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INTRODUCTION
Data statistics for 2020 and 2021 show 
that heart disease and stroke are the 
leading cause of death, followed by can-
cer and COVID-19. Every third person 
died due to cardiovascular problems.1,2 
Telemedicine and health monitoring 
can mitigate the risk of death by detect-
ing dangerous arrhythmia and pre-
venting life-threatening conditions for 
patients outside the hospital, living in 
their homes, and working in their usual 
office environments. Typical symptoms 
appear 2 h before cardiac death occurs.3 
However, this risk requires near real-
time data processing and taking med-
ical treatment within that period. 
Unfortunately, several challenges must 
be addressed, such as arrhythmia 
detection within seconds per patient 
and scaling the number of patients.

While most patients are online 
and their heart conditions can be 
monitored in real time, some patients 
may work without an Internet con-
nection. Therefore, not all patients 
are online 24/7, which requires an 
architecture that allows real time for 
online patients and batch processing 
when offline patients connect online. 
Although serverless architectures4 are 
addressed in this article as a scalable 
and elastic cloud resource solution 
with these processing requirements, 
we still refer to several accompanied 
issues in practical implementations, 
such as storage data input/output lim-
itations, network throughput, or the 
number of activated concurrent cloud 
instances. Telemedicine-related issues 
are mainly identified as big data chal-
lenges of many incoming data streams 
with large volumes and high velocities. 

BACKGROUND
This section introduces the necessary 
concepts about serverless technologies 

and lambda architecture for big data 
processing.

Serverless computing
Serverless computing offers developers 
a platform that shields the server usage, 
automatically scales without explicit 
provisioning, and charges only for the 
resources that are used while their code 
is running.5 Various serverless-based 
services are in a mature phase. Users 

may dockerize their application and 
deploy it as a serverless container on, 
for example, Google Cloud Run or 
AWS App Runner. A lighter option is 
to develop the application by serverless 
functions using a function-as-a-service 
(FaaS) service, such as Google Cloud 
Functions or AWS Lambda. While the 
FaaS services are cheaper than the 
serverless containers for smaller loads, 
they are offered with many constraints 
and limitations, such as the maximum 
number of concurrent functions or the 
limited duration, memory, and input 
and output data size.

Serverless workflows or 
function choreographies
While the serverless functions intro-
duce many advantages, still, due to 
the constraints, they are usually light-
weight and short-running. To create 
serverless applications with increased 
complexity, developers may build their 

applications by serverless workflows, 
known in the literature as function cho-
reographies (FCs).6 Many public cloud 
providers offer FC systems, such as 
AWS Step Functions, but they have sev-
eral weaknesses. First, the cloud pro-
viders tend to lock the users into their 
clouds, and their FC systems allow them 
to build and run FCs, but mainly on 
their own FaaS platforms. Second, the 
FC systems generate additional costs 

for managing the states of the FC execu-
tion. Other FC systems, such as Google 
Workflows, support running FCs across 
various FaaS systems. However, their 
concurrency is limited, which restricts 
FC scalability. Other options are open 
source FC management systems, such 
as xAFCL,7 which abstract the applica-
tion from the underlying FaaS systems, 
thereby supporting running FCs across 
federated FaaS.

Lambda architecture
Almost a decade ago, Waren and Marz8 
introduced the lambda architecture pat-
tern for big data processing, integrating 
batch and stream processing in a sin-
gle architecture. Instead of querying 
the entire dataset, which may require 
enormous computing resources, they 
created the three-layered pattern com-
prising batch, serving, and speed layers. 
The batch and serving layers support 
arbitrary queries on all data with the 
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low latency updates tradeoff: that is, 
out-of-date queries by several hours. 
To overcome this tradeoff, the speed 
layer ensures that new data are inte-
grated into queries as fast as needed 
by using incremental computation over 
newly received data.

TELEMEDICINE HEALTH 
MONITORING USE CASE
Wearable devices, such as electrocar-
diogram (ECG) sensors, allow the mea-
surement of ECG stream data, and tele-
medicine offers patients near real-time 
heart health care. Recent technology 
solutions9 have proven that arrhyth-
mia can be detected in a limited num-
ber of patients. The ViewECG system 
is defined as a near real-time process-
ing system since it processes 30-s ECG 
stream data measurements. Addition-
ally, the results are postponed depend-
ing on processing time.

