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Abstract—The serverless approach provides a completely
new way of developing cloud services, service scalability,
and elasticity by utilizing the container-level virtualization
and abstraction. In this paper, we present a use case of an
application that processes streaming electrocardiograms by
implementing the Function as a Service approach. Several
experiments are conducted to evaluate the scalability and
elasticity performance by checking the following hypothesis:
The system will be highly scalable keeping the same response
time and throughput, for up to 7000 data streams. To check
the validity of the hypothesis we will provide an experimental
research on the following research questions to analyze the
performance behaviour of response and throughput with the
increased load of parallel data streams testing the following
cases: A) Function that will generate a variable number of
data streams, B) Functions that are invoked sequentially,
and C) Functions that are invoked in parallel. Our use
case proved that system scales horizontally and satisfies
all requests. When the workload has linearly increased the
system has linearly increased throughput and results in a
similar response time for each individual request.
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I. INTRODUCTION

The power of abstraction and virtualization enables new
technologies and software development paradigms. Func-
tion as a Service (FaaS) is a serverless implementation,
which allows for scalability at the function level and a
payment model that depends on the memory used by the
function and the number of requests to the function.

Serverless is on-demand computing, which is automati-
cally scaled and billed only for the time the code is running
and only for resources used, avoiding the need to pay for
idle servers, closest to the original idea of cloud computing
as a utility [1]. The abstraction hides how servers are
used and maintained, which makes developing easier [1].
This became possible with the development of contain-
ers, microservices [2], and Event-Driven architectures [3].
Serverless is considered as the developer control over the
cloud infrastructure [2], filling the large gap between PaaS
and SaaS [3]. The way serverless services work brings
challenges like quality-of-service (QoS), monitoring, scal-
ing, and fault-tolerance [1]. Serverless can be efficiently
used as a real-time data analytics platform for edge [4] or
dew computing [5].

Function-as-a-Service (FaaS) is a serverless service
where the computational unit is a function, with a main
components triggers to events or HTTP requests [1]. FaaS
should be small, short-lived, stateless, on-demand service

with a single responsibility, small input and output after
a short amount of time, which makes them easily scal-
able. FaaS are platform-agnostic, operational concerns are
delegated to the platform and context-agnostic, unaware
why and how it is used [3]. FaaS can be configured for
their memory size, number of CPUs, max execution time,
min and max number of function instances, execution
environment (programming language runtime).

This paper presents a prototype application that pro-
cesses electrocardiogram (ECG) signals using serverless
technologies, more precisely FaaS. The advantage of im-
plementing this approach to process streaming medical
signals, or any other type of IoT device, is to develop
services without taking care to manage the resources (vir-
tual machines or the containers). This allows the developer
to focus on the input, code, and output, managing only the
connections to other cloud services.

Google Cloud Functions (GCF) [6] is a serverless
FaaS product from Google. Elasticity and scaling from
zero to “infinity” [1] are probably the most important.
Scalability is achieved only if the response time remains
approximately the same with an increase or decrease in the
workload. Elasticity refers to the ability of a cloud function
to automatically expand or compress the resources on a
sudden-up and down in the requirement so that the work-
load can be managed efficiently. Fine-grained elasticity in
serverless platforms is useful for on-demand applications
like creating image thumbnails [7] or processing streaming
events [8]. Elasticity also plays an important role in data
analytics workloads [8].

GCF support autoscaling by setting maximum bounds
of the number of created instances in response to the
request load. Sudden traffic spikes may cause the limit
to be temporarily exceeded.

