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human health and the global environment. Thus, there is an urgent need to decrease air pollution by
implementing various short and long-term measures. One of the methods for decreasing air pollution in
urban areas is increasing the green infrastructure as plants absorb the particulate matter through their
leaves and stems. The initial step in dealing with this problem is raising the public awareness, which is

Handling editor. Prof. Jiri Jaromir Klemes generally low in Skopje and the Balkan region.

The aim of the research is to quantify the positive effects on green infrastructure on air pollution and
Keywords: provide research-based inputs that can be used by local governments and decision makers. This paper
Air pollution reduction presents data from continuous measurements on a location in Skopje, provides an assessment of the
Green wall influence of green zones on air quality in urban areas and correlates it with meteorological factors. This is

Particulate matter
Meteorological factors
Sensor network

achieved by using an innovative, low-cost, easy replicable and energy-efficient system, consisted of green
wall and stations for monitoring the air quality which are based on wireless sensor network technology.

By using statistical tools as Freidman and Mann-Whitney tests, the impact of the relative position of
the measurement sensors and the green areas and other objects to the PM concentrations is quantified.
The performed analyses confirm that green areas, including green walls, have a high impact in the
reduction of PM concentrations in their proximity.

The differences in measured values obtained by measurement nodes positioned in relatively small
distances are not negligible, thus implying that the relative position of the measurement nodes to the
green infrastructure influences the measured PM concentrations. Therefore, the measurement location
should be carefully considered for any air quality monitoring system. Measurements with higher spatial
granularity should be used for modelling and air quality forecasting purposes.

The results in this paper show that the green area mitigates the PM of 2.5 or less micrometers (PM2.5)
on average by 25% and PM of 10 or less micrometers (PM10) on average by 37% compared to the
neighboring non-green areas. The results show a strong correlation between PM2.5 and PM10. In Skopje,
the combination of low temperatures, high humidity and no, or low wind speed lead to high PM
concentrations.

The presented algorithm compares the statistically obtained data to the reference categories from
WHO (from very low to very high, with reference to PM2.5). The described methodology is used to
develop a simple decision-making support algorithm for local governments to support their decisions on
applying PM mitigation measures.
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1. Introduction

Air pollution is among the highest environmental risks for hu-
man health. It is a complex mixture of dangerous substances
including gases as ground—level ozone, carbon, nitrogen and
sulphur oxides and hydrogen sulphide, particulates and biological
compounds. PM consists of nitrates, sulphides, black carbons and
organic matter and is among the pollutants with high negative
impact on human health (Heal et al., 2012). PM10 is usually emitted
from different heating sources and power plants, while PM2.5 is
related to exhaust gases from vehicles, burning wood, plastic and
waste.

The necessity to overcome air quality problems has led to
development of numerous solutions, including implementation of
various types of green infrastructure, as green walls and green
roofs. Green walls are vegetated vertical surfaces where plants are
attached to the surface by various techniques, providing good
conditions for growing dense and diverse vegetation (Bolton et al.,
2014). The plants act like filters for nitrogen dioxide and fine dust
from the air. Green roofs are vegetated roof systems with water-
proof membranes and additional systems for irrigation and
drainage. The benefits of the green walls and roofs are presented in
the state-of-the-art systems review in (Radic et al., 2019), where
thermal performance, reduction of air pollution and noise, hydro-
logical, social, visual, educational, and economic benefits and
installation costs are discussed. Furthermore, according (Saadatian
et al., 2013), green roofs reduce building temperature up to 20 °C,
absorb about 60% of solar radiation and reduce energy for air
conditioning between 25% and 80%. Green walls could decrease
temperature by 6.1 °C on sunny days and by 4 °C on cloudy days, as
discussed in (Cuce et al., 2016). According to the research in (Coma
et al., 2017), the energy savings achieved by implementation of
green walls estimate to 58.9% and of double-skin green facades to
33.8% compared to a reference system. The review presented in
(Radic et al., 2019) shows that the costs of living walls in Europe are
roughly between 400 EUR/m? to 1200 EUR/m?, the estimate being
valid for different structures (framed boxes, carrier system, cable
wire and geotextile), while green facades are associated with lower
costs, which for Turkey and Europe vary between 35 EUR/m? and
75 EUR/m?.

There are a number of studies focusing on quantification of the
positive effects of green infrastructure on air pollution mitigation.
The dispersive effect of trees decreases PM2.5 concentration by 9%,
as presented in the study about Leicester (Jeanjean et al., 2016). The
authors in (Foster et al., 2011) estimate that carbon dioxide emis-
sions can be reduced between 1.7% and 2.8% by green fences con-
sisted of grass and trees. Green areas (lawns with and without
trees) contribute to reduction of air pollution, especially PM. As
shown in (Zheming et al., 2015), transect across a lawn with trees
has fewer spikes in PM2.5 concentrations than a transect crossing a
treeless lawn. As presented in (Radic et al., 2019), green wall facades
and living walls show reduction of concentrations of nitrogen di-
oxide and PM10 up to 15% and 23% respectively, for cases related to
urban canyons. The reduction of peak PM2.5 concentrations by
green facades and living walls are observed to be 45.3% and 74.1%
respectively, considering that these reductions are related to spe-
cific vegetation, which is a topic discussed in detail in (Viecco et al.,
2018).

