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Neural interactions occur on different levels and scales. It is of particular importance to understand how they are
distributed among different neuroanatomical and physiological relevant brain regions. We investigated neural cross-
frequency couplings between different brain regions according to the Desikan-Killiany brain parcellation. The adaptive
dynamic Bayesian inference method was applied to EEG measurements of healthy resting subjects in order to recon-
struct the coupling functions. It was found that even after averaging over all subjects, the mean coupling function
showed a characteristic waveform, confirming the direct influence of the delta-phase on the alpha-phase dynamics in
certain brain regions and that the shape of the coupling function changes for different regions. While the averaged
coupling function within a region was of similar form, the region-averaged coupling function was averaged out, which
implies that there is a common dependence within separate regions across the subjects. It was also found that for cer-
tain regions the influence of delta on alpha oscillations is more pronounced and that oscillations that influence other are
more evenly distributed across brain regions than the influenced oscillations. When presenting the information on brain
lobes, it was shown that the influence of delta emanating from the brain as a whole is greatest on the alpha oscillations
of the cingulate frontal lobe, and at the same time the influence of delta from the cingulate parietal brain lobe is greatest
on the alpha oscillations of the whole brain.

The delta-alpha cross-frequency coupling is proving to be
a valuable descriptor in increasingly more brain states
and domains. Here, by applying the adaptive dynamic
Bayesian inference to EEG signals of subjects at rest we re-
constructed the neural cross-frequency delta to alpha cou-
pling functions that describe the interaction mechanisms
of different regions of the brain. With this analysis frame-
work we found a number of significant brain connections,
as well as several characteristic differences between the
brain regions.

I. INTRODUCTION

The interactions in the brain are fundamental to the human
ability to perceive and interact with the world. The brain is a
heavily connected dynamical network system1, with interac-
tions that are very complex and involve a vast network of neu-
rons and synapses. Such complex system can mediate a vast
number of functions, from a relatively static structure. Impor-
tantly, the brain can evolve with time, and different changes
and transitions can occur2,3. Because not all the neurons and
network processes in the brain are active at all time, and be-
cause they can exhibit collective, clustered, and synchronized
behaviour4–6, different types of changes, disruptions and tran-
sitions in the neural activity can occur7,8.

Since the functions of the brain are highly dependent on its
structure, and different functions are probably performed by
different brain regions with different architecture, it is essen-
tial to identify the different regions of the brain in order to

better understand its functions. For that reason, a significant
effort has been invested by the scientific community in the
direction of parcellation of the brain, starting from the clas-
sic Brodmann map, through the widely used Desikan-Killiany
atlas9, all the way to the recently published human Brain-
netome atlas10 and Human Connectome Project (HCP) multi-
modal parcellation11 using in vivo MRI data.

The brain connectivity is crucial to understand how the neu-
rons and the brain dynamics evolve. A particularly accessi-
ble and useful approach has been the study of neural cross-
frequency coupling, usually extracted from an electroen-
cephalograph (EEG) recording12–16. Neural cross-frequency
coupling refers to the interaction between different frequen-
cies of neural brainwave oscillations in the brain. Cross-
frequency coupling occurs when the amplitude or phase of
one frequency band of oscillations is modulated by another
frequency band. Thus, there are different types of cross-
frequency coupling, such as amplitude-amplitude coupling,
phase-phase coupling, and amplitude-phase coupling.

Neural cross-frequency coupling can be studied between
different combinations of brainwave oscillations. In this work,
we will focus on the delta-to-alpha neural cross-frequency
coupling. Namely, it is well known that delta and alpha
brainwave oscillations play an important role in the brain
dynamics17–22. For instance, there are differences in fre-
quency and power during different sleep stages which appear
in the separate delta and alpha brainwave dynamics23–26 and
in their related delta-alpha effect27,28. In another example, in a
previous study about general anesthesia29 it was found that the
delta-alpha coupling function is statistically significant and
strong during anaesthesia. Similarly, previous works observe
a prominent delta-alpha coupling in resting state15,30, during
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the orienting response32 and during sleep within the network
physiology approach20. A characteristic form of the delta-
alpha coupling functions was also established29–31. These
works point out that the choice to investigate the delta-to-
alpha coupling among the brain regions had a relevance for
the present study of resting state.