The initial virtual machine-
based architecture
The initial implementation of ViewECG 
was deployed on three virtual ma-
chines (VMs) (Figure 1). The main ap-

plication runs in the main VM, the 
access point for the remote user in-
terface and web application interface 
(API) for external system communica-
tion. To keep the user credentials and 
authorization data, ViewECG uses the 
MSSQL database, including the statis-
tical results and pointers to the medi-
cal data stored in the data processing 
unit (DPU). The DPU VM is the second 
VM, which accepts incoming ECG data 
streams, stores data in the local file sys-
tem, and processes the incoming ECG 
stream data. Finally, the beat detection 
and classification (BDC) VM runs a sep-
arate module for BDC of arrhythmia.

Due to the low elasticity of VMs, 
this initial architecture is not scalable. 
Problems arise whenever the number 
of ECG stream files increases, or a high 
number of postponed requests arrive 
at the system when the offline patients 
send their ECG stream data as they 
appear online.

The serverless architecture
The new serverless architecture pro-
cesses the ECG stream data by a sequence 
of four software modules implemented 

as serverless functions executed in a 
pipeline one after another, including 
preprocessing (noise detection and data 
filtering), BDC, postprocessing (detect-
ing specific ECG features), and final-
ization (statistical analysis and report 
preparation). Functions are developed 
with different programming languages 
(Java and C#).

Each file for near real-time process-
ing consists of 3,750 ECG samples based 
on a 125-Hz sampling frequency. Since 
the size of these data are 23 kB, data are 
sent by value while invoking the server-
less functions instead of storing the 
data as a file to the storage system and 
invoking the functions by reference to 
that file. We decided on this approach 
based on our previous work.10

In case of detecting a potential 
arrhythmia, the system notifies the doc-
tor, and in case of arrhythmia, the doctor 
takes the appropriate medical measures.

ECG SERVERLESS 
PROCESSING CHALLENGES 
AND APPROACHES
While serverless computing offers 
high flexibility, scalability, and low 
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FIGURE 1. The initial VM-based architecture. API: application interface; BDC: beat detection and classification; DB: database; DPU: data 
processing unit.
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development effort and maintenance, 
there are still several challenges that 
the research community should tackle.

Challenge 1: Near real-time 
processing for a scaled 
number of patients
Although cloud providers automati-
cally scale the number of active server-
less functions or containers, they still 
introduce a concurrency limit, which 
restricts scalability within one cloud 
region. For instance, AWS Lambda 
and the first generations of Google 
Cloud Functions limit the users to 
run a maximum of 1,000 functions 
simultaneously by default, which 
can be increased to 3,000 functions 
on demand. However, cloud provid-
ers schedule multiple functions on 
the same container to save resources 
and can vary the maximum number 
of parallel instances depending on 
dynamic memory allocation and vir-
tual CPU use, or allow the users more 
instances upon special request. Con-
sequently, the scalability is limited, 
which restricts the scale of telemedi-
cine solutions to numerous patients.

Approach: Cloud federation to run 
functions across multiple cloud regions 
of various cloud providers.

Challenge 2: Low processing 
time for offline patients
In today’s modern world, smartphones 
have become authentication devices 
working online through wireless 
or mobile networks. In some cases, 
patients may be offline due to low cov-
erage or specifics on their working 
place, and collecting their ECG data up 
to hundreds of megabytes increases 
the overall processing time, causing 
late detection of arrhythmia.

Approach: Use high-performance 
computing (HPC) data parallelism 

to speed up t he processi ng for 
off line patients.

Challenge 3: Integration of 
heterogeneous software modules
Cloud continuum11 comprises a mas-
sively heterogeneous environment, 
both in hardware and software. This 
includes a variety of APIs, libraries, 
and software development kits for het-
erogeneous sensors, cloud providers, 
artificial intelligence (AI) services, 
etc. As a consequence, many modules 
of ECG systems are coded with differ-
ent languages, which requires a high 
degree of interoperability between 
the modules.

Approach: On top of the serverless 
platform, use serverless workflows 
or function choreography that spawn 
numerous functions and orchestrate 
serverless functions developed with 
different programming languages.

