
COVER FEATURE STATE OF TELEMEDICINE—PART I

18	 C O M P U T E R P U B L I S H E D B Y T H E I E E E C O M P U T E R S O C I E T Y �

This work is licensed under a Creative Commons Attribution-
NonCommercial-No Derivatives 4.0 License. For more information,

see https://creativecommons.org/licenses/by-nc-nd/4.0/.

Sashko Ristov , University of Innsbruck

Marjan Gusev , University Saints Cyril and Methodius

Armin Hohenegger and Radu Prodan , University of Klagenfurt

Dimitar Mileski , Pano Gushev , and Goran Temelkov, Innovation Dooel

In this article, we explore a novel architecture for distributing

health monitoring computations over distributed cloud regions,

both for constantly online patients and offline for several hours

daily. We propose a conceptual architecture for a use-case

example capable of processing thousands of simultaneous

incoming streams with electrocardiogram signals.

A lthough telemedicine has emerged as an
everyday necessity for health monitoring,
still current solutions are built for a small
number of patients or use sensors that do

not stream data with high velocity and volume. Current
serverless cloud providers limit the concurrency within
a single region, and we evaluate the performance of this
solution across multiple cloud regions. The results indi-
cate that our new solution can overcome the limitations of
a single cloud for online and offline patients, thereby sav-
ing their lives in case of detected dangerous arrhythmia.

Serverless
Electrocardiogram Stream
Processing in Federated
Clouds With Lambda
Architecture

Digital Object Identifier 10.1109/MC.2023.3281873
Date of current version: 23 August 2023

https://orcid.org/0000-0003-1996-0098
https://orcid.org/0000-0003-0351-9783
https://orcid.org/0000-0002-8247-5426
https://orcid.org/0000-0003-0728-626X
https://orcid.org/0000-0002-2003-9901

	 S E P T E M B E R 2 0 2 3 � 19

INTRODUCTION
Data statistics for 2020 and 2021 show
that heart disease and stroke are the
leading cause of death, followed by can-
cer and COVID-19. Every third person
died due to cardiovascular problems.1,2
Telemedicine and health monitoring
can mitigate the risk of death by detect-
ing dangerous arrhythmia and pre-
venting life-threatening conditions for
patients outside the hospital, living in
their homes, and working in their usual
office environments. Typical symptoms
appear 2 h before cardiac death occurs.3
However, this risk requires near real-
time data processing and taking med-
ical treatment within that period.
Unfortunately, several challenges must
be addressed, such as arrhythmia
detection within seconds per patient
and scaling the number of patients.

While most patients are online
and their heart conditions can be
monitored in real time, some patients
may work without an Internet con-
nection. Therefore, not all patients
are online 24/7, which requires an
architecture that allows real time for
online patients and batch processing
when offline patients connect online.
Although serverless architectures4 are
addressed in this article as a scalable
and elastic cloud resource solution
with these processing requirements,
we still refer to several accompanied
issues in practical implementations,
such as storage data input/output lim-
itations, network throughput, or the
number of activated concurrent cloud
instances. Telemedicine-related issues
are mainly identified as big data chal-
lenges of many incoming data streams
with large volumes and high velocities.

BACKGROUND
This section introduces the necessary
concepts about serverless technologies

and lambda architecture for big data
processing.

Serverless computing
Serverless computing offers developers
a platform that shields the server usage,
automatically scales without explicit
provisioning, and charges only for the
resources that are used while their code
is running.5 Various serverless-based
services are in a mature phase. Users

may dockerize their application and
deploy it as a serverless container on,
for example, Google Cloud Run or
AWS App Runner. A lighter option is
to develop the application by serverless
functions using a function-as-a-service
(FaaS) service, such as Google Cloud
Functions or AWS Lambda. While the
FaaS services are cheaper than the
serverless containers for smaller loads,
they are offered with many constraints
and limitations, such as the maximum
number of concurrent functions or the
limited duration, memory, and input
and output data size.

Serverless workflows or
function choreographies
While the serverless functions intro-
duce many advantages, still, due to
the constraints, they are usually light-
weight and short-running. To create
serverless applications with increased
complexity, developers may build their

applications by serverless workflows,
known in the literature as function cho-
reographies (FCs).6 Many public cloud
providers offer FC systems, such as
AWS Step Functions, but they have sev-
eral weaknesses. First, the cloud pro-
viders tend to lock the users into their
clouds, and their FC systems allow them
to build and run FCs, but mainly on
their own FaaS platforms. Second, the
FC systems generate additional costs

for managing the states of the FC execu-
tion. Other FC systems, such as Google
Workflows, support running FCs across
various FaaS systems. However, their
concurrency is limited, which restricts
FC scalability. Other options are open
source FC management systems, such
as xAFCL,7 which abstract the applica-
tion from the underlying FaaS systems,
thereby supporting running FCs across
federated FaaS.