To perform the analysis needed we used comprehensive set
of methods. First, to observe the oscillatory content of the
brainwave oscillations we used wavelet time-frequency anal-
ysis. Then, we used the fact that the delta and alpha brain-
waves have pronounced oscillating dynamics in order to study
the interactions through their reduced phase dynamics33, thus
observing phase-phase cross-frequency coupling. Here, we
applied a method based on adaptive dynamical Bayesian in-
ference for analysis of data to reconstruct a dynamical phase
model describing the systems and their interactions34–36.
The method of dynamical inference reconstructs effective
connectivity1,37 and reveals the underlying dynamical mech-
anisms. Here, we reconstruct the phase coupling functions
which describe how the interaction occurs and manifest, thus
revealing a functional mechanism38. The design of power-
ful methods and the explicit assessment of coupling func-
tions have led to applications in different scientific fields
including chemistry39, climate40, secure communications41,
mechanics42, social sciences43, and oscillatory interaction in
physiology for cardiorespiratory interactions44,45. Arguably,
the greatest recent interest for coupling functions is coming
from neuroscience46, where works have encompassed the the-
ory and inference of a diversity of neural phenomena, physical
regions, and physiological conditions30,47–53.

II. MATERIALS AND METHODS

A. Adaptive Dynamical Bayesian Inference

When investigating a complex dynamical oscillatory sys-
tem, such as the oscillatory behaviour of the brain, one way
to gain new insights is by modeling the system by using dif-
ferential equations. Usually, by measuring some signals orig-
inating from the oscillatory time evolution of the system, one
can infer the parameters of a model that describes the system
under certain conditions. According to the phase reduction
theory, in case when the interactions between the oscillators
are sufficiently weak, the behaviour of the system can be ap-
proximated with its phase dynamics33,54,55. If the phases of
the system can be considered as monotonic change of the vari-
ables, the partial dynamical process of the node i as influenced
by another node j can be represented with the system of dif-
ferential equations:

ϕ̇i, j = ωi +qi, j(ϕi,ϕ j)+ξi, (1)

where ϕi is the phase of the i-th oscillator, ωi is its angular
frequency parameter, qi, j is the coupling function which de-
scribes the influence of the j-th oscillator on the i-th oscillator,
and ξi represents the noise. Usually, the noise is assumed as a
white Gaussian noise given by ξi(t)ξ j(τ)= δ (t−τ)Ei j, where
the information about the correlation between the noises of the

different oscillators is included in the symmetric matrix Ei j.
In theory, the full model for the phase dynamics of a brain re-
gion oscillator should contain all the connections at once, in a
single phase equation. However, due to the high dimension-
ality and computational expense, with equation (1) we infer a
partial part of the full model dynamics related only to the two
brain regions involved in a coupling connection. This proce-
dure is then applied for each pair of brain regions.

Because of the periodic nature of the system, the coupling
function can be represented by a Fourier decomposition:

qi, j(ϕi,ϕ j) =
∞

∑
k=−∞

∞

∑
s=−∞

ci;k,sei2πkϕiei2πsϕ j . (2)

For a system of two coupled oscillators, reduction to a finite
number K of Fourier terms will give:

ϕ̇i, j =
K

∑
k=−K

ck
i
Φi, j,k(ϕi,ϕ j)+ξi(t), (3)

whereΦi, j,0 = 1,c0
i = ωi, and the rest Φi, j,k and ck

i are the
K most important Fourier components (in this work we use
K = 2). With the assumption for a white Gaussian noise, the
task is then reduced to inference of the unknown parameters
of the model:

M =
{

ck
i,Ei j

}
. (4)

When the parameters of the model are inferred, one can
determine then the coupling functions qi, j which describe the
underlying mechanisms of the interaction of the oscillators38.