The effects on air pollution mitigation are bound to the specifics
of the location and climate. The study (Setala et al., 2013) per-
formed for northern climates reports decrease in PM concentration
in areas with trees, compared to areas without trees, for both
summer and winter months, with the remark that the difference is
not so significant. Meteorological factors as humidity, wind speed,
wind direction and temperature influence air quality, but there are

no common quantitative rules to determine the dependences
(Latini et al., 2002). The authors in (Gaffin et al., 2010) observed that
humidity has the highest impact on PM10 removal, followed by
wind speed and by temperature. A different observation is made in
(Xu et al., 2018), concluding that for specific locations, humidity,
combined with low wind speed has an adverse effect on PM 2.5.
Rough terrain contributes to deflection of pollutant gases and
particles and changes the influence of wind speed and direction, as
shown in (Hewson et al., 2012). Analyses of historical data from 15
years for a given location show that the increase of wind speed has
a positive effect on PM10 mitigation and short-term analyses
showed that stagnant, high pressure conditions increase PM10
concentration (Seo et al., 2018). The dominance of wind speed and
wind direction on the concentrations of contaminants along with
mixing of the layer heights is discussed in (Schafer et al., 2014).
Providing measurements is the initial step for evaluating the
effects of implemented measures against air pollution. The de-
velopments of integrated on-chip technologies have provided
conditions to change the traditional approach in measurement of
pollutants. A new generation of sensor systems with relatively
small dimensions and mobility characteristics has emerged as a
possible solution (Latini et al., 2002). Typically, these systems are
developed as wireless sensor networks (WSNs), with nodes
comprising of a battery powered unit, sensors, a microprocessor
and a transceiver and are widely used in various types of applica-
tions, as presented in the survey in (Rashid and Rehmani, 2016).
Some WSNs require autonomous and independent operation as
they are implemented in remote locations with underdeveloped
infrastructures (Srbinovska et al,, 2015). A drawback of sensor
nodes is the energy consumption, which should be as low as
possible. This can be achieved by implementation of energy con-
strained dominant set algorithms as proposed in (Albath et al.,
2013), by adequate routing algorithm, as proposed in (Manso
et al., 2015) which also contributes to extension of WSNs lifetime,
or by optimization of WSNs coverage, as it influences sensors’
consumption and the network lifetime (Wang et al, 2014).
Providing supply for the sensor nodes bateries by renewable energy
sources is additional approach in dealing with this issue, as dis-
cussed in (Srbinovska et al., 2016). Assimilation of the WSN tech-
nologies with Cognitive Internet of Things would increase their
effectiveness and lower their costs, as debated in (Graessley et al.,
2019). Introducing artificial intelligence in WSNs applications
may increase the cumulative revenues, especially by improving
predictive maintenance of remote infrastructures where WSNs are
often applied (Udell et al., 2019). The authors in (Milward et al.,
2019) made estimates and performed analysis related to imple-
mentation of artificial intelligence, the benefits of using industrial
big data analytics for organizations and the progress achieved by
implementation of the most popular industry 4.0 applications. The
modelling equations and probability sampling methodologies
which are used to analyse the bid data algorithmic decision making
processes are presented in the work by (Kovacova et al., 2019).
This paper shows the results from PM concentrations mea-
surements obtained with an air quality monitoring system which
uses WSNs for data acquisition (Srbinovska et al., 2017). It is a low
cost, efficient and easily replicable system, as confirmed in the
analyses of the costs associated with its implementation, replica-
tion and the consumption of the WSN equipment. The measured
data and additional statistical analyses presented in this paper
confirm and quantify the effects of the green wall and existing
green infrastructure (green zones with threes) in the near prox-
imity of the measurement system. Among the objectives of the
work was to systematically apply adequate statistical tools and test
the impact of the green infrastructure on each measurement
location. Our analyses show that the hypothesis test together with
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corresponding post-hoc tests should be applied along with other
statistical tools to properly evaluate the effects of green infra-
structure on PM reduction, which has not been done in related
work. The presented methodology is an alternative approach in
analyses of measured data and is used to clearly describe the
effectiveness of the relative location of the green infrastructure on
mitigation of both PM10 and PM2.5. The results presented in this
paper show that descriptive statistics performed on day and night-
time occurrence and under normal and extreme conditions support
the significance of the location of the green infrastructure on PM
mitigation. Furthermore, correlation between wind speed, humid-
ity, temperature and PM concentrations is established for the
measurement location. While the results are obtained for a specific
location, the conclusions are valid for locations with mid-
continental climate conditions. The paper also shows a decision-
supportive algorithm that is developed based on the performed
measurements and analyses. As discussed in (Bowen and Lynch,
2017), the overall benefits of green infrastructures are often
neglected due to the local government’s inability to acknowledge
these benefits. By providing relevant data and easy-to-implement
tools for the local governments, these barriers may be removed.
The applied system and methodology may serve as a basis for
developing “environmentally conscious” systems which use
advanced technology to analyse air quality and based on the results,
implement green infrastructures for its improvement.

2. Methods

The following two subsections provide detailed descriptions of
the location of the measurement, equipment and the WSN moni-
toring system used for data acquisition. The statistical tools which
are used to analyse the collected data are given in Subsection 2.3.

2.1. Test facility

The experiment was set up on a location near the Faculty of
Electrical Engineering and Information Technologies in Skopje.
Near the location, there is a small green area consisted of deciduous
trees, bushes and evergreens, one storey small buildings and a
parking lot. The location was chosen to capture the effects of green
areas as well as the influence of movement of vehicles and people.
As depicted in Fig. 1, the sensor node 1 is nearest to the road and
pedestrian pavement, the sensor node 2 is located near the green
wall structure and the node 3 is located opposite of the node 2, but
nearer to the green area.

The green wall structure consists of two rows of hedera helix
plants, which were planted during the spring period. The wall was
not very mature and dense during the measurement campaign
presented in this paper, with lower density and greenery in the
winter months. It is worth to note that the hedera plants are
considered among the plants with relatively high PM dry deposi-
tion (Viecco et al., 2018), i.e. has a higher PM mitigation impact. The
nodes are placed on a platform, where two PV panels are placed.
The node 3 has a relative position closer to the secluded green area
and is not directly shielded by an adjacent object, thus the PM is
easier to be swept by wind or rain. The node 2 is relatively close to
the PV installation which may reduce the influence of meteoro-
logical factors in dust reduction to some extent. This node is also
relatively further away from the green area compared to node 3, but
it is near green wall structure.