CardioHPC approach with 
lambda architecture
The research is part of the CardioHPC 
project (https://www.ff4eurohpc.eu/
en/experiments/2022031511530081/
r e a l t i m e _ h e a r t _ m o n i t o r i n g _ o f 
_thousands_of_patients) aiming at find-
ing an optimal environment to process 
thousands of concurrent ECGs. For 
the CardioHPC project based on sim-
ulation and experimental methods, 
we have developed a virtual patient 
generator web service to simulate par-
allel data streams representing ECG 
signals12 from previously measured 
patients, where the user can spec-
ify up to 10,000 concurrent streams 
and files per minute with a default 
value of 2 (two 30-s files per minute). 
Besides files per minute and concur-
rent streams, the web application built 
as a user interface to this web service 
can specify the destination system 

and the destination where the virtual 
patient generator will be hosted. The 
virtual patient generator is used in the 
evaluation of this research.

In our previous recent work,10 we 
analyzed several performance metrics 
that were input to this research. First, 
we determined that the near real-time 
scenario achieves maximum through-
put for sending the ECG stream data 
every 30 s. On the other hand, batch 
processing results in the lowest latency 
to access storage and spawn start when 
the one-week file is split into files of 1-h 
ECG stream data. Nevertheless, at least 
5-s additional latency was observed for 
FaaS to spawn 672 functions, each of 
which would process a 15-min ECG data 
stream or run 42 functions that process 
a 4-h ECG data stream. Therefore, we 
adapted the xAFCL FC system to be able 
to run serverless functions that are 
deployed on Google Cloud Run. Using 
this extension, in this article, we eval-
uated the tradeoff between the bene-
fits of scalability across the regions and 
lower networking performance due to 
additional network latency and lower 
bandwidth between regions.

LAMBDA-BASED SYSTEM 
ARCHITECTURE FOR ECG 
STREAM DATA PROCESSING
To overcome challenges 1 and 2, we 
developed a new system architecture 
based on lambda architecture capa-
ble of conducting near real-time and 
batch ECG stream data processing 
for online and offline patients. The 
solution is deployed using the server-
less Google Cloud Run service, which 
allows high scalability and elasticity 
with a real ”pay-as-you-drink” pricing 
model. Finally, to overcome challenge 
3, we used the serverless workflow 
management system7 to orchestrate 
serverless functions in a choreography 

https://www.ff4eurohpc.eu/en/experiments/2022031511530081/realtime_heart_monitoring_of_thousands_of_patients
https://www.ff4eurohpc.eu/en/experiments/2022031511530081/realtime_heart_monitoring_of_thousands_of_patients
https://www.ff4eurohpc.eu/en/experiments/2022031511530081/realtime_heart_monitoring_of_thousands_of_patients
https://www.ff4eurohpc.eu/en/experiments/2022031511530081/realtime_heart_monitoring_of_thousands_of_patients
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comprising functions written in an 
arbitrary programming language.

Figure 2 presents the lambda archi-
tecture for distributed ECG stream 
data processing. The client module 
is installed on a smartphone to sub-
mit the ECG stream from the last 30-s 
measurements. Since this short ECG 
stream is 23 kB, the ECG stream is sent 
by value to the stream, which invokes 
the pipeline of the four functions pre-
sented in Figure 3(a) to process the ECG 
stream in near real time. Similarly, 
the data forwarded between the func-
tions are sent by value in JSON format. 
Scalability is achieved by scaling the 
serverless functions within the region 
and across multiple cloud regions, 
while elasticity is achieved by server-
less functions.

However, when an offline patient 
connects online, the client module 
detects that the ECG stream is longer 
than 30 s and stores it on cloud storage. 
Assuming a patient connects online 
within 12 h, the ECG stream may grow 
to 30 MB. Such a large file raises two 
challenges. First, while invoking the 
near real-time pipeline with 23 KB may 
very rarely cause network transfer fail-
ures, invoking serverless functions 
with a payload of 30 MB over a WAN 
network often causes failures or huge 
latency due to TCP retransmissions. 

To overcome this challenge, we invoke 
the pipeline by submitting a reference 
to the file. Second, processing big ECG 
stream data causes additional delays, 
which should be minimized to pro-
cess the ECG stream, detect a possible 
arrhythmia, and react accordingly. 
Since detecting arrhythmia does not 
require processing the whole file, we 
run a workflow of several functions 
that split the large file into smaller 
files, each of 1 h, since our initial mea-
surements revealed that processing 
the 1-h ECG files achieves the highest 
throughput.10 Nevertheless, the “Split” 
function can be reconfigured to split 
the file differently, based on, for exam-
ple, the assigned memory or storage 
bandwidth. Splitting large files and 
parallel processing executes the work-
flow for up to 16 s.

