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Abstract
Due to its transferability, the soil has been commonly used as evidence in criminal investigations. In this work, 172 soil 
samples were taken from five urban parks from the town of Tetovo (North Macedonia) and from additional four rural 
locations in its vicinity. The soil samples were examined using X-ray powder diffraction. The collected diffractograms 
were used for development of classification models based on supervised self-organizing maps for determination of their 
origin. The examination of generalization performances of the developed models showed that they were able to correctly 
classify between 95.6 and 97.8% of the samples from the independent test set. The influence of the weather and the sea-
sonal changes on the composition of the soil was also examined. For this purpose, three years after the initial soil samples 
were collected, additional 28 samples were analyzed from different locations. The best models presented in this work 
were able to successfully classify 27 of these additional samples.
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1. Introduction
An aerial view, on the agricultural land, in the right 

season, could reveal plots of land with variety of colors. It is 
amazing how relatively close these plots of land could be 
but their color can still differ.  For a chemist, the difference 
in the soil color or nuance of the soil color is the first clue 
that could lead to a conclusion about possible difference in 
its chemical composition.  The soil color is influenced by 
the minerals, the water and the organic matter present in it. 
For example, the soils with high concentration of calcium 
tend to be white, those with high concentration of iron are 
reddish, and those high in humus are dark brown to black.1 
The soil color is significant indicator of the chemical com-
position and a Munsell color chart could be enough for 
classification of soils for agricultural purposes. However, 
this approach is not enough for forensic investigations. Due 
to its high mineral content X-ray powder diffraction analy-
sis of the soils can provide additional and sufficient data 

which could be used as forensic evidence. The idea behind 
the soil as a forensic evidence comes from its divisibility 
and transferability.2 Namely, the soil taken from a perpetra-
tor’s shoes, car tires or tools, can be linked to a crime scene.3 

The soil samples have specific chemical and physi-
cal composition that has been analyzed with a variety of 
analytical methods. Scanning electron microscopy has 
been applied to identify unusual particles. This technique 
has also been coupled with EDS.4–6 The potential use of 
the soil as forensic evidence has been studied with atomic 
absorption spectrometry,7,8 inductively coupled plasma, 
with mass spectrometry,9,10 gas chromatography coupled 
with mass spectrometry,11,12 Raman spectroscopy,13–15 in-
frared absorption spectroscopy and infrared reflectance 
spectroscopy.16–23 The IR spectroscopy has been used for 
determination of both (1) organic and (2) mineral compo-
nents of the soil.18,24,25 

X-ray powder diffraction (XRD) is a nondestructive 
technique that can provide a rapid and accurate miner-
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alogical analysis of multicomponent mixtures without a 
need for extensive sample preparation.26 In addition to 
this, we have to state here that, for forensic purposes, X-ray 
powder diffraction has been previously used.19,20,27,28 

In this work, we present our efforts for the devel-
opment of chemometric method based on supervised 
self-organizing maps (SOM) used for classification of soil 
samples for determination of their origin for forensic pur-
poses.29 Chemometrics by itself has already found its ap-
plication in forensic science.30–39 In our previous work, we 
successfully developed models for classification of urban 
soils for forensic analysis from five locations using infra-
red spectroscopy as an experimental technique.40 Howev-
er, the signals (the bands) in infrared spectra are highly 
overlapped most of the time. That was the reason why, in 
order to obtain successful classification of the samples, we 
used one-against-the-rest approach. The performances of 
the one-against-the-rest approach were considerably bet-
ter compared to a single model approach used for classifi-
cation of all five types of urban soil samples.40

Compared to the signals in the infrared spectra, the 
signals obtained by X-ray powder diffraction are less over-
lapped. Having this information in mind, in this work we 
decided to use X-ray powder diffraction as an experimen-
tal technique for classification of samples from nine loca-
tions. Five urban location from the town of Tetovo, and 
four rural locations.

2. Experimental
For this purpose, the soil samples were collect-

ed from (1) five different parks from the town of Tetovo 
(North Macedonia) and from (2) four additional rural 
locations in its vicinity. These locations are presented on 
Table 1  and in Figure 1.

Table 1. Locations from which the soil samples were collected, the 
description of the locations and their labels.

