W with smaller D of ECG signal to spin
up a greater number of instances that will process in parallel.

Serverless computing model can bring significant speedup
for Embarrassingly parallel problems and Nearly Embarrass-
ingly parallel problems. The migration challenges are: dividing
the problem into sub-problems, fast and parallel sending of
requests to serverless platforms that will spin up a large
number of instances to process in parallel, incorporating other
services such as cloud storage for the whole solution to be
functional and elastic.

ACKNOWLEDGMENT

The experiment ”CardioHPC - Improving DL-based Ar-
rhythmia Classification Algorithm and Simulation of Real-
Time Heart Monitoring of Thousands of Patients” has received
funding from the European High-Performance Computing
Joint Undertaking (JU) through the FF4EuroHPC project un-
der grant agreement No 951745. The JU receives support from
the European Union’s Horizon 2020 research and innovation
programme and Germany, Italy, Slovenia, France, and Spain.

REFERENCES

[1] M. Gusev, A. Stojmenski, and A. Guseva, “Ecgalert: A heart attack
alerting system,” 09 2017, pp. 27–36.

[2] Innovation-Dooel, “Cardiohpc - real-time heart monitoring of thousands
of patients.” [Online]. Available: https://bit.ly/cardiohpc

[3] M. Semilof, K. Casey, and J. Montgomery, “What is cloud migration?
an introduction to moving to the cloud,” Dec 2021. [Online].
Available: https://www.techtarget.com/searchcloudcomputing/definition/
cloud-migration

[4] C. Pahl, H. Xiong, and R. Walshe, “A comparison of on-premise to cloud
migration approaches,” in European Conference on Service-Oriented and
Cloud Computing. Springer, 2013, pp. 212–226.

[5] U. Bharti, D. Bajaj, A. Goel, and S. Gupta, “A novel design approach
exploiting data parallelism in serverless infrastructure,” in Advances in
Computing and Network Communications. Springer, 2021, pp. 247–
260.

[6] M. Nazari, S. Goodarzy, E. Keller, E. Rozner, and S. Mishra, “Opti-
mizing and extending serverless platforms: A survey,” in 2021 Eighth
International Conference on Software Defined Systems (SDS). IEEE,
2021, pp. 1–8.

[7] J. Sampé, G. Vernik, M. Sánchez-Artigas, and P. Garcı́a-López, “Server-
less data analytics in the IBM cloud,” in Proceedings of the 19th
International Middleware Conference Industry, 2018, pp. 1–8.

[8] T. Drabas and D. Lee, Learning PySpark. Packt Publishing Ltd, 2017.
[9] T. White, Hadoop: The definitive guide. ” O’Reilly Media, Inc.”, 2012.

[10] J. Ichnowski, W. Lee, V. Murta, S. Paradis, R. Alterovitz, J. E. Gonzalez,
I. Stoica, and K. Goldberg, “Fog robotics algorithms for distributed
motion planning using lambda serverless computing,” in 2020 IEEE
International Conference on Robotics and Automation (ICRA). IEEE,
2020, pp. 4232–4238.

[11] M. Kiener, M. Chadha, and M. Gerndt, “Towards demystifying intra-
function parallelism in serverless computing,” in Proceedings of the
Seventh International Workshop on Serverless Computing (WoSC7)
2021, 2021, pp. 42–49.

[12] M. Allen, B. Wilkinson, and J. Alley, “Parallel programming for the
millennium: Integration throughout the undergraduate curriculum,” in
Second Forum on Parallel Computing Curricula, 1997.

[13] J.-C. Régin, M. Rezgui, and A. Malapert, “Embarrassingly parallel
search,” in International conference on principles and practice of
constraint programming. Springer, 2013, pp. 596–610.

[14] N. Wang, Y.-Z. Chang, and C.-M. Tsai, “The application of nearly
embarrassingly parallel computation in the optimization of fluid-film
lubrication©,” Tribology transactions, vol. 47, no. 1, pp. 34–42, 2004.

[15] S. Lowe, Mastering vmware vsphere 5. John Wiley & Sons, 2011.
[16] E. Domazet and M. Gusev, “Improving the QRS detection for one-

channel ECG sensor,” Technology and Health Care, vol. 27, no. 6, pp.
623–642, 2019.

[17] J. Brittain and I. F. Darwin, Tomcat: The Definitive Guide: The Definitive
Guide. ” O’Reilly Media, Inc.”, 2007.

[18] D. Mileski and M. Gusev, “Serverless FaaS scalability evaluation: An
ECG signal processing use case,” in 2022 45th Jubilee International
Convention on Information, Communication and Electronic Technology
(MIPRO), 2022, pp. 853–858.

[19] M. Gusev, S. Ristov, A. Amza, A. Hohenegger, R. Prodan, D. Mileski,
P. Gushev, and G. Temelkov, “CardioHPC: Serverless approaches for
real-time heart monitoring of thousands of patients,” in WORKS 22,
17th Workshop on Workflows in Support of Large-Scale Science, Super
Computing, SC22 Conference, 2022.

[20] S. Krishnan and J. L. U. Gonzalez, “Google compute engine,” in
Building your next big thing with Google cloud platform. Springer,
2015, pp. 53–81.

[21] E. Bisong, “An overview of google cloud platform services,” Building
Machine Learning and Deep Learning Models on Google Cloud Plat-
form, pp. 7–10, 2019.

[22] D. Merkel et al., “Docker: lightweight linux containers for consistent
development and deployment,” Linux j, vol. 239, no. 2, p. 2, 2014.

[23] Google, “Container registry documentation; google cloud.” [Online].
Available: https://cloud.google.com/container-registry/docs

[24] G. C. S. Documentation, “Cloud storage documentation; google cloud.”
[Online]. Available: https://cloud.google.com/storage/docs

https://bit.ly/cardiohpc
https://www.techtarget.com/searchcloudcomputing/definition/cloud-migration
https://www.techtarget.com/searchcloudcomputing/definition/cloud-migration
https://cloud.google.com/container-registry/docs
https://cloud.google.com/storage/docs

	Introduction
	Related Work
	Methods and Technical Solutions
	Migration challenges
	Solution architecture
	Experiments
	Evaluation methodology

	Results and Discussion
	Conclusion
	References