The offline patients are processed 
by the workflow implementing the 
abstract function choreography lan-
guage (AFCL),6 which is a YAML-based 
language and allows the orchestra-
tion of parallel loops with a dynamic 
loop iteration count. Figure 3(b) pres-
ents the target workflow in AFCL 
that passes data by reference between 
functions, which is then used by func-
tions to access files on cloud storage, as 
well as to store the processed files back 
to the storage to be accessible to the 

successor functions in the workflow. 
The function “countHours” is a helper 
function, which receives the file path 
and returns the hours as a collection 
that should be processed by the par-
allel loop “ParallelFor”. Within the 
parallel loop, the batch-processing 
workflow runs a sequence of five func-
tions. We include another helper func-
tion “Split” inside the loop to speed 
up the splitting of the large file into 
multiple smaller files (e.g., per hour). 
Afterward, the same four functions 
are executed [Figure 3(b)]. Each of the 
four functions receives and returns 
file names (references).

CardioHPC

12 h
Offline

Patients

Online
Patients

30 s

12 h

Stream

xAFCL

30 s

30 s

30 s

1 h

...

... 1 h

1 h
1 h

30 s

30 s

...
...

...

FIGURE 2. Lambda-based distributed ECG stream processing architecture.
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FIGURE 3. Two implementations of the 
serverless workflow. (a) Near real-time 
processing: that is, 30-s ECG data are 
passed as a value in JSON format between 
functions; (b) batch processing: that is, 
abstract function choreography language 
(AFCL) implementation, where data are 
stored on Google Cloud Storage, and 
references to files are passed between 
functions within JSON input data.
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Both serverless workflows run the 
same cloud functions, which reduces 
system maintenance. Namely, the 
functions check whether the value of 
the input data “ecgDataFilePath” is 
null, in which case they retrieve data 
by value from the other data input 
ECG JSON object. Otherwise, the func-
tions load data from the given “ecg-
DataFilePath” on storage, where the 
client smartphone application has 
already uploaded the file. The current 
implementation of the system archi-
tecture uses Google Cloud Storage.

REAL PRODUCT EVALUATION
We evaluated our system based on the 
lambda architecture both for online 
and offline patients. For the former, 
we evaluated challenge 1 by analyzing 
the achieved throughput in terms of 
patients per second by varying the num-
ber of requests. For each patient, an ECG 
stream of 30 s was submitted. On the 
other side, since challenge 2’s goal is to 
process the offline patients’ ECG data 
stream as fast as possible, we evaluated 
the makespan of the batch processing for 
various lengths of the ECG stream data.

Experiment setup in 
federated clouds
In our experiments, we deployed the 
three Google Cloud Run serverless func-
tions—preprocessing, BDC, and post-
processing—on four cloud regions of 
Google Cloud in London (United King-
dom), Frankfurt (Germany), St. Ghislain 
(Belgium), and Hamina (Finland), the 
BDC module developed with Java and 
the others with C#. All of these functions 
were used both for offline and online 
patients. We omitted the last function, 
finalizing, from the workflow because 
it is needed for statistical purposes and 
does not affect arrhythmia detection. For 
higher flexibility and lower cost of AWS 

Lambda compared to Google Cloud Run, 
we deployed the helper functions “coun-
tHours” and “split” for the batch pro-
cessing workflow as AWS Lambda func-
tions in AWS Frankfurt. All functions 
access the same Google Object Storage in 
Frankfurt for offline patients, while for 
online patients, files are stored at each 
processing site and forwarded by value 
between containers and functions in the 
pipeline. Figure 4 presents the setup for 
processing both.

Online patients processing: 
Throughput

Evaluation plan for online patients. 
When the first time hit the service, some 
of the requests returned an error code 
for the BDC module due to too many 
requests, which is a rather expected 
cold-start phenomenon13 for zero 
active instances when a large number 
of requests are generated per second. 
After this initial setup, we executed each 
experiment five times and calculated 
the average. The serverless setup spec-
ified the maximum number of active 
instances to be 1,000 and the concur-
rency parameter to be 1 to obtain the 
maximum parallel environment. The 

evaluation for online patients includes 
analysis of the throughput as the num-
ber of processed requests per second for 
a given workload of requests per second.