Label	 Location

A	 Intercity Bus Station Park
B	 House of Culture Park
C	 Colorful Mosque Park
D	 State University of Tetovo Park
E	 Moša Pijade High School Park
F	 Village of Džepčište (north exit of the town)
G	 Near the tollbooths on the highway Skopje–Tetovo (east exit)
H	 Near the village of Gajre (west exit of the town)
I	 Near the village of Dolno Palčište (south exit of the town)

Three of the five parks (locations: A, B and C) are lo-
cated at approximate distances between 1 and 1.5 km. The 
distance between these three parks from the remaining two 
(locations: D and E) is about 2.5 km. It is also important 

to note that the distance between the remaining two parks 
(D – State University of Tetovo Park and E – Moša Pijade 
High School Park) is about 250–300 m. These two parks 
were selected in this way in order to examine whether the 
smaller distance will have influence on the performances 
of the classification models due to the possible similari-
ties of the composition of the soils. The distances between 
center of the town and the remaining four rural locations 
(F, G, H and I) are between 4.5 and 5 km.

Figure 1. The nine locations (a) inside and (b) around town of Teto-
vo. Locations A, B, C, D and E represent the five parks located in the 
town, while locations F, G, H and I represent locations from which 
rural samples were collected.

a

b
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Total number of 144 soil samples were collected from 
all nine locations. Sixteen samples were collected from 
each location. Each of the sixteen samples was taken from 
the predetermined square grid with area of about 9 m2 (	
Figure 2). The distance between the sampling positions on 
the grid was about 1 m. The samples were collected from 
top soil layer (10 cm). 

Figure 2.  The grid used for soil sampling. The indices which are 
used on this grid are also used for labeling the different samples 
taken from the same location.

In order to properly analyze the results, it was im-
portant to label the collected samples in a systematic man-
ner. For this purpose, each of the samples were labeled as 
shown in Figure 2. On this figure each of the nodes, which 
correspond to different samples taken on location A, were 
labeled as: A11, A12, A13, A14; A21, A22 … A44.

Three years later (in the autumn of 2019), additional 
28 new soil samples were collected from seven of the nine 
locations. The selected locations were B, D, E (from three 
parks in Tetovo) as well as all four rural locations (F, G, 
H and I). This was performed in order (1) to validate our 
models with new data, but also (2) to examine the influ-
ence of the seasonal changes and the weather on the com-
position of the soil in these parks.

In addition to this, we did not get any information 
form the local Police Department that these locations were 
scene of the crime in order to validate our models with 
their data.

Also, it has to be stated that at this point of our ex-
perimental work (in the autumn of 2019), we did not take 
new samples from the locations A and C because, during 
these three years, larger horticultural interventions were 
performed in these two parks by the Municipality of Te-
tovo.

The samples of the soil were dried at ambient con-
ditions for few days. They were sieved with 20 mesh Tyler 
sieve. The material that passed the sieve was collected and 
marked. Collected samples were dried at temperature of 
110 °C.  The dried samples were kept in desiccator. In ad-

dition to this, before the diffractograms were recorded the 
samples were powdered in a mortar with a pestle.

The X-ray diffractograms of all samples were re-
corded using the Rigaku Ultima IV powder X-ray dif-
fractometer in the Bragg-Brentano geometry with CuKα 
radiation (λ = 1.54178 Å) at room temperature. The sam-
ple holder was a 2 mm thick glass plate with dimensions 
60 mm × 35 mm and 20 mm × 20 mm depression for the 
sample. The depression in the holder was filled with sam-
ple and was flattened. The mass of the analyzed samples 
was approximately 200 mg.

Diffraction patterns were measured in the 2ϑ range 
from 5° to 60° with a step size of 0.02° and scanning speed 
of 20° per minute. The accelerating voltage and the elec-
tric current were set to 40 kV and 40 mA, respectively. The 
divergence slit parameter (DivSlit) was 2/3 degrees, the 
height limiting slit parameter (DivH.L.Slit) was 10 mm 
and the anti-scatter slit parameter (SctSlit) was 8.0 mm.

2. 1. Data Pre-processing and Algorithms Used
In order to properly prepare the data for optimi-

zation of the SOMs, it was necessary to pre-process the 
obtained diffractograms. The experimentally collected 
diffractograms of the soil samples were stored in a single 
data matrix. The data matrix was composed of 172 diffrac-
tograms (rows) and 2749 intensities at different 2θ values 
(columns). 