2.2. Description of the system

The WSN monitoring system consists of these three nodes, each
of them containing four sensors and a Wi-Fi module integrated on a

single-board controller. The sensors measure concentrations of
PM2.5, PM10, carbon monoxide (CO) and nitrogen dioxide (NO>).
For measurement of the PM particles in the air the system uses a
direct technique, which provides continuous measurement (sam-
pling interval is in seconds or minutes). The sensors can measure
PM in the range of 0.3—10 um. The concentrations of CO and NO,
are measured with a combined sensor based on resistance sensing.
The OX (oxygen) sensor resistance in the presence of NO; is
increasing, while the RED (reduced) sensor resistance in the pres-
ence of CO and hydrocarbons is decreasing. The controller pro-
cesses the acquired data before transmitting them to the network.
This type of integrated controller can be used for various applica-
tions, from low-power sensor networks to high demanding power
applications like music streaming and voice encoding. The Wi-Fi
modules of the nodes send data to a router that is located in one
of the buildings depicted in Fig. 1. From that router, the collected
data is uploaded on an open platform (Internet of Things open
platform, 2020) and can be monitored on-line or downloaded for
additional analyses. The system is designed to have low power
consumption and overall low costs. The details of the hardware
used for the described setup are available in (Velkovski et al., 2019).

2.2.1. Costs

The system was constructed from used materials (old wooden
boards from discarded furniture for the shelves and used plastic
bottles for plant pots) as well as new materials for constructing the
rails for the plant pots. The costs for the plants and the rails were
about 135 EUR. The costs for the monitoring system consist of the
costs of the sensors, the costs for the power supply system and
additional cable wiring. The total costs for the sensors were about
145 EUR and the other costs amounted to 65 EUR. There were no
additional costs for the router and data transmission, as faculty
equipment and network were used. The overall costs for the
practical implementation of the system amounted to 180 EUR/m?,
therefore the system can be considered as a low-cost system
compared to the systems described in the review in (Radic et al.,
2019). The costs would amount up to 250 EUR/m? if the system is
designed with additional rails to provide higher plant density. The
costs for the measurement equipment are about 60% of the total
costs, so green walls built from used materials and without the
described monitoring system would cost approximately 100 EUR/
m?. New materials would certainly increase the costs, but even in
that case, the system would be on the lower cost end compared to
the available data. At this stage, the system is implemented without
automatic irrigation system.

The operation and maintenance costs of this system are related
to removing dried and planting new vegetation, trimming, addi-
tives for plant nutrition, replacement sensors. For the described
system, these costs may vary from 20 EUR to 100 EUR annually, the
latter including replacement of a sensor and about half of the
vegetation. The operational costs of the system also include the
costs for electricity consumption of the sensors and the router.
Considering that the retail electricity prices vary around the world,
these costs will depend on the country of application. For example,
Denmark has the highest household electricity price in Europe
which is 0.2924 EUR/KWh. The price in Denmark is almost five
times higher than the average price in Kosovo, which is 0.0605
EUR/kWh and is the lowest price in Europe. Consequently, the
annual electricity costs would differ accordingly.

Costs of sensors that can be used in WSN application as well as
traditional PM monitoring stations are presented in Table 1. It is
obvious that WSN application belong to the low-cost end of the PM
monitoring systems. The approach in designing low cost WSNs is
based on open source cloud applications for data collection, sensors
with low consumption and low prices, and optimization of
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Fig. 1. Overview of the location with the disposition of the sensor nodes.

topology and routing. WSN with similar design approach is dis-
cussed in (Lazarescu, 2014), showing that using open, cloud-based
data access is preferable to balance latency and energy consump-
tion of the low power communication segments. As discussed
above, the system presented in this paper uses open source cloud
platform for data collection and low-cost sensors using available AC
power supply. This technology is significantly cheaper than tradi-
tional PM monitoring stations, as described in Table 1.

The system is easy to install and replicate using the current
sensor node configuration and the green wall construction. Table 2
presents approximate costs of the system if it is replicated on a
different location with large coverage area, using the same sensor
node configuration and the same green wall construction. The
calculations are done assuming a circular sensing area equivalent to
1000 m?2, sensors with 80 m transmission range and the wireless

Table 1

router placed in the centre of the area. The costs for implementa-
tion of several 2 m? green wall constructions sufficient for this
coverage area, would not exceed 2000 EUR.

Table 3 presents average power consumption and total costs of
the sensor monitoring system per day. The calculations take into
account the approximate costs of the system per day and the cost of
the system with more than 3 sensor nodes. The wireless router uses
the IEEE 802.11n standard based on multiple antennas to increase
data rates. The purpose of this standard is to improve data rates
with a significant increase in the maximum net data rate from
54 Mbit/s to 72 Mbit/s. According to this standard the maximum
number of nodes connected to the wireless router should not
exceed 200 units. In order to eliminate the worst scenario using 200
sensor nodes on the same router, the calculations are made
assuming maximum 150 sensor nodes on the same router.

Specification of different low-cost PM sensors compared to traditional PM monitoring stations.