Lambda architecture
Almost a decade ago, Waren and Marz8
introduced the lambda architecture pat-
tern for big data processing, integrating
batch and stream processing in a sin-
gle architecture. Instead of querying
the entire dataset, which may require
enormous computing resources, they
created the three-layered pattern com-
prising batch, serving, and speed layers.
The batch and serving layers support
arbitrary queries on all data with the

TELEMEDICINE-RELATED ISSUES ARE
MAINLY IDENTIFIED AS BIG DATA

CHALLENGES OF MANY INCOMING DATA
STREAMS WITH LARGE VOLUMES AND

HIGH VELOCITIES.

STATE OF TELEMEDICINE—PART I

20	 C O M P U T E R � W W W . C O M P U T E R . O R G / C O M P U T E R

low latency updates tradeoff: that is,
out-of-date queries by several hours.
To overcome this tradeoff, the speed
layer ensures that new data are inte-
grated into queries as fast as needed
by using incremental computation over
newly received data.

TELEMEDICINE HEALTH
MONITORING USE CASE
Wearable devices, such as electrocar-
diogram (ECG) sensors, allow the mea-
surement of ECG stream data, and tele-
medicine offers patients near real-time
heart health care. Recent technology
solutions9 have proven that arrhyth-
mia can be detected in a limited num-
ber of patients. The ViewECG system
is defined as a near real-time process-
ing system since it processes 30-s ECG
stream data measurements. Addition-
ally, the results are postponed depend-
ing on processing time.

The initial virtual machine-
based architecture
The initial implementation of ViewECG
was deployed on three virtual ma-
chines (VMs) (Figure 1). The main ap-

plication runs in the main VM, the
access point for the remote user in-
terface and web application interface
(API) for external system communica-
tion. To keep the user credentials and
authorization data, ViewECG uses the
MSSQL database, including the statis-
tical results and pointers to the medi-
cal data stored in the data processing
unit (DPU). The DPU VM is the second
VM, which accepts incoming ECG data
streams, stores data in the local file sys-
tem, and processes the incoming ECG
stream data. Finally, the beat detection
and classification (BDC) VM runs a sep-
arate module for BDC of arrhythmia.

Due to the low elasticity of VMs,
this initial architecture is not scalable.
Problems arise whenever the number
of ECG stream files increases, or a high
number of postponed requests arrive
at the system when the offline patients
send their ECG stream data as they
appear online.

The serverless architecture
The new serverless architecture pro-
cesses the ECG stream data by a sequence
of four software modules implemented

as serverless functions executed in a
pipeline one after another, including
preprocessing (noise detection and data
filtering), BDC, postprocessing (detect-
ing specific ECG features), and final-
ization (statistical analysis and report
preparation). Functions are developed
with different programming languages
(Java and C#).

Each file for near real-time process-
ing consists of 3,750 ECG samples based
on a 125-Hz sampling frequency. Since
the size of these data are 23 kB, data are
sent by value while invoking the server-
less functions instead of storing the
data as a file to the storage system and
invoking the functions by reference to
that file. We decided on this approach
based on our previous work.10

In case of detecting a potential
arrhythmia, the system notifies the doc-
tor, and in case of arrhythmia, the doctor
takes the appropriate medical measures.

ECG SERVERLESS
PROCESSING CHALLENGES
AND APPROACHES
While serverless computing offers
high flexibility, scalability, and low

Main

Web APIs

MAIN App

DPU

SQL
DB

SQL
DB

FILE DB

DPU App

File Stream App

BDC

FILE DBJAVA
Service

Smartphone

External Systems

Users

FIGURE 1. The initial VM-based architecture. API: application interface; BDC: beat detection and classification; DB: database; DPU: data
processing unit.

	 S E P T E M B E R 2 0 2 3 � 21

development effort and maintenance,
there are still several challenges that
the research community should tackle.

Challenge 1: Near real-time
processing for a scaled
number of patients
Although cloud providers automati-
cally scale the number of active server-
less functions or containers, they still
introduce a concurrency limit, which
restricts scalability within one cloud
region. For instance, AWS Lambda
and the first generations of Google
Cloud Functions limit the users to
run a maximum of 1,000 functions
simultaneously by default, which
can be increased to 3,000 functions
on demand. However, cloud provid-
ers schedule multiple functions on
the same container to save resources
and can vary the maximum number
of parallel instances depending on
dynamic memory allocation and vir-
tual CPU use, or allow the users more
instances upon special request. Con-
sequently, the scalability is limited,
which restricts the scale of telemedi-
cine solutions to numerous patients.

Approach: Cloud federation to run
functions across multiple cloud regions
of various cloud providers.

Challenge 2: Low processing
time for offline patients
In today’s modern world, smartphones
have become authentication devices
working online through wireless
or mobile networks. In some cases,
patients may be offline due to low cov-
erage or specifics on their working
place, and collecting their ECG data up
to hundreds of megabytes increases
the overall processing time, causing
late detection of arrhythmia.