In this work we employ the method of adaptive dynamical
Bayesian inference (aDBI)35,36,56,57 in order to gain new in-
sights into the oscillatory behaviour of the brain regions and
the brain lobes. In this method, the time series of phases of
the oscillators are considered to be time sequences of blocks
of samples. In each block, the samples from a certain time
interval are included, and the duration of this time interval
is specified by the time window tw. In the inference proce-
dure, the initial assumptions for the parameters of the model
are that ck

i = 0, and therefore at least few inference blocks
are required to obtain appropriate estimates of the model pa-
rameters values and the corresponding coupling functions. To
obtain improved inference in every subsequent block, part of
the information from the previous block is included in the fol-
lowing one. The so-called propagation parameter pw controls
how much of the information of the previous block is included
in the following one. In the method of aDBI both the time
window tw and the propagation parameter pw are adaptively
determined, based on the time variabilities present in the sig-
nal. After determination of tw and pw the final inference is per-
formed. This final inference provides the values of the param-
eters and the coupling functions for each block of inference,
thus observing the time evolution of the system and the inter
interactions, with a temporal resolution defined by the time
window tw. Further technical details about the parametriza-
tion, convergence and robustness of the aDBI method can be
found in previous papers35,36,56,57. Even though the aDBI was
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FIG. 1. Wavelet transform of the measured signal for one of the
regions of one subject. The measured signal is shown in (a), while
the corresponding time-frequency wavelet transform is shown in (b).
The time-averaged intensity of the wavelet is shown in (c).

introduced for studies of coupled phase oscillators with oscil-
lating frequencies in the cardiorespiratory range, the proce-
dures is applicable to the frequency range of the brain waves
as well. The application of the aDBI method on the subject
dataset that was used in this study yielded a time window of
tw = 10 s and a propagation parameter of pw = 0.2.

The aDBI method represents a further improvement of the
DBI method35,56, by minimizing the covariance matrix which
is an indicator of the quality of the inference. The details of
the method are given elsewhere36 and in summary it leads to
an improved inference of the model parameters without losing
information about the temporal changes in the behavior of the
oscillators.

B. Dataset

The dataset used in this study is publicly available58

(https://osf.io/mndt8/). The data source contains the empir-
ical region-average fMRI (functional magnetic resonance
imaging), EEG source activity and structural connectomes of
the 68 parcellated cortical regions of the brain of 15 healthy
human subjects, age 18-31, eight of whom are female.The
data consists of a resting state time series, where the subjects
were asked to just stay awake and keep their eyes closed. In
this study we used the empirical EEG source activity and the
structural connectomes. The time series of the source activity
for each patient and each cortical region have duration of 21.6
minutes with sampling frequency of 200 Hz. The description
of the 68 parcellated cortical regions is given in the Appendix.

C. Wavelet transform and the phase extraction procedure

In order to check the existence of brain wave oscillations
and their frequency content, the EEG time-series signals were
first analyzed using a continuous wavelet transform59–61. The

continuous wavelet transform is defined by the equation

WT (ω, t) =
∫

∞

0
ψ(ω(u− t))x(u)ωdu, (5)

where x(t) is the signal, ω denotes the angular frequency, t is
the time and

ψ(u) =
1

2π
(ei2π f0u − e

(2π f0)
2

2 )e−
u2
2

is the complex Morlet wavelet, with central frequency f0 = 1,∫
ψ(t)dt = 0, and with i being the imaginary unit. The con-

tinuous wavelet transform is a time-frequency representation
which contains both the phase and the amplitude dynamics of
the oscillatory elements from the analyzed signal.