PM sensors Model Size (mm) Power supply Maximum current Cost Particle diameter Concentration range of
consumption (mA) (EUR)  size (um) measurement

Novafitness SDS011 71 x 70 x 23 5V DC 80 185 <0.3 0.0—999.9 p.g/m3

Alphasense OPC-N2 75 x 64 x 60 5V DC 175 8.8 0.38-17 0,1-1500 ug/m3

Dylos DC 1700 178 x 114 x 76 110 V AC or battery NA 377 0.5-2.5 0-106 particles/cm®

Plantower PMS 3003 65 x 42 x 23 5V DC 120 1260 0.3-1 0-500 ug/m3

Sharp GP2Y1010AUOF 46 x 30 x 18 5V DC 20 10.6 >0.5 0-600 ug/m3

Traditional PM measurement  Size (mm) Output signal Power consumption Cost Particle diameter  Concentration range of
stationsModel (EUR) size (um) measurement

ZM Sensor WXA100-08 160 x 160 x 290 12—24V DC 036 W 1330 0.5—-1 0—-1000 ug/m3

GRI-IAT 340 x 235 x 220 GPRS(Standard), NA 3990 1 0—1000 pg/m>

RS485(0ptional)

LPC PM10/PM2.5 Series 500 195 x 122 x 54 12V DC 0.96 W 4440 1 0.1-1000 pg/m?

Comde-Derenda 320 x 560 x 270 230V AC 80W 44375 1 0—-1000 ug/m3

APM-2

Air pointer PM station 1200 x 782 x 615 230 V AC 1100 W 44375 1 0-25000 pg/m>
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Table 2

Cost of the replicated monitoring system with 14 sensor nodes and 1000 m? coverage area.

Coverage area (m?) Radius range (m)

Number of sensor nodes Total cost (EUR)

1000 80

14 807

Therefore, in the total cost per day for 1000 sensor nodes total of
seven routers are considered.

In future developments, the sensor monitoring system can be
integrated with temperature and humidity sensors that will pro-
vide data for irrigation and plant nutrition, enabling development
of solutions for automation of the irrigation and nutrition pro-
cesses. Furthermore, the temperature sensor may be used to eval-
uate the thermal regulation impact of green wall systems.

2.3. Statistical tools

For the analyses of the measured data, a set of statistical tools
have been applied, such as: kurtosis, skewness, coefficient varia-
tion, cross-correlation, Friedman test (Friedman (1937)), Mann-
Whitney test (Mann and Whitney, 1947) and appropriate post hoc
tests. These tools are used to determine mean, variance, maximums
and minimums for various observed periods, distribution and
regularity, statistically significant differences between measure-
ments and correlations. The set builds coherent and appropriate
methodology for assessing the influences of various factors on PM
concentrations.

The coefficient of variation is the ratio of the standard deviation
to the mean and it is proportional to the level of dispersion around
the mean, i.e., higher coefficient of variation implies greater level of
dispersion. When the coefficient of variation is near zero, it shows
that there is no variability of the data set. This phenomenon can be
considered as a constant in the period of observation.

The shape of the probability distribution can be described by
two similar concepts known as kurtosis and skewness, which both
measure the deviation from normal distribution of a random vari-
able. A distribution can deviate from normal distribution in two
ways: lack of symmetry and pointiness, known as skewness and
kurtosis, respectively. Kurtosis is a measure of each time the data
shows a flattening or an elongation from the normal density dis-
tribution of the random variable. This measure refers to the degree
to which the data cluster in the tails of the distribution. Hence, the
result is related to the tails of the distribution, but not to its peaks.
Any univariant normal distribution has kurtosis equal 3, and
therefore it is common practice to evaluate excess kurtosis instead
of kurtosis, i.e.:

excess kurtosis = kurtosis-3 (1)
When the excess kurtosis has high values, the density distri-
bution is concentrated around the mean. This indicates that there is

regularity of the quantity values during the observed period.

Table 3
Total cost per day for the sensor monitoring system.

The skewness is similar measure to the kurtosis. It measures the
asymmetry of the density distribution of a random variable with
respect to its mean. The most frequent data in skewed distributions
are clustered at one end of the scale. If the skewness has near zero
value, then the maximum probability coincides with the mean
value. If the maximum probability is lower than the mean value,
then there are high number of extreme values in the period of
observation. This situation is described by positive skewness. When
random variable has excess kurtosis and skewness above or below
0, then this indicates deviation from normal distribution. The
similarity of two random variables is measured by cross-
correlation.

In order to determine whether the difference between consid-
ered conditions is significant, usually the ANOVA test is performed.
This test is a collection of statistical models used to analyse the
differences among variable means, and it can be performed when
the variables have normal distribution (Fisher, 1921). If the vari-
ables do not have normal distribution, non-parametric tests are
perfumed. The Friedman test (Friedman (1939)) is the non-
parametric alternative to the one-way ANOVA test. To determine
whether any of the differences between the means are statistically
significant, the significance level is set to o = 0.05. A significance
level of 0.05 indicates a 5% risk of concluding that a difference exists
when there is no actual difference. The null hypothesis, Hy, states
the following:

Hp: There is no difference between the conditions. (2)

The Friedman test determines a p-value for the given data. Then
the obtained p-value is compared to the significance level . If the
p-value < a, the Null hypothesis Hp (2) is rejected i.e. the differences
between the considered conditions are not statistically significant.
If the p-value > «, then the Null hypothesis Hp (2) is confirmed, i.e.
the differences between the conditions are statistically significant.
When the Null hypothesis is rejected, i.e. the test reports significant
difference between the conditions (variables) and if there are three
or more different conditions, a post-hoc Friedman test (Friedman
(1940)) should be performed. This test comparers the conditions
(variables) in pairs and locates the difference. The post-hoc test
Friedman test is similar to the Kruskal-Wallis test described in
(Siegel and Castellan, 1988). This test takes the absolute value of the
difference between the mean ranks of the different groups. Then it
compares these differences to a value based on the value of z
(corrected for the number of done comparisons), and constant
based on the total sample size N and the number of conditions k.
The purpose is to test if the inequality (3):

Per day: Sensor node Wireless Router Total cost per day
PM10 and PM2.5 CO and NO, Microcontroller ESP32-WROOM-  Cisco IEEE 802.11n Total cost for the sensor
sensors sensors 32D standard system

power consumption (W) 24 1.9 3.6 10 179

costs for single sensor (EUR) 0.0133 0.0168 0.0301

costs for 3 sensor nodes (EUR)  0.0399 0.0168 0.0567

costs for 100 sensor nodes (EUR) 1.33 0.0168 1.3468

costs for 1000 sensor nodes 133 0.1176 13.4176

(EUR)
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k(k+1)
6N (3)

Ru —R,,| z Zo/k(k—1)

holds.