Approach: Use high-performance
computing (HPC) data parallelism

to speed up t he processi ng for
off line patients.

Challenge 3: Integration of
heterogeneous software modules
Cloud continuum11 comprises a mas-
sively heterogeneous environment,
both in hardware and software. This
includes a variety of APIs, libraries,
and software development kits for het-
erogeneous sensors, cloud providers,
artificial intelligence (AI) services,
etc. As a consequence, many modules
of ECG systems are coded with differ-
ent languages, which requires a high
degree of interoperability between
the modules.

Approach: On top of the serverless
platform, use serverless workflows
or function choreography that spawn
numerous functions and orchestrate
serverless functions developed with
different programming languages.

CardioHPC approach with
lambda architecture
The research is part of the CardioHPC
project (https://www.ff4eurohpc.eu/
en/experiments/2022031511530081/
r e a l t i m e _ h e a r t _ m o n i t o r i n g _ o f
_thousands_of_patients) aiming at find-
ing an optimal environment to process
thousands of concurrent ECGs. For
the CardioHPC project based on sim-
ulation and experimental methods,
we have developed a virtual patient
generator web service to simulate par-
allel data streams representing ECG
signals12 from previously measured
patients, where the user can spec-
ify up to 10,000 concurrent streams
and files per minute with a default
value of 2 (two 30-s files per minute).
Besides files per minute and concur-
rent streams, the web application built
as a user interface to this web service
can specify the destination system

and the destination where the virtual
patient generator will be hosted. The
virtual patient generator is used in the
evaluation of this research.

In our previous recent work,10 we
analyzed several performance metrics
that were input to this research. First,
we determined that the near real-time
scenario achieves maximum through-
put for sending the ECG stream data
every 30 s. On the other hand, batch
processing results in the lowest latency
to access storage and spawn start when
the one-week file is split into files of 1-h
ECG stream data. Nevertheless, at least
5-s additional latency was observed for
FaaS to spawn 672 functions, each of
which would process a 15-min ECG data
stream or run 42 functions that process
a 4-h ECG data stream. Therefore, we
adapted the xAFCL FC system to be able
to run serverless functions that are
deployed on Google Cloud Run. Using
this extension, in this article, we eval-
uated the tradeoff between the bene-
fits of scalability across the regions and
lower networking performance due to
additional network latency and lower
bandwidth between regions.

LAMBDA-BASED SYSTEM
ARCHITECTURE FOR ECG
STREAM DATA PROCESSING
To overcome challenges 1 and 2, we
developed a new system architecture
based on lambda architecture capa-
ble of conducting near real-time and
batch ECG stream data processing
for online and offline patients. The
solution is deployed using the server-
less Google Cloud Run service, which
allows high scalability and elasticity
with a real ”pay-as-you-drink” pricing
model. Finally, to overcome challenge
3, we used the serverless workflow
management system7 to orchestrate
serverless functions in a choreography

https://www.ff4eurohpc.eu/en/experiments/2022031511530081/realtime_heart_monitoring_of_thousands_of_patients
https://www.ff4eurohpc.eu/en/experiments/2022031511530081/realtime_heart_monitoring_of_thousands_of_patients
https://www.ff4eurohpc.eu/en/experiments/2022031511530081/realtime_heart_monitoring_of_thousands_of_patients
https://www.ff4eurohpc.eu/en/experiments/2022031511530081/realtime_heart_monitoring_of_thousands_of_patients

STATE OF TELEMEDICINE—PART I

22	 C O M P U T E R � W W W . C O M P U T E R . O R G / C O M P U T E R

comprising functions written in an
arbitrary programming language.

Figure 2 presents the lambda archi-
tecture for distributed ECG stream
data processing. The client module
is installed on a smartphone to sub-
mit the ECG stream from the last 30-s
measurements. Since this short ECG
stream is 23 kB, the ECG stream is sent
by value to the stream, which invokes
the pipeline of the four functions pre-
sented in Figure 3(a) to process the ECG
stream in near real time. Similarly,
the data forwarded between the func-
tions are sent by value in JSON format.
Scalability is achieved by scaling the
serverless functions within the region
and across multiple cloud regions,
while elasticity is achieved by server-
less functions.

However, when an offline patient
connects online, the client module
detects that the ECG stream is longer
than 30 s and stores it on cloud storage.
Assuming a patient connects online
within 12 h, the ECG stream may grow
to 30 MB. Such a large file raises two
challenges. First, while invoking the
near real-time pipeline with 23 KB may
very rarely cause network transfer fail-
ures, invoking serverless functions
with a payload of 30 MB over a WAN
network often causes failures or huge
latency due to TCP retransmissions.