The initial wavelet observation of the oscillations con-
tained in the corresponding EEG signals was carried out for
several brain regions. After the initial wavelet observations,
a phase extraction procedure was performed for the delta
and alpha waves of the EEG signal in order to obtain the
instantaneous phase time-series. These phase time-series
then act as an input to the aDBI method. The oscillatory
intervals were first evaluated by standard digital filtering
procedure including FIR filter followed by a zero phase
filtering procedure (“filtfilt") to ensure that no time or phase
lags are introduced with the filtering procedure. The delta
waves signal limits were from 1 to 4 Hz, while the alpha
waves signal limits were from 8 to 12 Hz62. The phases of
the filtered signals were estimated via Hilbert transformation,
thus obtaining the protophases. On these protophases, the
protophase-to-phase transformation was applied42 in order to
obtain the independent phases which act as input signals for
the Bayesian inference.

D. Surrogate data testing

When oscillatory signals are analyzed, the inferred cou-
pling between the signals is always positive and non-zero,
even if the oscillators are uncoupled or unrelated. Therefore,
it is necessary to establish a significance threshold in order
to determine if the obtained coupling strength indicates a
genuine connection and interdependence of the phenomena.
Such surrogate data is used for statistical testing of the
coupling strength. A threshold is usually defined by con-
structing randomized surrogates of the original signals63,64

and calculating the coupling strength for these surrogates.
The coupling strength obtained in this manner represent a
baseline for the confirmation of the coupling of the oscilla-
tors. In this work surrogates were constructed for each of the
68×68 delta-alpha couplings going from, and to, each of the
68 regions of the brain by using a procedure called cyclic
phase permutation surrogates64 based on rearrangement of
the cycles within the extracted phase. The surrogate threshold
taken in this work is the mean plus two standard deviations
(mean + 2STD) of the surrogate couplings.

III. RESULTS

Fig. 1 shows the wavelet transform of the measured signal
for one of the 68 brain regions in one of the subjects. The
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FIG. 2. The delta-alpha neural coupling functions. Examples of individual subject delta-alpha coupling functions between different regions
(a)-(c). In particular, (a) shows a coupling function from subject 10 between delta region 60 and alpha region 60, (b) from subject 12 between
delta region 50 and alpha region 23, and (c) from subject 6 between delta region 54 and alpha region 19. The last plot (d) shows a subject-
averaged delta-alpha coupling function between delta region 58 and alpha region 21.

signal itself is presented in Fig. 1 (a), while the corresponding
time-frequency wavelet transform is shown in Fig. 1 (b). To
show the oscillatory frequencies present in the signal more
clearly, the time-averaged intensity of the wavelet is presented
in Fig. 1 (c). The frequency intervals of the corresponding
brain waves are given with the dashed lines. From the figure,
one can clearly see the strong alpha wave, as well as the delta
wave with a slightly lower wavelet power.

The delta-alpha coupling functions are presented in Fig. 2.
The coupling functions are evaluated first on individual sub-
jects for specific regions – Fig. 2 (a)-(c). Here, they show
the characteristic functional form where the delta-alpha phase
coupling function depends predominately on the delta dynam-
ics, or in other words it reflects the direct influence that the
delta phase dynamics exert on the alpha phase dynamics by
accelerating or decelerating the alpha brainwave oscillations.
This specific form belongs to the category of direct, among the
separation of self, direct and common coupling functions65,67.
By comparing the three plots for the coupling functions Fig. 2
(a), (b) and (c), one can notice that this direct influence is like
a wave that shifts from left to right from 0 to 2π along the
delta axis. In general, it keeps the direct delta dependence
(i.e. it still changes predominately on delta axis) but it shifts
the maximum of the function along the delta axis.

When we average the coupling functions for the same re-
gion from all the subjects, as shown in Fig. 2 (d), the remain-
ing average delta-alpha coupling function still reflects the di-
rect delta dependence, albeit with slightly reduced amplitude
due to averaging. The Appendix A shows how this coupling
function is similar or different in respect to all the order re-
gions. Furthermore, when we average all the coupling func-
tions across regions and subjects, the average coupling func-
tion disappeared i.e. it was insignificantly low without a com-
mon form of the function. In other words the region average
coupling function averaged out, because there was no specific
common form between regions.