Another non-parametric modification of ANOVA test is the
Mann-Whitney test (Mann and Whitney, 1947). Similar to the
Friedman test, it is performed when variables are not normally
distributed, but the test is done for two independent conditions.

3. Results and discussion

The measurements have begun in May 2018. Previous analyses
(Srbinovska et al., 2017) have shown that the pollution in spring
and summer is lower than the pollution during the winter months.
This paper presents the measurements of PM2.5 and PM10, for the
period from the 5th of December to the 19th of February, aiming to
show the concentrations during the winter months. The next
subsections present obtained measurement results and statistical
analysis of the data.

3.1. Experimental measurements

The graphs on Fig. 2 and Fig. 3 present hourly average data for
PM2.5 and PM10 concentrations respectively, encompassing a
period of about 10 days, starting from 26™ of December 2018 until
07™ of January 2019, and serve to show typical winter days, with
periods of high and low PM concentrations.

The graphs on Figs. 2 and 3 show that the peaks of PM2.5 and
PM10 occur at the same time and that during the observed period
there have been a number of such occurrences, each of them lasting
for a few hours. As it can be observed by the graphs on Figs. 2 and 3,
some of the measurements expected from node 2 are missing. The
problem usually occurs because the node fell unexpectedly into
silent mode or because problems in the wireless data transmission.
In any case, the node has to be restarted, bearing in mind that some
of the data is missing.

The graphs on Fig. 4 and Fig. 5 present the average data for
concentrations of PM2.5 and PM10 during the week from 15 of
January 2019 until 23rd of January, which is the week when the
highest PM concentrations have been measured, considering the
whole observed period (5th December — 19th February).

A more detailed representation of the observed week is repre-
sented in Fig. 6 - Fig. 9. Namely, Figs. 6 and 7 show the day of the
week with the highest concentrations of PM2.5 and PM10, while
Fig. 8 and Fig. 9 show the days of the same week, but with relatively

low PM concentrations. Actually, the graphs on Figs. 6 and 7 present
the day with highest measured PM concentrations, which reach the
values of 306 pg/m® for PM2.5 and 391 pg/m> for PM10 and
occurred around midnight on 19 of January 2019. These values are
observed at the sensor node 1, i.e. the node that is positioned the
furthest away from the greenery.

The graphs presented on Figs. 8 and 9 show that the period with
low PM concentrations lasted more than two days, when all nodes
measured PM2.5 and PM10 concentrations with values less or
about 20 pg/m?> almost throughout the whole observed period. The
graphs also show that this period of low PM concentrations is fol-
lowed by a period of increase of the PM concentrations, occurring
on 16th January, during the afternoon and night hours. However,
the concentrations are not as high as the concentrations presented
on Figs. 6 and 7.

The analyses of the campaign indicate that the measurements at
the sensor node 3 show relatively lower values for the PM con-
centrations than the sensor node 1, which is the node that is located
furthest from the green area. The sensor node 2 shows values that
are close, at some points even slightly higher than the values
measured at node 1. The average values presented on the graphs
from Figs. 6—9 show that the differences in measured values are
larger for the periods of the high PM concentrations and lower for
the periods with low PM concentrations. The collected data con-
firms that the location of the measurement node and its relative
position to the green infrastructure influences the measured PM
concentrations. This can be supported by observing measured data
from locations around Skopje from the online database (Jovanovski,
2020), where the measured values for days with high PM concen-
trations may differ for more than 20—50 pg/m? from one location to
another, but the trends are generally the same — showing periods
with high, moderate or low concentrations of PM2.5 and PM10. The
measurements taken within this measurement campaign indicate
that the location of the node, the adjacent objects and the existence
of green areas have an influence on the PM concentrations. How-
ever, to increase the confidence in the interpretation of the results,
the set of statistical tools presented above have been used. The
statistical analyses of the collected data presented in the following
section show the relation between various factors that influence
the PM concentrations.

3.2. Statistical analysis of the measured data

The statistical data are calculated and analysed for the whole
period 5™ December 2018—19™ February 2019. The descriptive
statistics are also calculated for daytime and night-time. As a result,

PM2.5@26.12.2018-07.01.2019

120 +

Concentration of PM2.5 (ug/m?)

—Nodel —Node2 ——Node3

0 +
26.12.20 . : 30.12.2018 04:48

01.01.2019 07:12

03.01.2019 09:36 05.01.2019 12:00 07.01.2019 14:24

Time period in days (date hh:mm)

Fig. 2. Concentration of PM2.5 for 13 days, average hourly data.
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Fig. 3. Concentration of PM10 for 13 days, average hourly data.
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Fig. 4. Concentration of PM2.5 for one-week, average hourly data.
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Fig. 5. Concentration of PM10 for one-week, average hourly data.
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Fig. 6. Concentration of PM2.5 for 25 h, average hourly data.
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Fig. 8. Concentration of PM2.5 for 2 days, average hourly data.

the data presented in Table 4 show the calculated descriptive sta-
tistics for: i) the whole measurement period, ii) daytime (8 a.m.—8
p.m.), and iii) night-time (8 p.m.—8 a.m.). These periods have been
chosen for two reasons — the period from 8 a.m. to 8 p.m. is the
period of the day when there are activities within the faculty zone
and thus movement is expected from both people and vehicles in
the near vicinity of the experimental set up. The period from 8 p.m.

to 8 a.m. is usually related to peaks in PM concentrations (Table 4)
which are not directly caused by the activity at the faculty zone, but
rather are related to other sources. The pollution sources and the
chemical analyses of the pollutants are not in the scope of the
research.

