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Abstract. We investigate searching efficiency of different kinds of ran-
dom walk on complex networks which rely on local information and one-
step memory. For the studied navigation strategies we obtained theoret-
ical and numerical values for the graph mean first passage times as an
indicator for the searching efficiency. The experiments with generated
and real networks show that biasing based on inverse degree, persistence
and local two-hop paths can lead to smaller searching times. Moreover,
these biasing approaches can be combined to achieve a more robust ran-
dom search strategy. Our findings can be applied in the modeling and
solution of various real-world problems.
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1 Introduction

Random walk is a ubiquitous concept that describes wandering in certain space
in which the location where the walker will be in the next moment is chosen
randomly. In complex networks it can applied for modeling diverse phenomena
like searching through information networks [1], diffusion of information, ideas
and viruses in social networks, stock market fluctuations, and solving various
problems such as page ranking in the web [19], semi-supervised graph labeling
[10,29], link prediction in graphs [2], and graph representation learning [13,17].

Since the onset of interest in complex networks, various models of random
walk on top of them have been proposed. The standard uniform random walk is
based on randomly choosing the next node in the walk with equal probability
from all neighbors of the node where the walker currently is. By applying master
equation approach [18] or Markov chain theory [12] one can obtain theoretical
results for a key quantity in the random walk – the mean first passage time
(MFPT), that represents the expected number of steps needed for the walker
to reach randomly chosen target for the first time. Using the same formalism,
various modifications of the uniform random walk have been applied that exploit
the local properties of the network, aimed at improving the search time. One
approach is based on the degrees of the neighbors [9], particularly when biasing
proportionally to the inverse degree of the next node [4, 6]. Some authors have
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considered local neighborhood exploration by random walks using marking as
well as biasing based on neighbors degrees [5]. In another approach memory is
applied where the probability to jump to some next node depends on the current,
but also on the previously visited one [3,4,7]. Other problems that have recently
received attention are random walk on networks with resetting [21], multiple
simultaneous random walks [20], and random walk on hypergraphs [8].

The theoretical expressions for calculating MFPT in random walks with one-
step memory presented in [4] provide a useful testbed that can be employed for
comparing various biasing strategies in relatively small networks. Nevertheless,
the findings can be then applied to networks with arbitrary sizes. In this work, we
aim to study and combine different approaches with local information in order to
see whether further improvement is possible. We study five types of random walks
with one-step memory: simple forward going, inverse degree biased, two-hop
paths based, persistent, and we introduce a combination of persistent and inverse
degree biased. For comparison in our study we also include two standard random
walks without memory: uniform and inverse degree biased. Our findings can be
applied for potential improvements in the study of a wide range of problems
mentioned at the beginning of this introduction.

In Section II we describe the theoretical expressions for calculating MFPTs
in random walks with one-step memory on complex networks represented as
graphs. Several graph searching strategies using such random walks are described
in Section III. In Section IV we present the results obtained with the theoretical
expressions and numerical simulations on several synthetic and real complex
networks, while in Section V we give some general conclusions.

2 Mean first passage time of random walks with one-step
memory on complex networks

In this section we briefly restate the main analytical results from [4] for repre-
senting a random walk with a one-step memory over complex networks, but a
detailed explanation of the expressions derivation can be found in the original
paper. For the sake of simplicity we use notations for undirected networks, al-
though the same theory also holds for directed networks. A complex network
given as a graph G(V,E) composed of a set of vertices V , |V | = N , and a set of
edges E, |E| = L, can be represented by an adjacency matrix AN×N . We study
discrete-time random walks with a one-step memory, so that a random walk that
in the previous steps has visited nodes {. . . , o, p, q, r} and currently is in node s,
can visit a next node t with a probability

p(t|s, r, q, p, o, . . . ) = p(t|s, r). (1)