Fig. 3 shows a 68× 68 matrix representing the significant
delta-alpha coupling functions for all the 68 brain regions.
The vertical axis shows the number of the region for the delta
brainwaves, while on the horizontal axis the number of the
region of the alpha brainwaves is given. The matrix is not
symmetrical and the coupling indicated by the columns is

FIG. 3. Matrix 68× 68 showing the delta-alpha couplings from
region to region. Only those couplings which are statistically signif-
icant in respect of the surrogate threshold are shown in color (values
above 0).

different than the one in the rows. The figure indicates that
for some regions of the brain (e.g. columns 9,19,30,40, etc)
there is a stronger influence from the delta waves to the alpha
waves. This is also shown in Fig. 4, where these 68 regions
are marked as circles on a cross-section of the brain.

Fig. 4 (a) shows the summarized delta-alpha coupling
strengths coming from a specific regions with red circles,
while Fig. 4 (b) shows the sum of the delta-alpha coupling
strengths for the alpha of a specific regions with blue circles.
The radii of the circles are proportional to the sum of the cor-
responding coupling strengths. One can notice that while the
significant delta-alpha couplings emanate from various differ-
ent brain regions, they end up in much smaller number of the
brain regions.

In order to obtain more tangible information about the over-
all interactions between the different brain lobes (frontal, cin-
gulate frontal, cingulate parietal, parietal, occipital and tem-
poral lobe), a summation of the significant coupling functions
by brain lobes was performed. The sums obtained were nor-
malized by the number of regions involved in each of the brain
lobes. The results are presented in Fig. 5. The normalized
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FIG. 4. Significant delta-alpha coupling strengths for the different
brain regions. (a) The radii of the red circles correspond to the sum of
coupling strengths of all the delta exiting the corresponding region.
(b) The radii of the blue circles correspond to the sum of coupling
strengths of all the alpha entering the corresponding region of the
brain.

FIG. 5. Spider plot showing the influence of the separate brainwaves
of the interaction into the specific brain lobes. The influence of the
delta from the entire brain to the alpha of specific brain lobes (blue
curve) and the influence of delta of specific brain lobes to the alpha
from the entire brain (red curve).

sum of the delta-alpha couplings, where the delta is from spe-
cific brain lobe and alpha from any lobe of the brain (whole
brain alpha), is shown with blue line. While the normalized
sum of the delta-alpha couplings, where the delta comes from
any lobe of the brain (whole brain delta) and alpha from spe-
cific brain lobe, is shown with red line. From the spider plot
(Fig. 5) it can be seen that the greatest influence on the whole
brain alpha has the cingulate parietal delta and at the same
time the greatest influence of the whole brain delta is on the
cingulate frontal alpha.

IV. DISCUSSION AND CONCLUSIONS

The influence of delta brain waves on alpha brain waves for
a resting subject has previously been determined at the whole

brain level. In this paper we try to gain a deeper insight by
investigating this delta-alpha influence for different brain re-
gions according to the Desikan-Kiliany anatomical parcella-
tion of the brain15,20,30,32. As presented in the results, it can
be concluded that this influence is clearly visible for differ-
ent regions, because even after averaging the delta-alpha cou-
pling functions for a particular region across all the subjects,
the mean coupling function still shows the characteristic shape
(Fig. 2), confirming the direct influence of the delta-phase dy-
namics on the alpha-phase dynamics in certain brain regions.
This influence consists in acceleration or deceleration of alpha
oscillations under the influence of delta oscillations.

In terms of analysis we have applied a comprehensive
methodological framework for interacting brainwave oscilla-
tions. The nature of delta and alpha oscillations were observed
with wavelet transform using standard parameters, with f0 = 1
central frequency. This is a simple standard widely used pro-
cedure for time-frequency analysis. For the reconstruction of
the phase model we used the adaptive Bayesian inference. It
is a well established method which has been widely used and
tested for robustness and convergence, where its parametriza-
tion has been systematically investigated on different numer-
ical and biological systems35,36,56,57. For verifying the statis-
tical significance of the inferred delta-alpha coupling we have
applied surrogate data testing64.