The statistical analysis of the data for PM2.5 and PM10 indicate
that the data obtained in the observed period (during the whole
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Table 4
Descriptive statistics for the period 5 December 2018 to 19 February 2019, i) the whole measurement period, ii) daytime (8 a.m.—8 p.m.), and iii) night-time (8 p.m.—8 a.m.).
PM2.5 PM10
Node 1 Node 2 Node 3 Node 1 Node 2 Node 3
Mean i) 36.87 37.28 27.75 50.52 44.51 31.99
ii) 34.68 34.94 25.76 47.08 41.35 29.63
iii) 4091 41.31 30.89 56.34 49.49 35.73
Maximum i) 306.21 305.59 231.53 391.37 354.10 259.87
ii) 267.25 258.22 198.55 340.29 294.71 222.68
iii) 306.21 305.59 231.53 391.37 354.10 259.87

measurement period, daytime and night-time) does not have
normal distribution. High values of excess kurtosis are reported in
all considered cases (more than 5.86 for PM2.5 and more than 4.39
for PM10) which indicates regularity of the collected data in the
observed period. At the same time, the positive values of skewness
(approximately 2 for all considered cases for PM2.5 and PM10)
indicate that there is a high number of extreme PM2.5 and PM10
concentrations measured in the observed period (in whole mea-
surement period, daytime and night-time).

The results from the descriptive statistics for the whole period
(Table 4) are also visualized in Fig. 10 and Fig. 11, showing that the
considered data does not have normal distribution (the box pre-
sents 50% of the obtained data, the horizontal line in the box is the
median of the corresponding data). The extreme concentrations of
PM2.5 and of PM10 in the whole measurement period, suggested
by the positive value of skewness, are presented by a star sign in
Figs. 10 and 11, respectively. Each star represents a data sample for
the measured data.

The cross correlation between measured PM2.5 and PM10
concentrations shows that there is a strong positive correlation
(>0.98) between the concentration of PM2.5 and PM10 obtained
from each node. Thus, what was observed as a characteristic from
Figs. 2—9, is confirmed with the statistical analyses performed on
the observed data set. Similarly, statistical analyses of the measured
data show positive correlation between the humidity and the
concentration of PM particles (>0.4). There is negative correlation
(<-0.229) between temperature and concentration of PM particles
and negative correlation between wind speed and PM pollution
(<-0.43). Although humidity should have a positive impact on the
decrease of PM concentrations, the low temperatures in the winter
months and the disposition of the city have an adverse effect. It is
observed that in the considered period the average temperature is
1 °C, the minimum temperature is —12 °C and the maximum

temperature is 17 °C. The humidity in the observed period is be-
tween 29% and 100%, while the average humidity is 79.36%. The
distribution of humidity and temperature data is close to normal.
The wind speed is not normally distributed (excess kurtosis = 3.34
and skewness = 1.7). In the observed period there were days
without wind (wind speed = 0 m/s), the maximum observed wind
speed was 10 m/s and the average wind speed was 1.36 m/s.

3.3. Hypothesis tests

The data presented in Table 4 indicates differences of the
descriptive statistical data for node 3 and the other two nodes. The
same conjecture is imposed by the graphs presented from Figs. 2—7.
As already mentioned above, it is obvious from Table 4, Figs. 10 and
11, that there is a difference in the mean of the data of PM2.5 and
PM10 obtained from node 3 compared to the other two nodes. As
the data has deviations from normality, a Friedman test was per-
formed to confirm or reject our hypothesis.

The performed Friedman test for the data for PM2.5 and for
PM10 results with p-value equal to 0 (%2 (2) = 0, as the degree of
freedom in this case is 2), and therefore there is statistically sig-
nificant difference between the results obtained on different
measurement locations. From Table 5 and from the average rank of
the results for PM2.5, the rank mean values of node 1, node 2, and
node 3 are 2.66, 2.31, and 1.01, respectively (rank 1 is assigned to
the node that measured the lowest concentration of PM2.5, while
rank 3 is assigned to the one that measured the highest PM2.5
concentration). Therefore, it can be concluded that node 3 has
measured the smallest concentration of PM2.5 particles. The node 3
is the node located closest to the green area. Similarly, for PM10, the
obtained rank mean values are 2.96, 2.03, and 1.01 for node 1, node
2 and node 3, respectively. So, the same conclusion is deduced - the
measured PM10 at the location of node 3 is statistically different. To
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Table 5
Post — hoc test for Friedman'’s test comparing the difference between mean ranks of
different groups.

Comparison PM2.5 PM10

Ru R Ri—RJ|  Ru R, IRu — Ry|
Node 1-Node 2 2.66 2.33 0.33 2.96 2.03 0.93
Node 1-Node 3 2.66 1.01 1.65 2.96 1.01 1.95
Node 2-Node 3 2.33 1.01 1.23 2.03 1.01 1.02

confirm these conclusions a post hoc Friedman test (Friedman M. b.,
1940) was performed.

Let’s set, as usual, « = 0.05. In the studied datak = 2,and N =
1673, 50 z,(k—1) = 2.40 and the critical value in (3) is

k(k+1)

Zot/k(k—]) T=0083 (4)

The obtained results are given in Table 5 as the difference be-

tween all mean ranks [Ry — Ry|. This difference is higher than the
critical value calculated in (4), which means that the difference is
statistically significant. These results not only confirm our hy-
pothesis that concentration of PM2.5 and PM10 is significantly
lower at node 3, but also that the concentration of PM (both PM2.5
and PM10) is significantly lower at node 2 than at node 1.