In order to represent such a random walk with a Markov chain instead of using
the nodes as states we use the links between the nodes. The transition matrix
of the corresponding Markov chain PL×L will have elements prs,st = p(t|s, r),
∀rs, st,∈ E. These elements can take arbitrary values that represent probabili-
ties, depending on the chosen random walk.
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The random walk can be initialized by starting from node a and then passing
to a random neighbor b, so from that moment on the transitions can be made
according to P. The problem of finding a target node z can be represented as
reaching any state yz, where y is any neighbor of z. This process can be rep-
resented by an absorbing Markov chain with a transition matrix P(z) where all
states yz are absorbing, while all other transitions states ij, j ̸= z are tran-
sient. The theory of absorbing Markov chains and particularly the mean time
to absorption (MTA) can be then used to calculate the mean first passage time
(MFPT) from a to z [12, 24]. For simplicity we assume that the random walk
never starts from the target z, so for the MFPT calculation we can safely omit
all states zy,∀y. The transition matrix P(z) takes the form

P(z) =

∣∣∣∣Q(z) R(z)

0 I

∣∣∣∣ , (2)

where Q(z) is an (L−kz)×(L−kz) matrix containing the transition probabilities
among transient states, R(z) is an (L−kz)×kz matrix representing the transitions
from the transient to the absorbing states, and I is an kz×kz identity matrix. The
fundamental matrix for the corresponding Markov chain contains the expected
number of steps that a random walk starting from any transient state ab is
present in another transient state ij can be expressed as the infinite sum

Y(z) = I+Q(z) +Q2
(z) + · · · . (3)

The powers of Q(z) diminish as n → ∞, and Y(z) converges towards

Y(z) =
(
I−Q(z)

)−1
. (4)

Then we can obtain a vector containing all the MTA from all possible initial
states ab by multiplying with a vector of ones 1

µ(z) = Y(z)1. (5)

Then the MFPT from a to z can be calculated as [4]

ma,z = 1 +
1

ka

∑
b∈Na

µ(z),ab. (6)

A Global Mean First Passage Time (GMFPT) [26] can be found by averaging
over all starting nodes a as

gz =
1

N − 1

N∑
a=1
a ̸=z

ma,z. (7)

By repeating the same procedure and averaging over all target nodes z we can
express a Graph MFPT (GrMFPT) as [6]

G =

N∑
z=1

gz, (8)
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which will be used in the rest of the paper for comparing several different strate-
gies of random walks with one-step memory.

3 Graph search algorithms based on random walks

In this section we describe several different strategies for graph search using ran-
dom walks with memory. We also include two classical random walks without
memory: a uniform random walk and an inverse degree biased random walk. In
a previous work [4], we considered the application for a random walk searching
strategy based on the number of two-hop paths towards the next node in the
walk, which we call "two-hop random walk with memory". However, the results
showed that in directed complex networks this strategy does not brings im-
provements and simply choosing the next node solely based on its inverse degree
resulted in shorter hitting times. Therefore, in this paper we also consider four
other random walk strategies with one-step memory. The first one simply avoids
going back, which was thoroughly studied in [7], and we refer it as "forward
random walk with memory". The second strategy, which we call "inverse degree
random walk with memory", in addition to avoiding going backwards chooses the
next node based on its degree. Another approach called "persistent random walk
with memory" which employs biasing towards more distant nodes by avoiding
neighbors of the previously visited node, was numerically studied in [3], but here
we further provide calculations based on the theoretical expressions. Moreover,
we examine a hybrid of the persistent and the inverse degree random walks with
memory, in order to combine their strengths and help cover their weaknesses.
For calculating MFPTs and GrMFPT in the random walks with memory we will
use the theoretical expressions from [4], described in the previous section, for
all networks in our study. However, in the random walks without memory we
will use the expressions presented in [4] for finding GrMFPT in the generated
networks, and standard expressions based on absorbing Markov chains [24] for
the real networks due to numerical problems with the expressions from [4].

3.1 Classical random walks without memory

Uniform random walk (U-RW) - at each step the random walk makes a tran-
sition from node s to any of its neighbors t with an equal probability pst = 1/ks.