Results for online patients. We spec-
ified five experiments with the follow-
ing workload: 100, 200, 333, 433, and 533 
requests per second, corresponding to 
3,000, 6,000, 10,000, 13,000, and 16,000 
patients that stream ECG files every  
30 s. Each experiment was executed for 
2 min in each Google Cloud region.

We observed that the average mea-
sured response time to fulfill a request 
for the whole workflow is 2.47 s, with a 
minimum of 1.06 s and a maximum of 
9.63 s, which appear mainly in the cold 
start while activating a new instance 
(standard deviation of 2.74 s).

Figure 5 presents the achieved 
throughput for various workloads sub-
mitted by the virtual patient genera-
tor to the four evaluated Google Cloud 
regions. We observe that Google Cloud 
Run maintains handling all incoming 
requests, even for 533 requests per sec-
ond, which leads to an achieved total 
throughput of 2,170 requests per sec-
ond for all four cloud regions. Without 
losing generality, if one would exploit 

xAFCL - UIBK
 

Google London 
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Virtual Patient
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Google Hamina

File
Transfer

 

Invoke

AWS Frankfurt

Invoke Invoke

FIGURE 4. Experiment setup on one AWS and four Google cloud regions in Europe and 
used storage in Google Frankfurt.
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all 12 Google cloud regions in Europe, 
the throughput of 6,510 requests per 
second may be achieved. This num-
ber can be even further increased if we 
increase the workload per cloud region 
and use other cloud providers. How-
ever, the former may increase the aver-
age runtime of the overall pipeline due 
to the concurrency overhead.7,14 

We also analyzed the number of 
instances activated for the different 
workloads in all evaluated cloud regions, 
presented in Figure 6. The cloud region 
St. Ghislain raised the highest number 
of active instances, revealing the high-
est throughput, while the cloud region 
Hamina had the lowest number of 
active instances. Note that this depends 
on the capacity and availability of the 
corresponding cloud region. All cloud 

regions reached the desired throughput, 
and responses for each request were pro-
cessed in an average of 2.47 s.

Offline patient data 
processing: Low makespan

Evaluation plan for offline patients. 
Offline patients were processed with 
the xAFCL serverless workflow man-
agement system.7 We evaluated offline 
patients by increasing the size of the 
ECG data stream. For this purpose, we 
created three different inputs of 1-h ECG 
files, as a baseline, and 2- and 12-h ECGs, 
which need to be split into files of 1-h 
ECG. We assumed that patients’ max-
imum working time is 12 h, for which 
time period they can be offline. xAFCL 
runs at the University of Innsbruck, 

Austria, and provides different laten-
cies to each region. The batch workflow 
is executed on each cloud region with 
all three inputs. Each execution was 
repeated five times, and the last four 
executions were considered to avoid the 
cold-start effect of the first execution. 
Finally, we measured the makespan and 
evaluate speedup and efficiency of 2- 
and 12-h ECG streams compared to a 1-h 
ECG stream.

The makespan is represented in 
seconds and processing speed in min-
utes of ECG stream data per second for 
all three lengths of the ECG stream. 
Furthermore, we have additionally 
evaluated speedup as a number and 
efficiency in percentage for lengths of 
2 and 12 h.

Results for offline patients. Figure 7 
presents the makespan when running 
the workflow for offline patients in 
the four evaluated cloud regions with 
input files of 1, 2, and 12 h. We will 
refer to these experiments as ECG(1), 
ECG(2), and ECG(12), respectively. We 
observed the fastest workflow pro-
cessing in Frankfurt for all three ECG 
stream lengths, mainly due to two rea-
sons. First, the network latency from 
the University of Innsbruck to Goo-
gle Frankfurt is the smallest, leading 
to the smallest invocation delay. Sec-
ond, the functions in Google Frankfurt 
access the co-located storage faster 
than functions from the other three 
cloud regions. On average, ECG(2) and 
ECG(12) run slower than ECG(1) by 
1.45% and 17.32%, respectively, due to 
the longer execution of the function 
“split” for larger files. However, due 
to splitting and distributing 1-h chunks 
of ECG data streams on different func-
tions that run concurrently, ECG(12) 
and ECG(2) process on average 50.15 
and 9.72 min of ECG stream data per 
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second per cloud region, compared to 
ECG(1), which can process 4.89 min of 
ECG stream data per second on average 
per cloud region.