This finally supports the observation that the difference be-
tween the measured data is related to the location of the nodes, the
node furthest from the green area showing highest measured PM
concentrations. The data for the comparison of nodes 1 and 2 also
show a statistical difference, which can be considered as significant,
but not to that extent as when nodes 1 and 3 are compared.
However, it also confirms the previously stated, i.e. that the location
of the nodes and their relative position towards green areas (with
and without trees) and other adjacent objects has an impact on the
measured PM concentrations. This implies that the placement of
green walls as a measure for PM mitigation is a preferable when
there is no possibility to develop green areas (zones with deciduous
trees and evergreens).
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The result from the descriptive statistics presented in Table 4
suggest that there is a difference in the concentration of PM dur-
ing daytime (from 8 a.m. to 8 p.m.) and night-time (from 8 p.m. to 8
a.m.). Since many sources of pollution, such as traffic, heating and
construction work, are inactive in the period from 8p.m. to 8 p.m,, it
is expected that the PM concentration during night-time should be
smaller. The results in Table 4 suggest the opposite. This indicates
another source of pollution that is non-active during daytime and
indicates that further measurements on the chemical compound of
the pollutants should be considered.

In order to verify if the observation is significant, the null hy-
pothesis is tested under this condition. Since the data is not nor-
mally distributed, a nonparametric test is used. In this case, it is the
Mann-Whitney test (Mann and Whitney, 1947), for two indepen-
dent conditions. The asymptotic significance for these tests and the
effect size are given in Table 6. The asymptotic significance is much
smaller than p = 0.05, and therefore the null hypothesis is rejected,
i.e.,, there is statistically significant difference between the con-
centration of PM during daytime and night-time. The effect size, as
shown in Table 6, is small to medium (bellow 0.3). Therefore, it can
be observed that the effect of the polluting sources which are active
during night-time is much higher. As discussed above, the trend of
the PM pollution during night-time in the observed period is not
typical for the measurement location, but for the whole city.

From the graphs and descriptive statistics calculated for the
observed period, it is clear that the sensor node 3 shows lower
values of PM concentrations (both PM2.5 and PM10). Still the dif-
ference between this node and the other nodes, i.e. node 1 and
node 2, is much more obvious in the periods of extreme PM con-
centrations (higher than 50 pg/m> for PM2.5 and higher than
100 pg/m> for PM10). Next table, Table 7, shows the descriptive
statistics for normal (according to the World Health Organization
(WHO)) and extreme PM2.5 concentrations. Similarly, Table 8
shows the descriptive statistics for normal (according to the
WHO) and extreme PM10 concentrations. The ranking of the values
in both cases is made with respect to node 1. The maximum at node
2 is higher than at node 1 and higher than the allowed 25 pg/m°. As
the ranking is made with respect to node 1, the value at node 2 is
included in the set for the normal values.

From the data presented in Tables 4 and 7, it can be concluded
that the concentration of PM2.5 is approximately 25% lower in node
3 than in node 1 in all the considered situations. Related work
shows that in controlled environment with specific vegetation, the
peak PM concentrations can be reduced up to 71.4% compared to
environment without vegetation. In Leicester, the deposition of
PM2.5 by trees and grass was observed to be 2.8% and 0.6%
respectively (Jeanjean et al., 2016). The combined effects of green
wall and green area in the vicinity of node 3 lead to almost 25%
reduction of PM2.5 compared to the node 1, which has only grass
patches in its vicinity. In the whole considered period, the pollution
with PM10 at location 3 is reduced for 37%. The concentration of
PM10 in node 3 is 35% lower than in node 1 in case of normal
concentration (<50pug/m3), and even 43.5% in the periods of
extreme concentration (Table 8). Related work shows PM10
reduction up to 23% in urban canyons (Radi¢ et al., 2019), which is
lower than on more open urban areas. The analyses imply that the

Table 6

Mann- Whitney test comparing the pollution during daytime and night-time.
PM2.5 PM10
Node1 Node2 Node3 Nodel Node2 Node3

Asymp. Sig. (2-tailed) 0.002  0.004 0000 0001 0002  0.000
Effect size 0102 0097 012  0.11 0104 0.126

Table 7
Descriptive statistics for the period 5 December 2018 to 19 February 2019, for normal
and extreme values of PM2.5.

Normal values, <25 pg/m>  Extreme values, >50 pg/m>

Node1 Node2 Node3 Node 1 Node 2 Node 3
Mean 10.30 10.32 7.86 87.76 87.96 65.64
Sample Variance = 39.82 40.10 22.93 1609.86 1668.63 913.92
Count 840 773 838 443 422 441

Table 8
Descriptive statistics for the period 5 December 2018 to 19 February 2019, for normal
and extreme values of PM10.

Normal values, <50 pg/m>  Extreme values, >100 ug/m>

Node1 Node2 Node3 Nodel Node2 Node3
Mean 21.32 18.40 13.86 15098 133.13 93.98
Sample Variance 207.76 163.59  88.82 2234.88 2025.08 1131.08

Count 1143.00 1038.00 1140.00 255.00 238.00 254.00

location of the nodes, i.e. their position closer to the green areas and
other objects, influences the measured concentration of PM.
However, the extent of each of these influences cannot be clearly
identified with the available data. Furthermore, the influence of the
location on PM10 is higher than on PM2.5. This can be observed by
the descriptive data in Tables 7 and 8.

The results from the measurements undertaken during the
winter months (December 2018—February 2019) confirm the high
concentrations of PM2.5 and PM10 on the micro-location, which is
in line with measurements from data bases located around the city
of Skopje. The measured data shows typical occurrence of high PM
concentrations in specific parts of the day which is a trend observed
on the various measurement locations throughout the city as well.
There is a strong positive correlation between the PM10 and PM2.5
concentrations, which is not typical just for the observed location,
confirms the initial hypothesis of the research. This is quite
important when designing measures for PM mitigation as well as
when developing air pollution prediction tools.