GCFs are triggered by events. In the experimental part
we will use HTTP, Cloud Storage, and Pub/Sub events.
Publisher/Subscriber (Pub/Sub) is a popular communica-
tion paradigm allowing for interaction in a decoupled
fashion by publishing their messages on logical channels
and receiving the messages from the subscribed channels
[9]. A pub/sub middleware offers three main types of de-
coupling which make it particularly suitable for large-scale
IoT deployments: (1) Message producers (publishers) and
consumers (subscribers) are decoupled in time, i.e., they
do not have to be connected at the same time; (2) Messages
are not explicitly addressed to a specific consumer but
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to a symbolic address (channel, topic); (3) Messaging
is asynchronous, non-blocking [10]. In the topic-based
scheme, the symbolic channel addresses are topics, usually
in the form of strings, i.e., producers publish to and
consumers subscribe to topics. Messages are only deliv-
ered to matching subscribers. Topics may be organized
hierarchically, i.e., a topic may be a subtopic of another
topic. Subscriptions on a parent topic will then usually also
match all subtopics [10]. Google Cloud Pub/Sub [11] is
Google’s Cloud Service that integrates well with other ser-
vices such as Cloud Functions and Cloud Storage. Cloud
Pub/Sub has Topics in which Publishers send messages
and Subscribers subscribe and receive those messages.

In this paper, we evaluate the scalability of FaaS with
ECG signals collected on the Google Cloud Storage,
as an Object Storage [12], which allows triggering of
GCF and then persistence of the returned results. This
paper contains methods and performance evaluation of the
developed serverless solution for processing ECG signals.
The research is based on simulation and experimental
methods applied to the application, ECG data streams are
simulated by realizing a virtual patient generator aiming
at the creation of parallel data streams with small data
chunks representing real ECG signals. Further on, this is
used as input to two functions that process the incoming
data files.

Evaluation of the scalability will be focused on check-
ing the following hypothesis: The system will be highly
scalable keeping the same response time and throughput,
for up to 7000 data streams. To check the validity of
this hypothesis, we will provide an experimental research
on the performance behaviour of response and throughput
with the increased load of parallel data streams testing the
following cases:

• Function to generate a large number of data streams,
• Functions that are invoked sequentially, and
• Functions that are invoked in parallel.

The paper follows the next structure. Related work
and analysis of the state-of-the-art are presented in Sec-
tion II. System architecture, Experiments, and Evaluation
methodology are described in Section III illustrating the
approach that will achieve system scalability, and how
system response time, throughput, and active instances
will be measured. Results are evaluated and discussed in
Section IV. Finally, Section VI presents the Conclusions
and future work directions.

II. STATE OF THE ART

A lot of research has been conducted focusing on
response time, throughput, instance creation time, number
of active instances per number of requests, cold starts and
deployment time of GCF. This is an overview of the related
work about GCF performance metrics.

Malla and Chritensen [13] compare Google cloud’s
FaaS (Cloud Functions) with its IaaS (Compute Engine)
in terms of cost and performance for a parallel task,

concluding that FaaS can be 14% to 40% less expensive
than IaaS for the same level of performance, including
the setup overhead time. Their experiment includes 861
independent tasks without communication between the
results from the tasks, giving rise to an embarrassingly
parallel HPC workload, and 1.65 times faster IaaS than
FaaS in terms of raw computation performance.

The very first function initiation introduces a cold start,
and then the instance stays alive to be reused for subse-
quent requests. The empirical data show a high variance
of idle periods [14], depending on the instance type and
implemented programming language with variations up
to 5 times difference. Instances are recycled after 15
minutes of inactivity. GCF CPU resources are allocated
proportionally to the memory. So, in theory, larger in-
stances could start faster, without a significant speed-
up as the instance size grows [14]. Setting a minimum
number of instances can avoid application cold starts and
reduce application latency. Cloud Functions attempts to
keep function instances idle for an unspecified amount of
time after handling a request. Setting a minimum number
of instances incurs cost [15].

Cloud Run is a serverless managed compute platform
based on request or event-triggered functions in containers.
Tests with thousands of different variables over a large set
of data [16] reveals that the average API response time is
decreased by 30% when changing from Cloud Functions
to Cloud Run. The performance and cost of FaaS are
influenced by network latency and retrieval times from
object storage [17], concluded after investigation of the
object retrieval times from regional buckets with Google
Cloud Storage and AWS S3. Optimization of the FaaS
functions for the underlying processor architectures is very
important [18] and can improve performance by 18.2
times and save costs by 76.8% on average, achieving a
maximum speedup of 1.79 times by tuning the function to
the instruction set of the underlying processor architecture.