In this study, the first step in the pre-processing (see 
Figure 3) was the baseline correction of the diffracto-
grams. After that, baseline corrected diffractograms were 
normalized to unit area under the curve. Further, in order 
to make the (1) optimization faster, (2) to reduce the noise 
in the diffractograms as well as (3) to reduce the number 
of data points because most of the intensities on different 
2θ values are correlated, data reduction was performed by 
averaging each consecutive non-overlapping interval com-
posed of 11 intensities using the following formula:

	 (1)

dij in the equation (1) represents the data point from 
pre-processed matrix consisting of diffractograms, i – is 
the sample number, j – represent the intensity values at dif-
ferent 2θ values, whereas dim is data point from i-th sample 
and m-th column in the reduced data matrix. Using this 
approach, the number of intensities were reduced from 
2749 down to 259 (Figure 3). The diffractograms obtained 
using this data pre-processing procedure were stored in 
single data matrix (D).

The previously obtained data matrix (D) was further 
reduced using principal component analysis (PCA). In or-
der to perform PCA the variables (the columns in D) were 
auto-scaled. Using PCA we were able to extract the largest 
fraction of the information stored in D into small num-
ber of principal components. Finally, the obtained princi-
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pal components were used for training of the supervised 
self-organizing maps.

2. 2. Supervised Self-organizing Maps
According to its inventor, Teuvo Kohonen, self-or-

ganizing maps (alternative names: Kohonen maps or Ko-
honen neural networks) were originally developed as al-
gorithm for unsupervised learning.29,41 In chemistry and 
related sciences, most often the unsupervised version of 
this algorithm is used.42,43 Today, the unsupervised vari-
ant of the algorithm is simply called self-organizing maps 
or Kohonen neural networks. While the supervised version 
of the algorithm, which is not used as frequently as the 
previously mentioned version, is called supervised self-or-
ganizing maps. The supervised version of SOM is used in 
cases when there is not a clear separation among different 
types of samples.29 In order to adapt the SOM algorithm 
for classification purposes (see Figure 4), it is necessary to 
augment each training vector (ds) with unit vector (du) as-
signed into one of the nine classes of samples in our case 

(Figure 4a). This augmentation of the training set vectors 
(samples) with du helps in better separation of the different 
types of samples during the training.

During the prediction phase the weight levels which 
correspond to the unit vectors (wu) are removed (Figure 
4b). In other words, for each sample in the training set ds 
the corresponding du must be used during training. While 
during the prediction phase, for the unknown samples – x 
only, xs part is compared with the corresponding part of 
the weight vectors (wu) of the trained supervised SOM.

Supervised self-organizing maps were implemented 
in Matlab44 programming language using SOM Toolbox 
developed by J. Vesanto45–47 on a Windows computer.

2. 3. Genetic Algorithms 
In this work, the optimization of the supervised SOM 

models was performed in automated manner using genetic 
algorithms. Genetic algorithms have been used successfully 
for solving different problems in the field of chemistry and 
related sciences since the beginning of the last decade of 

Figure 3. Illustration of the main steps of the preprocessing of the experimentally obtained diffractograms. a – original diffractogram; b – baseline 
corrected diffractogram; c – normalized diffractogram to unit area under the curve with data points reduced down to 259 using equation (1).
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the 20th century.48–51 The theory of genetic algorithms has 
been described several times in the chemometric literature 
during the same decade.52–54 We have to mention here that, 
most often, in chemometrics GAs have gave been used for 
selection of variables.52–54 In our work, we use GAs not 
only as a variable selection tool but also in order to find 
optimal parameters of the developed models.40,55,56

Genetic algorithms were also implemented in Mat-
lab programming language. For this purpose, Genetic Al-

gorithm Toolbox developed at University of Sheffield was 

used.57

3. Results and Discussion
3. 1. Main Mineralogical Components

It is important to state that diffractograms from 
different locations are similar (see Figure 5 for the urban 
samples and Figure 6 for the rural samples). For more de-

tailed comparison all diffractograms are available in the 

Figure 4. Illustration of the structure of the supervised self-organizing maps during the phases of (a) training and (b) prediction. As shown on this 
figure in the training phase the vector which represents samples is augmented with different unit vector for five different classes of samples. While 
using the supervised SOM for prediction purposes, the weight levels that correspond to unit vectors are removed.
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Supplementary Material together with some additional 
figures. One can notice that the main differences in the 
diffractograms are in the relative intensities of the major 
components of the soil samples. 