While the experimental results are specific for the location, the
conclusions and statistical analyses undertaken to assess the
measurement location relative to the green infrastructure can be
generalized to derive the following conclusions. Firstly, the influ-
ence of green infrastructure on PM concentration under the
described conditions is significant, as shown by the applied sta-
tistical analysis. Moreover, the differences in measured values ob-
tained by measurement nodes positioned in relatively small
distances are not negligible, thus implying that the relative position
of the measurement nodes to the green infrastructure influences
the measured PM concentrations. Therefore, the measurement
location should be carefully considered for any air quality moni-
toring system and that measurements with higher spatial granu-
larity should be used for modelling and air quality forecasting
purposes. As a result of the analyses, it can be concluded that sta-
tistical evaluation of measured data and assessment of the location
and its surroundings should be considered prior placement of a
green wall. By doing so, maximum effects of the green wall on PM
concentration decrease can be expected.

Considering the influence of meteorological factors, the estab-
lished correlations are specific to the location, showing that wind
speed has the highest influence on PM concentrations, followed by
humidity and temperature. Generalization of the observed corre-
lations lead to the conclusion that combination of low tempera-
tures, high humidity and no, or low wind speed lead to high PM
concentrations.
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3.4. Decision-making supportive tool

With the aim to increase the practicality of the described system
and to contribute to the increase of the capacity of local govern-
ments in dealing with air pollution, the results and findings dis-
cussed above are organized in a decision-making supportive
algorithm. The algorithm is presented in Fig. 12 and it basically
streamlines the discussions above into a set of steps that can be
undertaken when discussing solutions for PM mitigation. The
presented algorithm takes in consideration that green walls, as the
one described in this paper, represent simple and affordable solu-
tions for PM concentration mitigation. It also considers that long-
term measures should include planting green tree zones that
have a higher impact on PM mitigation, especially considering
extreme levels of PM. The process starts with inputs from mea-
surements on air quality and inputs from decision-making stake-
holders. The latter may be results of public debates with non-
governmental sector and local community, questionnaires to
assess the public opinion and acceptance for certain measures,
investigations on pollutants and activities of inspection bodies and
other inputs. By statistical analyses of the data using the method-
ology described in this paper, the average concentrations of PM can
be derived. The statistical tools enable the users to consider the

Inputs from

specifics of the location and other external factors (high level
concentrations occurring at certain times of the day or meteoro-
logical influences), i.e. introduce high confidence in the calculated
and analysed data. The algorithm compares the statistically ob-
tained data to the reference categories from WHO (from very low to
very high, with reference to PM2.5, as depicted in Fig. 12). This can
be justified by the observed very high correlation of PM10 and
PM2.5 and the fact that PM2.5 has worse impact on human health.

Considering the presented algorithm, measures should be un-
dertaken when the average concentrations observed in a desig-
nated period are higher than medium. In such cases, the spatial
conditions for planting trees (developing urban green zones) are
investigated and based on that and the availability of financing, the
appropriate action is taken, as recommended by the algorithm. For
the cases of high and very high levels of PM, the tool advises urgent
implementation of green walls and working on creating conditions
for planting trees. The condition for checking the occurrence of
pollution at night-time, followed by actions to determine the
sources of pollutants is related to the specifics of Skopje and
generally, the situation in North Macedonia. However, this condi-
tion does not decrease the generality of the algorithm, as it can be
replaced with some other, which is relevant for another location, or
can be discarded.

Fig. 12. Decision-making supportive tool.
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4. Conclusions

The paper describes a low-cost green wall structure and WSN
PM concentration measurement system, which has high scalability
and replicability. The developed system provides quality data that
can be further processed with the described statistical tools to
evaluate the influence of green infrastructure on PM concentration.

The implementation of green infrastructure and the possibility
to evaluate its effect on PM mitigation provide multi-fold effects on
communities. Experimental setups, as the one described in this
paper, serve to derive a set of successive steps that need to be
undertaken to reduce PM concentrations. These steps should be
taken both by governmental bodies and citizens living in urban
areas. This paper shows an example how “environmentally
conscious” approach in developing solutions and using advanced
technologies can bring benefits to local communities. The decision-
making supportive algorithm presented in this paper uses sound
methodology and statistics in analyses of data so that the solutions
for decreasing PM concentrations can be proposed with high con-
fidence in their effectiveness. The described algorithm takes in
consideration local conditions, but without loss of generality, which
makes it a candidate tool for application under various conditions.
Furthermore, the low-cost and replicable WSN system described in
this paper shows potential for wide-scale implementation, which is
essential for any engineering solution. The specifics of the system
can be easily customized to the needs of the users and the location.
The storage of collected data to an open access cloud platform
provides easy access and sharing of data for further analyses. The
proposed solution can be further improved with new sensors for
humidity and temperature which can be used for developing irri-
gation and plant nutrition solutions for the green wall. The indirect
effects of such systems encompass improved health of citizens
living in urban areas and raised public awareness on the negative
impact of air pollution and waste. This effect should not be
neglected for the regions where the general public is not fully
aware of the risks and consequences of air pollution. As shown in
this paper, the green infrastructure, including green walls may be
designed from discarded materials and thus, contribute to reduc-
tion of urban waste.

The results discussed in the previous section show that location
of green infrastructure in urban environments should be carefully
planned in order to maximise its effect on air quality. This state-
ment is supported by the fact that the differences in measured
values obtained by measurement nodes positioned in relatively
small distances are not negligible. This implies that the relative
position of the green wall to other objects/urban equipment and
green zones influences its effect on PM mitigation. The results and
discussions presented in this paper are valuable in making de-
cisions on granularity of spatial and temporal data when designing
air pollution prediction systems. Our findings suggest that granu-
larity of data, especially for dense urban areas with green in-
frastructures that vary in size and density, are essential to provide a
good quality prediction model.
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