Continuous development of FaaS changes the perfor-
mance of different Cloud providers over time, initiating
the importance of developing a measurement platform
for serverless systems and performing continuous mea-
surements for better performance characterization [19],
launching more than 50,000 function instances.

Although CPU shared for cloud functions is propor-
tional to the memory allocated claims AWS and Google,
Malawski et al. [20] explain that they observe linear
performance growth with the memory size in the case
of AWS, although sometimes slightly slower, while for
Google Cloud Functions the performance is proportional
to the memory allocated, but sometimes much faster. They
don’t observe any correlation between the function size
and performance for Azure Functions and IBM Functions.
When it comes to benchmarks, AWS achieves higher
scores in Linpack (over 30 GFlops) whereas GCF tops at
17 GFlops [20], and also, the day of the week and time of
the day is not a significant performance dependency of the
functions in different cloud providers. The computational
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Fig. 1: ECG Serverless Processing Architecture

performance of a cloud function is proportional to the
function size for AWS Lambda and Google Cloud Func-
tions, with the exception of about 5% cases when Google
function runs faster than expected [21], notifying that IBM
and Azure computational performance of a cloud function
is not proportional to function size. Analyzing the Network
performance (throughput) of a cloud function, AWS and
Google are proportional to function size, [21], without
conducting experiments on IBM and Azure, finding a
constant overhead that does not depend on cloud function
size.

Application server instances are reused between calls
and are recycled at regular intervals, and their instance
lifetime differs between providers [21]. Heterogenous
hardware is used for the execution of Functions [21].
McGrath and Brenner [22] observed Linear scalability for
AWS Lambda and highest throughput of the commercial
platforms, at 15 concurrent requests, sub-linear scaling for
Google Cloud Functions and extremely variable perfor-
mance of Azure Functions.

A novel serverless platform IBM-PyWren was used
for executing massively parallel tasks in the IBM Cloud,
including a real MapReduce presenting the potential
of serverless platforms for distributed computing with
speedups > 100X [23]. A cost comparison of monolithic
architecture, a microservice architecture operated by the
cloud customer and a microservice architecture operated
by the cloud provider shows that the monthly costs
are advantageous for architecture operated by the cloud
provider. [24]. Wagner and Sood [25] observed one year
of operating cost for different approaches: AWS Spot In-
stance Cost 744$, AWS On-Demand Instance Cost 2519$,
GCP Preemptible Instance Cost 1079$, GCP On-demand
Instance Cost 3153 $, AWS Lambda Cost 186$. Today’s
serverless state of the art shows that we can not derive a
general rule that serverless services are cheaper than VM
or containers services, it all depends on the specific use
case in which you want to implement serverless services.

III. METHODS

A. Solution Architecture

Fig. 1 presents the architecture of the experiment real-
ized as a serverless solution.

1) VPG Cloud Storage: This is the Bucket in Google
Cloud Storage [26] for our experiment, where ECG data
files are collected.

2) Virtual Patient Frontend: The user interface to select
virtual patients is configured by two parameters:

• CS (concurrent streams), which can be changed in the
experiments from x = 5, 10, 20, 30, . . . , 7000, and

• FPM (files per minute) with a default value of 2,

Serverless functions are used in this work [2], Firebase
Functions [27] to implement the frontend creating HTTP
GET requests to trigger the serverless function Select
Virtual Patient Frontend, and HTTP Post is sent to the
Virtual Patient Generator function to read files from VPG
Cloud Storage.