To overcome this challenge, we invoke
the pipeline by submitting a reference
to the file. Second, processing big ECG
stream data causes additional delays,
which should be minimized to pro-
cess the ECG stream, detect a possible
arrhythmia, and react accordingly.
Since detecting arrhythmia does not
require processing the whole file, we
run a workflow of several functions
that split the large file into smaller
files, each of 1 h, since our initial mea-
surements revealed that processing
the 1-h ECG files achieves the highest
throughput.10 Nevertheless, the “Split”
function can be reconfigured to split
the file differently, based on, for exam-
ple, the assigned memory or storage
bandwidth. Splitting large files and
parallel processing executes the work-
flow for up to 16 s.

The offline patients are processed
by the workflow implementing the
abstract function choreography lan-
guage (AFCL),6 which is a YAML-based
language and allows the orchestra-
tion of parallel loops with a dynamic
loop iteration count. Figure 3(b) pres-
ents the target workflow in AFCL
that passes data by reference between
functions, which is then used by func-
tions to access files on cloud storage, as
well as to store the processed files back
to the storage to be accessible to the

successor functions in the workflow.
The function “countHours” is a helper
function, which receives the file path
and returns the hours as a collection
that should be processed by the par-
allel loop “ParallelFor”. Within the
parallel loop, the batch-processing
workflow runs a sequence of five func-
tions. We include another helper func-
tion “Split” inside the loop to speed
up the splitting of the large file into
multiple smaller files (e.g., per hour).
Afterward, the same four functions
are executed [Figure 3(b)]. Each of the
four functions receives and returns
file names (references).

CardioHPC

12 h
Offline

Patients

Online
Patients

30 s

12 h

Stream

xAFCL

30 s

30 s

30 s

1 h

...

... 1 h

1 h
1 h

30 s

30 s

...
...

...

FIGURE 2. Lambda-based distributed ECG stream processing architecture.

Start countHours

ParallelFor

Split

Preprocessing

Preprocessing

bdc

bdc
Postprocessing

PostprocessingFinalizing

Finalizing

(b)(a)

End

FIGURE 3. Two implementations of the
serverless workflow. (a) Near real-time
processing: that is, 30-s ECG data are
passed as a value in JSON format between
functions; (b) batch processing: that is,
abstract function choreography language
(AFCL) implementation, where data are
stored on Google Cloud Storage, and
references to files are passed between
functions within JSON input data.

	 S E P T E M B E R 2 0 2 3 � 23

Both serverless workflows run the
same cloud functions, which reduces
system maintenance. Namely, the
functions check whether the value of
the input data “ecgDataFilePath” is
null, in which case they retrieve data
by value from the other data input
ECG JSON object. Otherwise, the func-
tions load data from the given “ecg-
DataFilePath” on storage, where the
client smartphone application has
already uploaded the file. The current
implementation of the system archi-
tecture uses Google Cloud Storage.

REAL PRODUCT EVALUATION
We evaluated our system based on the
lambda architecture both for online
and offline patients. For the former,
we evaluated challenge 1 by analyzing
the achieved throughput in terms of
patients per second by varying the num-
ber of requests. For each patient, an ECG
stream of 30 s was submitted. On the
other side, since challenge 2’s goal is to
process the offline patients’ ECG data
stream as fast as possible, we evaluated
the makespan of the batch processing for
various lengths of the ECG stream data.

Experiment setup in
federated clouds
In our experiments, we deployed the
three Google Cloud Run serverless func-
tions—preprocessing, BDC, and post-
processing—on four cloud regions of
Google Cloud in London (United King-
dom), Frankfurt (Germany), St. Ghislain
(Belgium), and Hamina (Finland), the
BDC module developed with Java and
the others with C#. All of these functions
were used both for offline and online
patients. We omitted the last function,
finalizing, from the workflow because
it is needed for statistical purposes and
does not affect arrhythmia detection. For
higher flexibility and lower cost of AWS

Lambda compared to Google Cloud Run,
we deployed the helper functions “coun-
tHours” and “split” for the batch pro-
cessing workflow as AWS Lambda func-
tions in AWS Frankfurt. All functions
access the same Google Object Storage in
Frankfurt for offline patients, while for
online patients, files are stored at each
processing site and forwarded by value
between containers and functions in the
pipeline. Figure 4 presents the setup for
processing both.

Online patients processing:
Throughput

Evaluation plan for online patients.
When the first time hit the service, some
of the requests returned an error code
for the BDC module due to too many
requests, which is a rather expected
cold-start phenomenon13 for zero
active instances when a large number
of requests are generated per second.
After this initial setup, we executed each
experiment five times and calculated
the average. The serverless setup spec-
ified the maximum number of active
instances to be 1,000 and the concur-
rency parameter to be 1 to obtain the
maximum parallel environment. The

evaluation for online patients includes
analysis of the throughput as the num-
ber of processed requests per second for
a given workload of requests per second.