Inverse degree random walk (ID-RW) - the visiting probability of s to a
neighboring node t is inversely proportional to its node degree 1/kt, hence

pst =
1/kt∑

t∈Ns
1/kt

. (9)

3.2 Random walks with memory

In the random walks with memory, we denote the previous visited node as r, the
current node as s, and the potential next nodes as t.



Random walks with one-step memory on complex networks 5

Forward random walk with memory (F-RWM) - the random walk avoids
going back, by exploiting the one-step memory, unless there is no way to keep
going forward. The probability of visiting the other neighboring nodes is equal
and expressed as

prs,st = 1/(ks − 1),∀r ̸= t, (10)

while the probability of going back can be written as

prs,sr =

{
1 if r is the only neighbor of s,
0 otherwise.

(11)

Inverse degree random walk with memory (ID-RWM) - if a random
walk has previously visited r and currently is in s would visit some of its other
neighbors with a probability.

prs,st =
1/kt∑

t∈Ns\{r} 1/kt
, (12)

while it avoids going back to r by following Eq. (11).

Two-hops random walk with memory (2H-RWM) - the probabilities are
proportional to the number of two-hop paths that lead toward the target nodes,
so the visiting probabilities are given as

prs,st =
1
brt∑

u∈Ns

1
bru

, (13)

where brt is the number of two-hop paths between r and t, or the elements of
B = A2.

Persistent random walk with memory (P-RWM) - the random walk
avoids going backwards or towards the neighbours of the previously visited node.
Let us denote with N1 = |Nr ∩ Ns| the number of common neighbors of s with
r which it visits each with a probability p1, and let N2 = |Ns \ {Nr ∩ Ns}|
be the number of other neighbors, which it visits with a probability p2 each,
and let p0 be a probability of immediately going back to r. We can then write
p0+N1p1+N2p2 = 1. By introducing the parameters p2/p1 = α and p0/p1 = β,
the previous expression can be rewritten as p1 (β +N1 + αN2) = 1. Hence, the
probability of going back to r is given by

prs,st =


p0 = β

C if r = t,

p1 = 1
C if t ∈ Nr ∩Ns,

p2 = α
C if t ∈ Ns \ {Nr ∩Ns},

(14)

where C = β + N1 + αN2 is a normalization coefficient. A detailed analysis of
the effects of the parameters α and β on GrMFPT can be found in [3].
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Persistent inverse degree random walk with memory (PID-RWM) -
combines the strengths of the persistent and inverse degree biased random walks.
We have excluded the possibility for going back to r so prs,sr = 0, except when it
is the only option prs,sr = 1. The probability of going toward a common neighbor
with r will become

prs,st =

{
1/kt

C if t ̸= r, t ∈ Nr ∩Ns,
α/kt

C if t ̸= r, t ∈ Ns \ {Nr ∩Ns},
(15)

where the normalization coefficient is

C =
∑

t∈Nr∩Ns

1/kt +
∑

t∈Ns\{Nr∩Ns}

α/kt. (16)

Once again the random walk avoids going back to r by following Eq. (11). We
like to note that for α = 1, PID-RWM becomes identical to ID-RWM.