Main mineralogical components of the analyzed soil 
samples were found by comparing the obtained diffrac-
tograms with the diffractograms stored in COD58–64 and 
PDF-2 databases65 using Match! software.66 The results 
show that the main component in the samples is SiO2 (sili-
con dioxide) in a form of quartz. Three additional minerals 
with lower mass fractions were also detected as possible 
constituents of the samples. It is interesting to state that 
they all have an empirical formula MAlSi3O8, where M 
represents potassium or sodium. When M represents so-
dium, the mineral is known as albite. In the case when M 
is potassium, the mineral is orthoclase (which can make 
solid solutions with albite). The third mineral present in 
our samples is, probably, the high-temperature polymorph 
of albite known as sanidine.

It is important to state here that there are diffraction 
peaks in the recorded diffractograms which do not corre-
spond to the previously mentioned minerals. These signals 
probably belong to the additional mineral components. 
However, due to the fact that their mass fraction and 
consequently the intensities of their signals are weak we 
were not able to identify them using previously described 
approach. Also, earlier we pointed out that the diffracto-
grams from all locations are similar (Figure 5 and Figure 

6). Most of the differences among the diffractograms are in 
the regions with diffraction peaks that have smaller inten-
sities. This is one of the reasons why genetic algorithm was 
used for variable selection. In cases like this, optimization 
using GA performs selection of the intensities at 2θ values 
which can help in finding better classification models and, 
at the same time, it eliminates the intensities at 2θ values 
which are similar for all samples.

3. 2. Principal Component Analysis
The principal component analysis (PCA) which was 

performed on the auto-scaled data matrix showed us that 
about 92% of the variance in the pre-processed diffrac-
tograms was captured by first 16 principal components 
(PCs). As previously stated, these PCs were used for devel-
opment of the SOM models which will be able to classify 
the samples according to their geographic origin. Howev-
er, before the development of the models started, we used 
PCA as an auxiliary tool in order to evaluate whether the 
samples from different location were at least partially sep-
arated. This is important since the main goal of this work 
is determination of the origin of the soil samples. The first 
two principal components (labeled as: PC1 and PC2) are 
presented on Figure  7a. The first (PC1) and third (PC3) 
principal components are presented on Figure 5b. A care-
ful examination of these two figures (Figure  7a and b) 
shows that all samples taken from the rural locations (F, G, 

Figure 6. X-ray powder diffractograms for the selected samples from four rural locations. (The files with all samples from these five locations are 
given as Supplementary Material.)
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H and I) are grouped in the first and fourth quadrant. Hav-
ing in mind that these two figures are projections of the 
three-dimensional space defined by PC1, PC2 and PC3, 
it is easy to see that the samples from these four locations 
form well separated clusters. The reason for this might be 
the fact that most of the rural locations from which the 
samples were collected are at distances larger than 4 km. 
Only the distance between locations H and I is smaller 
than 4 km. 

In the second and third quadrant, the remaining 
samples from the urban location are grouped. Here it could 
be seen that there is a partial overlap among the samples 
from all urban locations. Also, most of the samples from 
location C are well separated from the remaining samples 
(see Figure 7b). Likewise, the reason for larger overlap be-
tween these clusters might be the fact that these locations 
are closer one to another. As previously stated, the distanc-

es between the parks (1) next to the Intercity Bus Station 
(labeled as A), (2)  House of Culture Park (labeled as B) 
and (3) Colorful Mosque Park (labels: C) vary between 1 
and 1.5 km. While the distance between the park labeled 
as D (State University of Tetovo Park) and park labeled as 
E (Moša Pijade High School Park) is only about 300 m.

3. 3. �Optimization of the SOM Models Using 
Genetic Algorithms
As earlier stated, the optimization of the models 

based on supervised self-organizing maps was performed 
using GAs. For optimization purposes, we used popula-

tions composed of 100 binary chromosomes. The initial 
values of genes in the chromosomes were randomly gen-
erated. Different parts of these chromosomes were respon-
sible for decoding different parameters for the supervised 
SOMs. In this case 259 genes were used for variable se-
lection. After the variable selection was performed, PCA 
was applied on the selected intensities. The number of PCs 
used during the optimization varied between 1 and 16. For 
this purpose, four additional genes were allocated in the 
chromosomes. Eight more genes were allocated for decod-
ing the width and length of the supervised SOM. These 
two parameters were changed in the interval between 7 
and 22. Four more genes were dedicated for selection of 
the number of epochs in the rough training phase, which 
is performed in larger neighborhood and larger learning 
rate. The number of epochs here was changed in the inter-
val between 10 and 25. Finally, for the number of epochs in 

the fine-tuning phase, additional seven genes were select-
ed. The use of seven binary genes could produce the max-
imal number of epochs 127 and the minimal number of 
epoch zero. In order to avoid the zero which appears here, 
but also to be sure that number of epochs in the fine-tun-
ing phase is larger than that obtained in the rough training 
phase, the number of epochs obtained by these genes was 
increased by the number of epochs obtained for the rough 
training phase.