3) Virtual Patient Generator (VPG): This software
module generates and streams ECG files. The input of
VPG is permanent cloud storage that contains a database
of 44 ECG files. Each ECG file contains FS = 225000
integers, written in a textual form one per row. Each
integer is a 10-bit integer with values between 0 and
1023. This represents a 30-minute ECG with a sampling
frequency of 125 Hz. Upon an HTTP trigger VPG starts
generating x parallel data streams, where each data stream
is associated with one of the predefined ECG files from
the MITDB database. If FPM = 2, then each data stream
generates 2 files per minute, such that immediately takes
the first 3750 numbers from the selected file, and writes
a file in the bucket 1, after 30 seconds (determined as
1 minute/FPM), it takes the next 3750 numbers for the
selected file and writes in the bucket 1, and continues until
it generates all files.

For example, let the selected files from the database are
100.ecg and 101.ecg. Let CS=2 so these two files will be



used as input in the VPG. Let FPM=2, meaning that VPG
will take 100.ecg and generate 100-01.ecg with the first
3750 integers from the 100.ecg and write them in bucket 1.
Then after 60 seconds/(CS+FPM)= 60/4 sec = 15 seconds
it will take the first 3750 integers from file 101.ecg and
write them in a file 101-01 in bucket 1. After next 15
seconds it will take the next 3750 integers from 100.ecg
and write them in a file 100-02.ecg in bucket 1, repeating
the action until finished.

4) Cloud Pub/Sub: Our experiment specifies Cloud
Functions as Publishers. Subscribers as Cloud Functions
and Node JS [28] as Proxy Server. We developed Google
Cloud Pub/Sub solution with 3 topics ECG 1 N, ECG
N 1, and Visualization Topic which implements a 1:1
Publish/Subscribe model.

5) Function 1 and Function 2: Two functions are
developed that process ECG data. Cloud Pub/Sub supports
One-to-many (fan-out), Many-to-one (fan-in), Many-to-
many models. To implement Many-to-one we need to
have more publishers who will send messages on a given
topic. In order to make some of the messages from VPG
go directly to Function-2, and some go to Function-1
and then to Function-2, the Forwarding Function 2 has
been implemented, thus achieving that Function-1 and
Forwarding Function 2 will be Publishers on a topic to
which Function-2 can be subscribed.

6) ECG Visualisation: Custom Javascript Framework
makes AJAX [29] calls at a predefined time to the lastMes-
sageData endpoint of NodeJS Proxy Server to retrieve the
data needed for visualization.

B. Experiments

Input into the experiment are ECG files created by VPG
as data chunks of 3750 integers for each patient. Since
the input file is a 30-minute ECG (with 225,000 integers
in the range between 0 and 1023), the VPG will create
60 data chunks, where each data chunk represents a 30-
second ECG record. These data chunks are then processed
by Function-1 and Function-2.

An initial user interface is created by a web application
to allow specification of the number of concurrent streams
CS and the rate of sending these files as a number of
files per minute FPM. The default values are FPM=2 for
setting 30-second ECG data chunks and CS=2 for setting
2 patients that will be concurrently processed.

The test cases include variations of the number of
streams in the range from 10 to 7000, with a fixed 2 FPM.

The experiment performs by the following procedure.
During the first execution with the workload - 10 ECG files
are taken twice from the first time to avoid a cold start, and
the measurement starts from the second execution. Then
each subsequent execution 10, 20, 30, . . . 500. . . 6000,
7000 Workload - Number of ECG files is done once with
a break of 5 to 10 minutes between executions.

This allows function instances to be idle and the request
to be processed without a cold start. The autoscaling op-

tion allows starting new instances to satisfy the increased
workload. Note that the new instances will have a cold
start, but those instances that have already been started
and are idle will execute the requests as they arrive.
Furthermore, these functions that were idle will process
several requests while waiting for the cold start of the
new functions.

C. Evaluation methodology

Evaluation metrics address measuring the response time,
throughput and cost.

The response time is measured only for Function-1 and
Function-2 (expressed in milliseconds). Since each func-
tion executes CS*FM*60 times the average response times
are TF1 and TF2 for the functions F1 and F2 respectively.
Total Response Time is the sum of the average response
times of F1 and F2, that is Ttot = TF1 + TF2.