In Figure 8, we present the achieved 
speedup and efficiency in each region 
for the 2- and 12-h ECG streams com-
pared to a 1-h ECG stream in different 
cloud regions. We observe that the 
achieved speedup was in the range of 
1.84 in St. Ghislain to 2.13 in Frank-
furt for ECG(2), up to 9.79 in Hamina 
and 10.69 in St. Ghislain for ECG(12). 
We observed two outliers for ECG(2) in 
Frankfurt and London, where a super-
linear speedup of 2.13 and 2.05 was 
achieved compared to ECG(1).

DISCUSSION

Contributions
T h is ma nuscr ipt br i ngs severa l 
contributions:

 › The lambda architecture applied 
on a serverless platform allows 
both near real-time and batch 
processing of patients’ ECG 
stream data.

 › Serverless containers seem like 
a promising platform for near 
real-time processing of 2,170 
requests per second simultane-
ously and processes them within 
a few seconds.

 › With batch processing, we were 
able to process up to 50-min ECG 
stream data per second, achiev-
ing a speedup of 10.66× when 
running 12-h ECG stream data 
compared to 1 h.

Limitations of the 
proposed architecture
With our lambda-based serverless 
architecture supported with the 
xAFCL FC management system, we 

achieved high throughput for near 
real-time processing of 30-s ECG 
stream data and speedup with paral-
lelization of 12 h. Processing for both 
types is finished in a few seconds, 
which allows time to react in the 
case where a dangerous arrhythmia 
is detected.

Still, there are some limitations. 
While federated FaaS may overcome 
the concurrency limitation of a sin-
gle region, it introduces higher net-
work latency between regions. This 
was emphasized for larger ECG stream 
data of 12 h. Scaling the problem size 
may clog the bandwidth of the single 
storage, leading to additional delay in 
batch processing.

Another limitation may be addi-
tional costs due to the charges for the 

outgoing traffic between regions. 
However, these additional charges may 
happen in case of a sudden workload 
when multiple patients appear online. 
Still, we believe that saving patient 
lives justifies these additional charges. 
Network and cloud providers may 
increase their awareness and reduce 
these charges.

Future directions and 
research challenges
The tradeoff between computation 
scalability and networking proximity 
may be improved by using the closer 
edge and fog environments, which 
may reduce data access time. With 
this approach, one could distribute 
data across regions and place comput-
ing closer to data, as recommended 
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by Smith et al.15 with their FaaS func-
tions and data orchestrator (FaDO) sys-
tem. FaDO, accompanied by an xAFCL 
FC management system, may scale 
the batch processing with minimum 
data access delays within each region. 
Such a system would require a registry 
that will send information to the cli-
ent’s smartphone to store patient ECG 
stream data.

Moreover, using edge and fog may 
bring several benefits. Edge AI tech-
nologies16 combine hardware and 
software at the edge, which enables 
AI algorithms to run on patient 
smartphones. Many machine learn-
ing frameworks, such as TensorFlow 
or PyTorch, can train neural network 
architectures with federated learning 
on powerful edge devices. This is espe-
cially needed for offline patients using 
devices out of the edge of the Inter-
net network, such as in the Dew Com-
puting solution.17 When a dangerous 
arrhythmia is detected, their devices 
will inform the patient directly.

While the federated FaaS may 
bring scalability, it may increase the 
cost due to outgoing data transfer 
between regions, which is additionally 
charged. Therefore, novel techniques 
are needed to schedule functions and 
data location and minimize makespan 
and cost in federated FaaS. This is nec-
essary for the cloud continuum, con-
sidering federated edge and fog layers.

Serverless computing accompa-
nied by cloud federation is a flexi-
ble, scalable, and elastic platform 

suitable for telemedicine and health 
monitoring of patients with a high risk 
of cardiovascular diseases even outside 
of a hospital. Moreover, lambda archi-
tecture is necessary for patients that 
are offline for a longer period of the 

day. As a result, ECG stream data can 
be processed for thousands of patients 
simultaneously within a few seconds. 
This mitigates the risk of death caused 
by heart disease and stroke. However, 
the tradeoff for high throughput and 
the near-real processing time is higher 
costs for data transfer when serverless 
functions and cloud storage are placed 
in different cloud regions for patients 
that are spending a longer part of the 
day offline. 
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