The model equation (1) assumes pairwise interaction be-
tween two regions and includes only coupling function with
two phase variables. This is a simplified approximation, as
the brain regions form parts of a complex network, and the full
model of a phase oscillator should include all the brain con-
nections in a single equation. With equation (1) we have thus
separated the inference for a partial dynamics on two-by-two
basis for all the pairs of brain regions. This was possible be-
cause the Bayesian method can allow such partial dynamical
filtering. While the reason to do this and separate the inference
was due to the high dimensionality (68x68 regions) and the
computational complexity, which otherwise could have lead
to problems such as parameters overfitting. Also, we have
used only pairwise coupling functions. Thus, a natural exten-
sion of this work could include also non-pairwise multivari-
ate coupling functions65,66. This is a case where the coupling
function in the dynamics of one region will have more than
two phase variables from phases of other regions.

The coupling function results demonstrated that there is
a common waveform, predominantly due to direct influence
from delta oscillations, but the wave shifts along the delta
axis for different regions – Fig. 2 (a-c). We present three
characteristic regions here, but the general observation from
all the regions was that the wave was shifting for different re-
gions. The quantitative analysis in Appendix A also supported
this by showing relative variations of the form for different
regions. The answer to why the wave for coupling function
forms shifts for different regions might be because there are
different lengths for the structural pathways, through which
different regions interact. This most likely implies different
time delays for the signal propagation68,69, which is known to
impact the synchronization and phase arrangement between
brain regions70 and is crucial for the information transfer71.
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This time delay manifests itself as a phase shift for the os-
cillatory activity, i.e. ∆φ within the phase coupling functions
(e.g. as in qα(φδ ,φα) = ε sin(φα − φδ −∆φ)), which in turn
can be the cause of the phase shift of the wave observed in
the figures. Our current initial observation of the structural
and time delay information in this direction can stimulate fu-
ture systematic analysis for quantifying how the space-time
structure of the brain regions, as defined by the weights and
time-delays of the connectome72, impacts the resulting cou-
pling functions. Such a question is even more valid because
the averaged coupling function within a region was of similar
form Fig. 2 (d), while the region-averaged coupling function
was averaged out. The latter implies that there is a common
deterministic dependence within regions across the subjects,
which is different for the separate brain regions. This kind of
analysis would first require better identification of the propa-
gation velocities and the time-delays on a personalized level,
which is still not established beside promising results of MRI
as a myelin biomarker73, and proposed in vivo techniques68.
However, our results indicate that even aggregated atlases for
time-delays69 could be useful, since some of the patterns are
consistent across the subjects.

We have seen that this influence is not evenly distributed
across brain regions, but for certain brain regions the influ-
ence of delta oscillations on alpha oscillations is more pro-
nounced, as is the case for isthmus cingulate, pars triangularis
(associated with verbal and non-verbal communication74–76)
and the supramarginal region of the left hemisphere (involved
in language processing77,78 and tool use action79,80) and the
fusiform region of the right hemisphere (involved in object
and face recognition81–83). To lesser extent this is also no-
ticeable for the lateral orbitofrontal and the rostral middle
frontal region of the left hemisphere and the inferior temporal,
pars triangularis, posterior cingulate, superior parietal, frontal
pole, temporal pole and transverse temporal region of the right
hemisphere (see Fig.3). These regions are located in different
lobes of the brain, most of them in the frontal and tempo-
ral lobes, but some in the parietal and cingulate parietal as
well. No clear distinctions can be made in terms of the brain
hemisphere, as is expected, since the different brain centers
responsible for different actions are located in the different
hemispheres.