Before the optimization with GA started, we had to 
properly separate the data set into training and test data 
sets in order to obtain good generalization performanc-
es. The training data set was used for the optimization of 

Figure 7. The soil samples presented in the space defined by first (PC1) and second (PC2) as well as the first (PC1) and third (PC3) principal com-
ponent obtained from autoscaled matrix.
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the models. During the optimization, the generalization 
performances of the models were controlled by cross-val-
idation. After the optimization was finished, additional 
validation of the models was performed using the test 
set composed of samples which were not used during the 
training of the models. The original data set (D) was di-
vided into training and test set using Kennard-Stone algo-
rithm separately for each location.67 Using this algorithm, 
five of the sixteen diffractograms from each location were 
selected to be part of the test set. The remaining eleven 
samples were stored into the training data set. As a result, 
our training set was composed of 99 diffractograms and 
the test set was composed of the remaining 45 diffracto-
grams.

The entire search for optimal classification model 
performed by GA was repeated several times. Using this 
approach, we were able to obtain more than 100 models 
with good generalization performances. Some of the best 
models are presented on Table 2. The criteria for selection 
of these models for presentation were: (1) The size of the 
SOMs should be different; (2) If the only difference be-
tween the models were in number of the training epochs, 
then the one with smaller number of epochs was selected; 
(3) Finally, the most important criteria was the perfor-
mances on the independent test set.

The examination of the results obtained for the test 
set (presented in Table 2) shows that three soil samples are 
most often misclassified. Two of these samples (labeled as 
D41 and E11) are from the locations that are at a distance 
of about 300 m. These two locations are: D – State Univer-
sity of Tetovo Park and E – Moša Pijade High School Park. 
As an illustration, the trained supervised SOM, which cor-
responds to model 1 in Table 2, is presented on Figure 6. 
Percentage of incorrectly classified samples from the test 
set which was used for examination of the generalization 
performances of the trained SOM vary between 2.2% for 
the model number 6 up to 4.4% for all other models pre-
sented in Table 2.

In our previous work, when we developed differ-
ent models for classification of the urban soils based on 
infrared spectroscopy, the samples from these two parks 
were most often misclassified, probably due to smaller dif-
ference in the composition of the soils on these two lo-

cations.40 In this case, the sample D41 is misclassified as 
a sample from Moša Pijade High School Park (label: E). 
However, the second of these samples (label: E11) is classi-
fied together with the samples taken from the park which 
is in the neighborhood of the Colorful Mosque (labels: C).

The third misclassified sample was taken from Inter-
city Bus Station Park (labels: A). This sample was classified 
together with the samples from House of Culture Park (la-
bels: B) by two of the presented models.

Compared to the results which we obtained using 
infrared spectra of the urban soils, where only one sam-
ple was misclassified, we have to state that, in that case, 
due to higher overlap between signals in the infrared spec-
tra there we were not able to develop good classification 
models which will be able to classify all five urban soils 
samples.40 In that case, as stated earlier, we were forced to 
use one-against-the-rest approach and, consequently, we 
developed five separate models in order to obtain good 
classification models for all five locations. 

Due to exposure to (1) seasonal changes, (2) biolog-
ical processes and (3) the changing weather conditions, 
the composition of the soil is slowly changing. Sometimes, 
during the forensic investigations, by order of court or 
in the cases where the crime has been detected few years 
after it has been committed, in order to perform reliable 
detection of the origin of the soils, it is important to know 
how these variations in composition of the soils could in-
fluence the results. In order to examine the influence of the 
previously mentioned factors on the performances of the 
models developed here, three years after the initial samples 
were collected four more samples were collected from sev-
en of nine original locations used in this study. The seven 
selected locations are labeled: B, D, E, F, G, H and I (see 
Table 1 for more details). Total number of newly collected 
samples was 28. These samples were treated in a same way 
as the initial 144 samples from all nine locations (see Ex-
perimental part).

As shown in Figure 8 which represents model 1 (pre-
sented in Table 2), only one sample from location E (with 
label E3) is misclassified as a sample from the nearby park 
(State University of Tetovo Park).