Results for online patients. We spec-
ified five experiments with the follow-
ing workload: 100, 200, 333, 433, and 533
requests per second, corresponding to
3,000, 6,000, 10,000, 13,000, and 16,000
patients that stream ECG files every
30 s. Each experiment was executed for
2 min in each Google Cloud region.

We observed that the average mea-
sured response time to fulfill a request
for the whole workflow is 2.47 s, with a
minimum of 1.06 s and a maximum of
9.63 s, which appear mainly in the cold
start while activating a new instance
(standard deviation of 2.74 s).

Figure 5 presents the achieved
throughput for various workloads sub-
mitted by the virtual patient genera-
tor to the four evaluated Google Cloud
regions. We observe that Google Cloud
Run maintains handling all incoming
requests, even for 533 requests per sec-
ond, which leads to an achieved total
throughput of 2,170 requests per sec-
ond for all four cloud regions. Without
losing generality, if one would exploit

xAFCL - UIBK

Google London

Google Frankfurt

Virtual Patient

Google St. Ghislain

Google Hamina

File
Transfer

Invoke

AWS Frankfurt

Invoke Invoke

FIGURE 4. Experiment setup on one AWS and four Google cloud regions in Europe and
used storage in Google Frankfurt.

STATE OF TELEMEDICINE—PART I

24	 C O M P U T E R � W W W . C O M P U T E R . O R G / C O M P U T E R

all 12 Google cloud regions in Europe,
the throughput of 6,510 requests per
second may be achieved. This num-
ber can be even further increased if we
increase the workload per cloud region
and use other cloud providers. How-
ever, the former may increase the aver-
age runtime of the overall pipeline due
to the concurrency overhead.7,14

We also analyzed the number of
instances activated for the different
workloads in all evaluated cloud regions,
presented in Figure 6. The cloud region
St. Ghislain raised the highest number
of active instances, revealing the high-
est throughput, while the cloud region
Hamina had the lowest number of
active instances. Note that this depends
on the capacity and availability of the
corresponding cloud region. All cloud

regions reached the desired throughput,
and responses for each request were pro-
cessed in an average of 2.47 s.

Offline patient data
processing: Low makespan

Evaluation plan for offline patients.
Offline patients were processed with
the xAFCL serverless workflow man-
agement system.7 We evaluated offline
patients by increasing the size of the
ECG data stream. For this purpose, we
created three different inputs of 1-h ECG
files, as a baseline, and 2- and 12-h ECGs,
which need to be split into files of 1-h
ECG. We assumed that patients’ max-
imum working time is 12 h, for which
time period they can be offline. xAFCL
runs at the University of Innsbruck,

Austria, and provides different laten-
cies to each region. The batch workflow
is executed on each cloud region with
all three inputs. Each execution was
repeated five times, and the last four
executions were considered to avoid the
cold-start effect of the first execution.
Finally, we measured the makespan and
evaluate speedup and efficiency of 2-
and 12-h ECG streams compared to a 1-h
ECG stream.

The makespan is represented in
seconds and processing speed in min-
utes of ECG stream data per second for
all three lengths of the ECG stream.
Furthermore, we have additionally
evaluated speedup as a number and
efficiency in percentage for lengths of
2 and 12 h.

Results for offline patients. Figure 7
presents the makespan when running
the workflow for offline patients in
the four evaluated cloud regions with
input files of 1, 2, and 12 h. We will
refer to these experiments as ECG(1),
ECG(2), and ECG(12), respectively. We
observed the fastest workflow pro-
cessing in Frankfurt for all three ECG
stream lengths, mainly due to two rea-
sons. First, the network latency from
the University of Innsbruck to Goo-
gle Frankfurt is the smallest, leading
to the smallest invocation delay. Sec-
ond, the functions in Google Frankfurt
access the co-located storage faster
than functions from the other three
cloud regions. On average, ECG(2) and
ECG(12) run slower than ECG(1) by
1.45% and 17.32%, respectively, due to
the longer execution of the function
“split” for larger files. However, due
to splitting and distributing 1-h chunks
of ECG data streams on different func-
tions that run concurrently, ECG(12)
and ECG(2) process on average 50.15
and 9.72 min of ECG stream data per

100 200 333 433 533

100

200

300

400

500

600

Workload (Req./s)

T
hr

ou
gh

pu
t

500

1,000

1,500

2,000

To
ta

l (
R

eq
./s

)Total

St. Ghislain Frankfurt Hamina London

FIGURE 5. Achieved throughput for various workloads per cloud region and total for all
four evaluated cloud regions.

100 200 333 433 533

200

400

600

800

1,000

Workload (Req./s)

M
ax

im
um

 A
ct

iv
e

In
st

an
ce

s

St. Ghislain Frankfurt Hamina London

FIGURE 6. Maximum number of active instances of the near real-time processing.

	 S E P T E M B E R 2 0 2 3 � 25

second per cloud region, compared to
ECG(1), which can process 4.89 min of
ECG stream data per second on average
per cloud region.