4 Results

First, we examine the GrMFPT for five types of random walks: classical, in-
verse degree, two-hop with memory, inverse degree with memory and forward
with memory, for three complex networks models: Barabási-Albert (BA), Watts-
Strogatz (WS), and Erdős–Rényi (ER) with undirected and directed links. In
Figure 1 we show the results calculated using the theoretical expressions and
by numerical simulations of the random walks transitions. The results are av-
eraged over 10 different network instances generated with the same parameter
values, while the numerical simulations are further averaged across 10 repeti-
tions of all node pairs. The rewiring probability in the WS model is prew = 0.2.
In P-RWM and PID-WM, α = 10 and β = 0.01, but one can further anal-
yse the effects of varying α. As can be seen in Figure 1a, for BA networks the
ID-RWM and PID-RWM significantly outperform the other methods, and the
difference is large for small ⟨k⟩ particularly with the similar ID-RW, which also
employs inverse degree biasing but lacks memory. The results for WS networks
presented in Figure 1b show how the persistent random walks exploit the mem-
ory, with PID-RWM slightly outperforming P-RWM. In ER networks (Figure
1c), the inverse degree biasing proves crucial again and the ID-RWM and PID-
RWM show best searching performance. As we have previously noted in [4],
in directed ER networks (Figure 1d) the simple inverse degree biasing without
memory, still holds well with almost identical performance with the other in-
verse degree biased approaches ID-RWM and PID-RWM. These results can be
expected as in sparse ER directed networks rarely ever two nodes are connected
in both directions, hence, the going back avoidance is rarely exploited. In some
real networks these bidirectional mutual connectivity can be present more often
so the memory could be more beneficial there. Overall, we can conclude that
the PID-RWM shows the best and most consistent performance across different
network topologies and densities.
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Fig. 1: GrMFPT in (a) BA, (b) WS, (c) ER, and (d) ER directed networks, with
100 nodes and varied average node degree ⟨k⟩ for 7 different random walks. The
lines are theoretical values (T) and the markers numerical estimates (N).

We have also studied how the stationary distributions of the visiting proba-
bilities are affected from the choice of the random walk strategy, by comparing
them with a uniform distribution using the KL divergence

DKL(P ||Q) =
∑
i

P (i) log
P (i)

Q(i)
, (17)

and the results are shown in Figure 2. As expected the ID-RW significantly
equalizes the visiting probabilities, which is the reason behind the often observed
shorter search times compared to the U-RW. In most cases ID-RW achives lowest
DKL, however, for ER networks with low ⟨k⟩ ID-RWM and PID-RWM achive
slightly lower DKL.

To gain a deeper insight into the effect of the rewired links in the WS model,
we studied how the MFPT varies with the change of the rewiring probability prew
in networks with k = 4 and k = 6 neighbors per node, and the results are given
in Figure 3. The WS model transitions from a regular lattice toward a completely
random ER network, as prew is varied from 0 to 1. It can be seen how for small
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Fig. 2: Kullback-Leibler divergence of the stationary occupation probability of 7
different random walks from a uniform density in (a) BA, (b) WS, (c) ER, and
(d) ER directed networks, with 100 nodes and varied average node degree ⟨k⟩.

prew PID-RWM and P-RWM behave similarly and have best performances, how-
ever, as prew increases the performance of P-RWM decreases eventually loosing
the pace with ID-RWM, while PID-RWM keeps its performance at level with
ID-RWM.

We also made comparison of the various random walks on several real net-
works and their main structural properties are given in Table 1. The first net-
work is a representation of the Internet at level of autonomous systems derived
from BGP logs [14], which is known to have the scale-free property. The second
network is an excerpt from Wikipedia pages [27, 28], also having a scale-free
property. This network was used in [27] to study human wayfinding to a given
target through Wikipedia pages. The original dataset consists of 4592 nodes
and 119882 links, but for our analysis we use the largest strongly connected
component. The third network Euroroad is a representation of major European
roads [25]. It is an undirected network and consists of 1174 nodes and 1417
edges, from which we take the largest connected component. The fourth net-
work FB-Pages is a collection of Facebook pages and their mutual likes [23], and
the fifth is a network of human diseases (Bio-diseasome) [11]. The sixth network
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Fig. 3: GrMFPT in WS networks with (a) k = 4, and (b) k = 6, composed of
100 nodes with varied rewiring probability for seven different random walks. The
lines are theoretical values (T) and the markers numerical estimates (N).

Table 1: Statistical properties of the real networks: number of nodes N , number
of links L, density D, average node degree ⟨k⟩, average clustering coefficient C,
average path length ⟨l⟩, and diameter d.