For the remaining models, the misclassified samples 
are also presented in Table 2. Here one can see that only 

Table 2. Six selected models with best performances (misclassified samples). The size of the network, the training parameters, the number of princi-
pal components used for training of supervised SOMs, as well as the labels of the misclassified samples are also presented.

Mo-	 Size of the	 Training		  Misclassified samples	 Labels for the misclassified samples
del	 SOM	 epochs	 No of principal	 Train-	 Cross				    Test set		  Real samples
	 Width	 Length	 Rough	 Fine	 components	 ing	 validation	 Test	 Real	 A42	 D41	 E11	 E3	 E4	 H4

1	 14	 11	 16	 228	 8	 0	 0	 2	 1		  E	 C	 D		
2	 15	 9	 17	 131	 9	 0	 1	 2	 1		  E	 C			   G
3	 17	 9	 13	 260	 6	 0	 1	 2	 2	 B	 E		  D	 A	
4	 8	 20	 16	 101	 7	 0	 3	 2	 1		  E	 C			   G
5	 12	 13	 15	 91	 6	 0	 1	 1	 2	 B				    B	 G
6	 21	 8	 17	 163	 7	 0	 1	 1	 1			   C	 D
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three of these samples are misclassified by more than one 
model. One of these samples (E3) was already discussed. 
The remaining two samples are labeled as E4 and H4. Two 
of the samples are from Moša Pijade High School Park (E3 
and E4). Here the sample labeled as E4 is mapped once in 
the part of the supervised SOM that serves for recognition 
of the samples from location A and the second time it is 
misclassified together with the samples from location B.

4. Conclusion 
In this study 144 samples from five urban and four 

rural locations were analyzed using supervised self-or-
ganizing maps. As a tool for automated search for the best 
models, genetic algorithms were used. Performances of 
the models during the optimization were controlled using 
cross-validation. Further, the generalization performances 
were examined using the test set which was not used dur-
ing the training. The best models obtained and presented 
in this study were able to correctly classify between 95.6 
and 97.8% of the test samples.

Having in mind that in our previous work, where the 
classification was performed using infrared spectra of the 
analyzed samples, due to the highly overlapping signals we 
had to develop five different models for successful classi-
fication of the samples from five urban locations. In this 
study, probably because the signals from the minor compo-
nents of the analyzed soils in the X-ray diffractograms were 
well separated and, with the help from GA, we were able to 
select intensities which could help in better discrimination 
of the soil sample we were able to successfully classify most 
of the samples from all nine locations with a single model.

The performances of the models obtained here are 
comparable to those obtained in our previous work.40 
However, there in order to perform successful classifica-
tion of the samples from the five locations there we had 

to develop separate models for each location. While here, 
using X-ray diffractograms of the samples, with only one 
model, we were able to correctly classify between 95.6 and 
97.8% of the samples. 

As previously stated in this study, it is also important 
to check the robustness of the model on the changes of 
the composition of the samples due to the changes of the 
environment. For this purpose, additional 28 samples were 
collected from seven locations (B, D, E, F, G, H and I). The 
best models presented here are capable of correctly classi-
fying 27 of 28 samples collected three years after the initial 
soil samples were analyzed.
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Povzetek
Zaradi svoje prenosljivosti se tla pogosto uporabljajo kot dokazni material v kriminalnih preiskavah. V tej raziskavi smo 
odvzeli 172 vzorcev tal iz petih urbanih parkov v mestu Tetovo (Severna Makedonija) in iz dodatnih štirih podeželskih 
lokacij v njegovi bližini. Vzorce tal smo preiskali z uporabo X-žarkovne praškovne difrakcije. Zbrane difraktograme smo 
uporabili za razvoj klasifikacijskih modelov za določitev njihovega izvora, ki temeljijo na nadzorovanih samoorgan-
iziranih mapah. Preiskava generalizacijske sposobnosti razvitih modelov je pokazala, da so bili zmožni pravilno klasifici-
rati med 95,6 in 97,8 % vzorcev iz neodvisnega testnega niza. Preučili smo tudi vpliv vremenskih in obdobnih sprememb 
na sestavo tal. Za ta namen smo tri leta po začetnem zbiranju vzorcev tal analizirali dodatnih 28 vzorcev iz različnih 
lokacij. Najboljši modeli, predstavljeni v tej raziskavi, so bili zmožni uspešno klasificirati 27 od teh dodatnih vzorcev.
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