In Figure 8, we present the achieved
speedup and efficiency in each region
for the 2- and 12-h ECG streams com-
pared to a 1-h ECG stream in different
cloud regions. We observe that the
achieved speedup was in the range of
1.84 in St. Ghislain to 2.13 in Frank-
furt for ECG(2), up to 9.79 in Hamina
and 10.69 in St. Ghislain for ECG(12).
We observed two outliers for ECG(2) in
Frankfurt and London, where a super-
linear speedup of 2.13 and 2.05 was
achieved compared to ECG(1).

DISCUSSION

Contributions
T h is ma nuscr ipt br i ngs severa l
contributions:

›› The lambda architecture applied
on a serverless platform allows
both near real-time and batch
processing of patients’ ECG
stream data.

›› Serverless containers seem like
a promising platform for near
real-time processing of 2,170
requests per second simultane-
ously and processes them within
a few seconds.

›› With batch processing, we were
able to process up to 50-min ECG
stream data per second, achiev-
ing a speedup of 10.66× when
running 12-h ECG stream data
compared to 1 h.

Limitations of the
proposed architecture
With our lambda-based serverless
architecture supported with the
xAFCL FC management system, we

achieved high throughput for near
real-time processing of 30-s ECG
stream data and speedup with paral-
lelization of 12 h. Processing for both
types is finished in a few seconds,
which allows time to react in the
case where a dangerous arrhythmia
is detected.

Still, there are some limitations.
While federated FaaS may overcome
the concurrency limitation of a sin-
gle region, it introduces higher net-
work latency between regions. This
was emphasized for larger ECG stream
data of 12 h. Scaling the problem size
may clog the bandwidth of the single
storage, leading to additional delay in
batch processing.

Another limitation may be addi-
tional costs due to the charges for the

outgoing traffic between regions.
However, these additional charges may
happen in case of a sudden workload
when multiple patients appear online.
Still, we believe that saving patient
lives justifies these additional charges.
Network and cloud providers may
increase their awareness and reduce
these charges.

Future directions and
research challenges
The tradeoff between computation
scalability and networking proximity
may be improved by using the closer
edge and fog environments, which
may reduce data access time. With
this approach, one could distribute
data across regions and place comput-
ing closer to data, as recommended

St. Ghislain Frankfurt Hamina London
0

5

10

15

Region

M
ak

es
pa

n
(s

)

1 h 2 h 12 h

FIGURE 7. Makespan of the batch processing when workflow with different lengths in
hours of ECG streams runs in different cloud regions.

Frankfurt St. Ghislain Hamina London
0

5

10

Region

S
pe

ed
 U

p

S(2)
S(12)

60

80

100

120

E
ffi

ci
en

cy
 (

%
)

E(2)
E(12)

FIGURE 8. Speedup and efficiency of the workflows that run 2- and 12-h ECG streams
compared to 1-h ECG stream in different cloud regions.

STATE OF TELEMEDICINE—PART I

26	 C O M P U T E R � W W W . C O M P U T E R . O R G / C O M P U T E R

by Smith et al.15 with their FaaS func-
tions and data orchestrator (FaDO) sys-
tem. FaDO, accompanied by an xAFCL
FC management system, may scale
the batch processing with minimum
data access delays within each region.
Such a system would require a registry
that will send information to the cli-
ent’s smartphone to store patient ECG
stream data.

Moreover, using edge and fog may
bring several benefits. Edge AI tech-
nologies16 combine hardware and
software at the edge, which enables
AI algorithms to run on patient
smartphones. Many machine learn-
ing frameworks, such as TensorFlow
or PyTorch, can train neural network
architectures with federated learning
on powerful edge devices. This is espe-
cially needed for offline patients using
devices out of the edge of the Inter-
net network, such as in the Dew Com-
puting solution.17 When a dangerous
arrhythmia is detected, their devices
will inform the patient directly.

While the federated FaaS may
bring scalability, it may increase the
cost due to outgoing data transfer
between regions, which is additionally
charged. Therefore, novel techniques
are needed to schedule functions and
data location and minimize makespan
and cost in federated FaaS. This is nec-
essary for the cloud continuum, con-
sidering federated edge and fog layers.

Serverless computing accompa-
nied by cloud federation is a flexi-
ble, scalable, and elastic platform

suitable for telemedicine and health
monitoring of patients with a high risk
of cardiovascular diseases even outside
of a hospital. Moreover, lambda archi-
tecture is necessary for patients that
are offline for a longer period of the

day. As a result, ECG stream data can
be processed for thousands of patients
simultaneously within a few seconds.
This mitigates the risk of death caused
by heart disease and stroke. However,
the tradeoff for high throughput and
the near-real processing time is higher
costs for data transfer when serverless
functions and cloud storage are placed
in different cloud regions for patients
that are spending a longer part of the
day offline.