This uneven distribution of delta influence on alpha oscil-
lations from different regions is less pronounced on the delta
side of the regions, as shown in Fig. 3 and more specifically in
Fig. 4 (a). Fig. 4 shows that while the delta-alpha influence is
more concentrated for the alpha waves in certain regions, the
distributions of significant couplings in terms of delta waves
is more even across brain regions. This means that the in-
fluencing oscillations are more evenly distributed across the
brain regions then the influenced oscillations, which are more
concentrated in certain regions.

Additional insights into delta-alpha influences in the brain
can be gained by condensing this information down to the
level of brain lobes, as shown in the spider plot (Fig. 5). These
results indicate that the influence of delta oscillations of all
brain regions is greatest on alpha oscillations of the cingulate
frontal lobe. At the same time, the influence of cingulate pari-

etal brain lobe’s delta oscillations on the alpha oscillations is
greatest among all the regions of the brain. This influence of
the cingulate frontal and cingulate parietal regions of the brain
on other brain regions and on the brain as a whole should be
further investigated and put into the context of the functioning
of the brain from a neurological point of view.

Finally, it is worth noting that we presented the method-
ological framework for interactions in the brain regions net-
work for the resting state, however, the framework carries
important implications and can readily be used also for other
neural states, or interacting oscillatory networks more gener-
ally.
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Appendix A: Similarity index for the inferred coupling
functions

The analysis about the coupling functions in Fig. 2 shows
qualitatively that there is a similar form for different regions
for some subjects and for subject average on some regions. To
quantify how big is this similarity and how much there is vari-
ations and differences from the coupling functions presented,
now we calculate the similarity in respect to all the other re-
gions.

One way to quantify the form of the coupling functions is
to use the so-called similarity index44 between the coupling
functions. The similarity index measure, ρ , gives the simi-
larity between two coupling functions q1 and q2, regardless
of their coupling strengths. Thus, the similarity index ρ is a
coupling function unique measure that quantifies the form of
the functions. It is calculated as correlation between the coef-
ficients from the inferred coupling parameters44. The index is
determined as:

ρ =
⟨q̃1q̃2⟩

∥q̃1∥∥q̃2∥
(A1)

where ⟨q⟩ denotes spatial averaging over a two dimensional
domain 0 ≤ ϕ1,ϕ2 ≤ 2π , and q̃ = q−⟨q⟩ and ∥q∥= ⟨qq⟩1/2.

The results for the similarity index ρ for the inferred cou-
pling functions across regions are shown in Fig. 6. The indices
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presented show the average similarity for all the subjects be-
tween the coupling functions of each region and the average
coupling function for all subjects for a characteristic case be-
tween delta region 58 and alpha region 21 i.e. the coupling
function as presented in Fig. 2 (d). Or in other words, be-
cause we could not present visually all the 68x68=4624 cou-
pling function combinations, in the main text we present some
characteristic cases, and here in the Appendix with Fig. 6 we
extend this by quantitative analysis with all the other cases.
Thus, Fig. 6 shows the extent of similarity and deviations from
the visually presented coupling functions. From the observa-
tions, one can notice that there are relative variations of the
form, with some regions being more or less similar, and there
is also negative similarity i.e. π-shifted similarity.

Appendix B: Sample size robustness – variance of the
coupling functions in respect to number of subjects

FIG. 7. Sample-size effect on the subject-averaged delta-alpha cou-
pling function. The plot shows dependence of the variance in respect
to the number N of subjects averaged. The variance is calculated
from the similarity index between the full (N=15) subject averaged
coupling function and the coupling functions from all the combina-
tions of lower N number of subjects. All the coupling functions are
for delta region 58 and alpha region 21.