Type N L D ⟨k⟩ C ⟨l⟩ d

Internet undirected 6474 13233 0.0006 4.29 0.2522 3.7050 9
Wikipedia directed 4051 119000 0.0068 27.62 0.1892 3.1813 9
Euroroad undirected 1039 1305 0.0024 2.51 0.01890 18.3951 62
FB-Pages undirected 620 2102 0.0109 3.39 0.3309 5.0887 17

Bio-diseasome undirected 516 1188 0.0089 2.30 0.6358 6.501 15
CA-netscience undirected 379 914 0.0128 2.41 0.7412 6.042 17

CA-netscience depicts collaboration in publications between researchers in the
field of network science [16]. The first two datasets are taken from the SNAP
dataset collection [15], and the last three from the Network repository [22]. A
visualization of the last four networks is given in Figure 4, using the Force atlas
layout, where nodes with larger degree are colored darker.

The results with the real networks summarized in Table 2 show that the the-
oretical expressions are in accord with the numerical simulations. The first two
networks are relatively larger, so for them we conducted only numerical simula-
tions, while for the other networks we also provide results from the theoretical
expressions. The numerical results for all networks are obtained by calculating
the MFPT between 100000 randomly chosen node pairs. There were some nu-
merical problems in the calculations of the GrMFPT for some networks using
the analytical expressions for memoryless random walks from [4], so for them we
used standard expressions based on absorbing Markov chains [24]. The results
indicate that the random walks can behave differently in real networks, as their
structure is not always very similar to networks generated with classical models.
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(a) Euroroad network (b) FB-Pages (c) Bio-diseasome (d) CA-netscience

Fig. 4: Visualization in Gephi of four real networks topologies, where a darker
color indicates a larger node degree.

Table 2: GrMFPT for six real networks with various random walks, where (T)
indicates results with theoretical expressions and (N) with numerical simulations.

U-RW ID-RW 2H-RWM ID-RWM F-RWM P-RWM PID-RWM
Internet (N) 19385 178916 18293 23410 17318 16443 20260
Wikipedia (N) 22974882 11342 1269384 10930 29894802 9086546 11857
Euroroad (N) 9246 12854 5489 2968 2742 2714 2900
Euroroad (T) 9243 12762 5485 2954 2760 2716 2922
FB-Pages (N) 3516 3879 1673 1588 2422 1845 1450
FB-Pages (T) 3521 3855 1676 1568 2401 1846 1453
Bio-diseasome (N) 3526 8536 2114 4277 2471 1663 3246
Bio-diseasome (T) 3488 8503 2119 4322 2474 1662 3300
CA-netscience (N) 1895 4747 1287 2326 1409 1046 2488
CA-netscience (T) 1891 4742 1297 2354 1409 1062 2694

For example, P-RWM is better than PID-RWM and ID-RWM, which was often
not the case in the generated networks. P-RWM is better for most networks, but
for Wikipedia it is significantly worse than ID-RWM and PID-RWM and it also
fails behind them for FB-pages. Another interesting observation is that from all
considered real networks only Wikipedia is directed and has a very high average
node degree, hence, the inverse degree biased group of random walks show best
results. In this network the forward going behavior is naturally enforced, while
the inverse degree biasing flattens the visiting probabilities and speeds up the
search.
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5 Conclusion

We studied various types of graph searching algorithms based on biased random
walks using local information and a one-hop memory, which can be applied in
modelling real-world phenomena and solving various problems. The results cal-
culated with the given theoretical expressions match those with the numerical
simulations both for generated and real networks. Generally biasing can be help-
ful, particularly in undirected networks, however, it should be applied carefully
as different strategies could produce varying results depending on the specific
network properties. For example, biasing based on inverse degree can be useful
in networks with a scale-free property, but it can be unfavourable in networks
with large transitivity. Moreover, the application in real networks can lead to
slightly different results from what is obtained in supposedly similar generated
networks. As a future work one can expand the study and include multiple
random walkers, however, in this way the transition and state matrices would
increase exponentially with the number of walkers. Another possible direction
is considering memory in random walk with restart or teleportation, or random
walk on hypergraphs.
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