ACKNOWLEDGMENT
This research received funding from
Land Tirol, under contract F.35499, and
the European High Performance Com-
puting Joint Undertaking, under Grant
951745 (FF4EuroHPC project and Car-
dioHPC experiment). The experiment
“CardioHPC—Improving DL-based
Arrhythmia Classification Algorithm
and Simulation of Real-Time Heart
Monitoring of Thousands of Patients”
has received funding from the European
High-Performance Computing Joint
Undertaking through the FF4EuroHPC
project under Grant 951745. The joint
undertaking receives support from the
European Union’s Horizon 2020 research
and innovation program and Germany,
Italy, Slovenia, France, and Spain.

REFERENCES
1.	 “The top 10 causes of death,” World

Health Organization, Geneva, Swit-
zerland, Dec. 2020. [Online]. Avail-
able: https://www.who.int/news
-room/fact-sheets/detail/the-top
-10-causes-of-death

2.	 “Leading causes of death,” National
Center for Health Statistics, Hyatts-
ville, MD, USA, Jul. 2021. [Online].
Available: https://www.cdc.gov/nchs/
data/nvsr/nvsr70/nvsr70-09-508.pdf

3.	 D. Müller, R. Agrawal, and H. R.
Arntz, “How sudden is sudden

cardiac death?,” Circulation, vol.
114, no. 11, pp. 1146–1150, 2006, doi:
10.1161/circulationha.106.616318.

4.	 S. Nastic et al., “A serverless real-
time data analytics platform for edge
computing,” IEEE Internet Comput.,
vol. 21, no. 4, pp. 64–71, Jul. 2017, doi:
10.1109/MIC.2017.2911430.

5.	 P. Castro, V. Ishakian, V. Muthusamy,
and A. Slominski, “The rise of server-
less computing,” Commun. ACM, vol.
62, no. 12, pp. 44–54, Nov. 2019, doi:
10.1145/3368454.

6.	 S. Ristov, S. Pedratscher, and T.
Fahringer, “AFCL: An abstract function
choreography language for serverless
workflow specification,” Future Gener.
Comput. Syst., vol. 114, pp. 368–382, Jan.
2021, doi: 10.1016/j.future.2020.08.012.

7.	 S. Ristov, S. Pedratscher, and T.
Fahringer, “xAFCL: Run scalable
function choreographies across multi-
ple FaaS systems,” IEEE Trans. Services
Comput., vol. 16, no. 1, pp. 711–723,
2023, doi: 10.1109/TSC.2021.3128137.

8.	 J. Warren and N. Marz, Big Data: Prin-
ciples and Best Practices of Scalable
Realtime Data Systems. New York, NY,
USA: Simon and Schuster, 2015.

9.	 D. Innovation. “A platform for ECG mon-
itoring and reporting tools.” ViewECG.
Accessed: May 21, 2023. [Online]. Avail-
able: https://viewecg.com/

10.	 M. Gusev et al., “CardioHPC:
Serverless approaches for real-time
heart monitoring of thousands of
patients,” in Proc. IEEE/ACM Work-
shop Workflows Support Large-Scale
Sci. (WORKS), 2022, pp. 76–83, doi:
10.1109/WORKS56498.2022.00015.

11.	 P. Beckman et al., “Harnessing the
computing continuum for program-
ming our world,” in Fog Computing:
Theory and Practice. Hoboken, NJ,
USA: Wiley, 2020, pp. 215–230.

12.	 D. Mileski and M. Gusev, “Server-
less FaaS scalability evaluation: An

https://www.who.int/news-room/fact-sheets/detail/the-top-10-causes-of-death
https://www.who.int/news-room/fact-sheets/detail/the-top-10-causes-of-death
https://www.who.int/news-room/fact-sheets/detail/the-top-10-causes-of-death
https://www.cdc.gov/nchs/data/nvsr/nvsr70/nvsr70-09-508.pdf
https://www.cdc.gov/nchs/data/nvsr/nvsr70/nvsr70-09-508.pdf
http://dx.doi.org/10.1109/MIC.2017.2911430
http://dx.doi.org/10.1145/3368454
http://dx.doi.org/10.1016/j.future.2020.08.012
http://dx.doi.org/10.1109/TSC.2021.3128137
https://viewecg.com/
http://dx.doi.org/10.1109/WORKS56498.2022.00015

	 S E P T E M B E R 2 0 2 3 � 27

ECG signal processing use case,” in
Proc. 45th IEEE Jubilee Int. Conv. Inf.,
Commun. Electron. Technol. (MIPRO),
2022, pp. 853–858, doi: 10.23919/
MIPRO55190.2022.9803568.

13.	 W. Lloyd, M. Vu, B. Zhang, O. David,
and G. Leavesley, “Improving
application migration to serverless
computing platforms: Latency mit-
igation with keep-alive workloads,”
in Proc. IEEE/ACM Int. Conf. Utility
Cloud Comput. Companion (UCC
Companion), 2018, pp. 195–200, doi:

10.1109/UCC-Companion.2018.
00056.