The coupling function analysis were perform on sample of
N=15 subjects. In order to test if the number of subjects had
an effect on the resulting average coupling function (like e.g.
in Fig. 2(d)) we tested how much the coupling function varies
when smaller number of subjects is averaged. This was done
by systematically calculating the average coupling function
from smaller number of subjects N=14, then N=13, and so on
until N=2. Here, for each smaller N we calculated the average
coupling function for all N-combinations. Then, we calcu-
lated the similarity index ρ between each N average coupling
function and the coupling function from all 15 subjects (as
in Fig. 2(d)). Finally, we calculated the variance for all sim-
ilarity indexes of each combination for one N. For example
for N=14, there are 15 different combinations of N=14 sub-
ject groups; we calculated 15 average coupling functions and
compared the similarity index of each in respect of the full
coupling function, so as to calculate the variance of this 15 ρ

indexes.

Fig. 7 shows the variance dependence on the reduced num-
ber of subjects N. One can notice that the variance is relatively
low. The dependence on N shows that the variance is low for
reducing N until N=10 (perhaps N=9), after which for lower N
the variance is rapidly increased. Therefore, the full number
of sample size N=15 subjects is quite robust and has no big
effect on the averaged coupling function. The results in Fig.
7 were calculated for two regions (delta 58 and alpha 21), but
our investigation on other regions showed similar results for
the variance where it was low for N=10 and then it got rapidly
increased.

Appendix C: Association of region numbers to appropriate
brain regions

Table I shows the relationship between the ordinal numbers
of the regions as used in this paper and the designations of the
regions according to the Desikan-Kiliany anatomical parcel-
lation.
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TABLE I. Relationship between the ordinal numbers of the regions as used in this paper and the designations of the regions according to the
Desikan-Kiliany anatomical parcellation.

Region number Brain region Hemisphere Brain lobe Region number Brain region Hemisphere Brain lobe
1 banksst left temporal 35 banksst right temporal
2 caudalanteriorcingulate left cingulate frontal 36 caudalanteriorcingulate right cingulate frontal
3 caudalmiddlefrontal left frontal 37 caudalmiddlefrontal right frontal
4 cuneus left occipital 38 cuneus right occipital
5 entorhinal left temporal 39 entorhinal right temporal
6 fusiform left temporal 40 fusiform right temporal
7 inferiorparietal left parietal 41 inferiorparietal right parietal
8 inferiortemporal left temporal 42 inferiortemporal right temporal
9 isthmuscingulate left cingulate parietal 43 isthmuscingulate right cingulate parietal
10 lateraloccipital left occipital 44 lateraloccipital right occipital
11 lateralorbitofrontal left frontal 45 lateralorbitofrontal right frontal
12 lingual left occipital 46 lingual right occipital
13 medialorbitofrontal left frontal 47 medialorbitofrontal right frontal
14 middletemporal left temporal 48 middletemporal right temporal
15 parahippocampal left temporal 49 parahippocampal right temporal
16 paracentral left frontal 50 paracentral right frontal
17 parsopercularis left frontal 51 parsopercularis right frontal
18 parsorbitalis left frontal 52 parsorbitalis right frontal
19 parstriangularis left frontal 53 parstriangularis right frontal
20 pericalcarine left occipital 54 pericalcarine right occipital
21 postcentral left parietal 55 postcentral right parietal
22 posteriorcingulate left cingulate parietal 56 posteriorcingulate right cingulate parietal
23 precentral left frontal 57 precentral right frontal
24 precuneus left parietal 58 precuneus right parietal
25 rostralanteriorcingulate left cingulate frontal 59 rostralanteriorcingulate right cingulate frontal
26 rostralmiddlefrontal left frontal 60 rostralmiddlefrontal right frontal
27 superiorfrontal left frontal 61 superiorfrontal right frontal
28 superiorparietal left parietal 62 superiorparietal right parietal
29 superiortemporal left temporal 63 superiortemporal right temporal
30 supramarginal left parietal 64 supramarginal right parietal
31 frontalpole left frontal 65 frontalpole right frontal
32 temporalpole left temporal 66 temporalpole right temporal
33 transversetemporal left temporal 67 transversetemporal right temporal
34 insula left temporal 68 insula right temporal
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