Throughput is only measured for Function 1 and Func-
tion 2 by calculating how many times the function is called
per second and how many of the calls ended with the
status code ok and how many with error. Google Cloud
Monitoring Service [30] dashboards and metrics explorer
are used to measure and evaluate parameters.

IV. RESULTS

Fig. 2 presents a performance evaluation of scalability
by displaying the response time, on a chart where the x-
axis shows the workload as a number of files per minute,
and y-axis the average response time of all processed
functions.

Response time for F1 is in the range between 58 and
163 ms, with a standard deviation of 30 ms. The high
variance of these values was due to the cold start of new
F1 instances activated for the increased workload.

Functions F1 and F2 required a cold start in the range
between 1000 and 1700 ms. Our experimental production
system includes instances of idle functions able to imme-
diately serve requests, which increase the throughput and
respond not exceeding an upper limit of 250 and 380 ms
respectively for F1 and F2 functions.

Fig. 3 presents scalability performance evaluation by
displaying the throughput measurements, as a number of
calls to a function that ended with an OK status code since
no functions requests ended with an error status code.
We observe that the throughput for F2 function is greater
than F1, which is due to the more complex nature of the
implemented algorithm.

F2 is subscribed to ecg N 1 which is a Cloud Pub/Sub
Topic that receives messages from function F1 and for-
warding to F2. Cloud Pub/Sub delivers each published
message at least once for each subscription [31]. Approx-
imately If N files are pushed to the function F1, then 2N
files will be pushed to the function F2. The system scales
well, for the different workloads of the same function but
also for different workloads of the two different functions,
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average response times are similar (TF1 = 104ms, TF2 =
97ms).

V. DISCUSSION

Fig. 4 presents a performance evaluation of scalability
by displaying the max active instances of the serverless
functions VPG, F1, and F2.

The upper limit of active instances per cloud function
is 3000. For all functions in this paper, the lower limit
of instances was set to 0 and the upper limit was set to
3000. You can avoid cold starts for your application and
reduce application latency by setting a minimum number
of instances. Minimum instances will be kept running at
idle, ready to serve requests. Instances kept running in
this way do incur billing costs [32]. In our experiment,
this was not necessary because during each execution
the requests were processed by the idle instances of the
previous execution and by the new instances which were
started with the increased workload.

During one execution the number of instances increased
and decreased as the requests came. Figure 4 shows
the maximum number of instances that were active for
a particular Workload - The number of ECG files. We
can notice that VPG has some linearity of max active
instances, while in F1 and F2 we have a saturation of max
active instances. VPG represents HTTP triggered Cloud
Function, while F1 and F2 are Cloud Pub/Sub Triggered.
We make HTTP Post requests with the Javascript library
Axios. F1 and F2 are Push subscribers, so they start when a
push message arrives. There are Pub/Sub quotas and limits
in the official documentation from Google Cloud [15]. It is
necessary to research whether there is a causality between
quotas of Cloud Pub/Sub and the maximum number of

instances that are instantiated especially for the part over
2000 workload.

VI. CONCLUSION

This paper presents the advantages of FaaS in terms
of elasticity. FaaS can be used for whole system imple-
mentation or for individual services that need to be elastic.
FaaS can be cheap for services that have a small number of
requests and that will not run for very long. FaaS is elastic
for services that need to support sudden spikes in requests.
The system scales horizontally and satisfies all requests.
We have proved that with the increased workload, the
system has a similar response time for each of the requests.
When the workload is linearly increased the system has
linearly increased throughput and has a similar response
time for each individual request with a Standard Deviation
from 30 to 40ms.

FaaS can be an elastic and inexpensive solution only
if the services to be implemented are developed and
tuned properly according to the recommendations for FaaS
development. Our future plans address realization of an
experiment that simulates an ECG monitoring center for
10.000 simultaneous ECG data streams.
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