14.	 J. Sampé, G. Vernik, M. Sánchez-Arti-
gas, and P. García-López, “Serverless
data analytics in the IBM cloud,” in
Proc. 19th Int. Middleware Conf. Ind.,
Rennes, France: ACM, 2018, pp. 1–8,
doi: 10.1145/3284028.3284029.

15.	 C. P. Smith, A. Jindal, M. Chadha, M.
Gerndt, and S. Benedict, “FaDO: Faas
functions and data orchestrator for
multiple serverless edge-cloud clus-
ters,” in Proc. IEEE 6th Int. Conf. Fog

Edge Comput. (ICFEC), 2022, pp. 17–25,
doi: 10.1109/ICFEC54809.2022.00010.

16.	 R. Singh and S. S. Gill, “Edge AI: A
survey,” Internet Things Cyber-Physical
Syst., vol. 3, pp. 71–92, Mar. 2023, doi:
10.1016/j.iotcps.2023.02.004.

17.	 M. Gusev, “What makes Dew
computing more than Edge
computing for Internet of Things,”
in Proc. IEEE 45th Annu. Comput.,
Softw., Appl. Conf. (COMPSAC),
2021, pp. 1795–1800, doi: 10.1109/
COMPSAC51774.2021.00269.

ABOUT THE AUTHORS

SASHKO RISTOV is an assistant professor at the University
of Innsbruck, 6020 Innsbruck, Austria. His research interests
include performance modeling and optimization of parallel
and distributed systems, particularly workflow applications
and serverless computing. Ristov received a Ph.D. in computer
science from Saints Cyril and Methodius University, Skopje,
North Macedonia. Contact him at sashko.ristov@uibk.ac.at.

MARJAN GUSEV is a professor at the Saints Cyril and Metho-
dius University, 1000 Skopje, North Macedonia. His research
interests include eHealth solutions, cloud computing, and the
Internet of Things. Gusev received a Ph.D. from the University
of Ljubljana, Ljubljana, Slovenia. He is a Senior Member of
IEEE. Contact him at marjan.gushev@finki.ukim.mk.

ARMIN HOHENEGGER is an M.Sc. student in computer sci-
ence at the University of Innsbruck, 6020 Innsbruck, Austria.
His research interests include machine learning approaches
in parallel and distributed systems. Hohenegger received a
B.Sc. from the University of Innsbruck, Austria. Contact him
at Armin.Hohenegger@student.uibk.ac.at.

RADU PRODAN is a professor in distributed systems at the Insti-
tute of Information Technology, Klagenfurt University, 9020 Kla-
genfurt am Wörthersee, Austria. His research interests include
performance and resource management tools for parallel and

distributed systems. Prodan received a Ph.D. from the Vienna
University of Technology. Contact him at radu.prodan@aau.at.

DIMITAR MILESKI is a senior software developer at Inno-
vation Dooel, 1000 Skopje, North Macedonia. His research
interests include serverless computing. Mileski received an
M.Sc. in high-performance computing serverless systems
from the Saints Cyril and Methodius University, Skopje, North
Macedonia. He is a Student Member of IEEE. Contact him at
dimitar.mileski@innovation.com.mk.

PANO GUSHEV is a chief technical officer of Innovation
Dooel, 1000 Skopje, North Macedonia, and an expert in imple-
menting cloud-based applications. His research interests
include cloud-based eHealth solutions. Gushev received an
M.Sc. from the Saints Cyril and Methodius University, Skopje,
North Macedonia. Contact him at pano.gushev@innovation.
com.mk.

GORAN TEMELKOV is a senior software developer at Innova-
tion Dooel, 1000 Skopje, North Macedonia, working on imple-
menting specific signal processing and data science eHealth
cloud-based solutions. His research interests include cloud-
based eHealth solutions. Temelkov received a B.Sc. from
Saints Cyril and Methodius University, Skopje, North Mace-
donia. Contact him at goran.temelkov@innovation.com.mk.

http://dx.doi.org/10.23919/MIPRO55190.2022.9803568
http://dx.doi.org/10.23919/MIPRO55190.2022.9803568
http://dx.doi.org/10.1109/ICFEC54809.2022.00010
http://dx.doi.org/10.1016/j.iotcps.2023.02.004
http://dx.doi.org/10.1109/COMPSAC51774.2021.00269
http://dx.doi.org/10.1109/COMPSAC51774.2021.00269
mailto:sashko.ristov@uibk.ac.at
mailto:marjan.gushev@finki.ukim.mk
mailto:Armin.Hohenegger@aau.at
mailto:radu.prodan@aau.at
mailto:dimitar.mileski@innovation.com.mk
mailto:pano.gushev@innovation.com.mk
mailto:pano.gushev@innovation.com.mk
mailto:goran.temelkov@innovation.com.mk

