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Abstract—As of the end of 2013 till now we are witnessing huge
volatility and risk in the cryptocurrency market compared to
flat currency or stock market. Thus, in this market the portfolio
diversification is of big importance in order to reduce volatility
and keep the optimal return for the investors. A usual approach
for portfolio construction is to keep a balance between returns
and volatility, based on their interdependence and individual
returns. One way of diversification is employing clustering or
community detection algorithms to select a more diverse set
of assets. We study the utilization of the Louvain algorithm
and affinity propagation for community detection, based on
correlation and mutual information between cryptocurrencies,
for potential application in portfolio diversification.
Keywords—Cryptocurrencies, Portfolio selection, Community de-
tection, Financial analysis

I. INTRODUCTION

Cryptocurrencies are decentralized electronic assets and pay-
ment systems that first surfaced in 2009, and have gained
popularity as an investment alternative during the past several
years [1]. Proportionately, instead of investing in conventional
stocks and shares, substantial quantities of money have started
to be placed in the cryptocurrency market over time. The
cryptocurrency market, however, can see significant fluctua-
tions due to a variety of factors, such as supply and demand,
investor and user sentiment, regulatory limitations, and media
excitement. Therefore, it is important to base the investment
decisions in portfolio management on relevant analyses.

The study of cryptocurrency markets have many similarities
with the study of other financial markets, which have been
widely studied in the literature. The foundations of modern
portfolio theory were set in [2], where the mean-variance
framework was introduced, which balances between portfolios
expected return and acceptable risk by imposing diversifica-
tion. Financial markets can be represented as networks by
calculating distances based on their correlations, as described
in [3], where a minimum spanning tree (MST) representation
was first introduced. Since then, there is an abundance of
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works in the areas of correlations, clustering, hierarchies and
networks in financial markets, as summarized in [4].

Several recent works have studied correlations, network repre-
sentations and community detection in cryptocurrency markets
[5]-[8], including portfolio diversification. However, these
studies typically apply correlation, which can have limitations
as it only represents linear dependencies. Furthermore, most
works use static community structures although in the dynam-
ical crypto market correlations can change quickly. Therefore,
in this study we employ community detection of a more
dynamical network representation and test if mutual infor-
mation can be used for capturing the relationships between
cryptocurrencies, as it also depicts non-linear dependencies.
In Section II we briefly describe our dataset. Section III
provides some initial relationship analyses in cryptocurrency
markets, while in Section IV we describe how cryptocurrency
networks can be build. Community detection in such networks
is given in Section V, while in Section VI we examine how
previous analyses can be applied to portfolio diversification.

II. DATASET

We collected historical cryptocurrency coins market price data
from www.coinmarketcap.com using a Python scraper called
cryptocmd for the period from 1/5/2013 to 26/3/2022. The
dataset provides a wide variety of opportunities for additional
analysis and investigation, as it includes two crucial historical
periods that had an impact on the whole world and the global
economy. The first one corresponds to the Covid-19 pandemic,
which brought instabilities to all industries and economies
worldwide. The second time period is the beginning of the
global crisis brought on by the conflict between Russia and
Ukraine, but we have not included it in this study.

This analysis included data from three consecutive years
(2019, 2020, 2021), as well as cryptocurrencies with daily
price records across the three years. The Pandas data analysis
Python package was used to extract the daily closing prices
(the price at the end of the day) for each cryptocurrency. The
data required a small amount of data cleaning. Some irrelevant
"disruptive" cryptocurrencies had extreme fluctuations in a



very short time, so they were discarded from the dataset
by filtering the cryptocurrencies by a market capitalization
threshold of $2M. Cryptocurrencies that did not have price
records for each day of the 3-year period were discarded,
resulting in a total of 215 coins out of a total of 1000 coins.

IIT. CRYPTOCURRENCIES RELATIONSHIP ANALYSIS

Traditionally relationships between assets are analyzed using
their cross-correlation, which can be used to build a correlation
network [3]. However, correlation can only grasp their linear
dependency, and some studies have shown that non-linear
measures such as mutual information can be more informative
[9]. Therefore, we conducted analysis of the cryptocurrencies
relationships using both correlation and mutual information.
Instead of working directly with the daily price data series,
they are first pre-processed by calculating the normalized
logarithmic returns, which are more appropriate for analysis of
financial assets due to their growth component. Let us denote
the price of the i cryptocurrency at time ¢ by p;(t). The
logarithmic returns [;(t) are calculated by taking the natural
log of the difference between the prices of two consecutive
days, i.e. [;(t) = pi(t) — pi(t — At), where At is a time
period which in our case is 1 day. In order to standardize
the volatility amongst cryptocurrencies, we normalize the
logarithmic return values [;(t) by subtracting its mean /; and
dividing by its standard deviation o7,, i.e. the normalized log
return is n;(t) = (I;(t) —1;)/o1,. A detailed description of the
data pre-processing process is available in [8].

A. Correlation Analysis

Finding linear relationships between cryptocurrencies is a
major goal of the correlation matrix analysis. Pearson’s cor-
relation coefficient is used to calculate the correlation matrix
Cnxn, where N = 215 is the number of cryptocurrencies
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correlation matrix vary from -1 to 1, where C;; = 1 indicates

a perfectly positive correlation between the cryptocurrencies,
Ci; = -1 a completely negative correlation, and C;; = 0
shows no correlation. The distribution of the coefficients in
the cryptocurrency correlation matrix is given in Figure 1.
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Fig. 1. Distribution of coefficients in the cryptocurrency correlation matrix.

A technique called Random matrix theory (RMT) can be
applied on the obtained correlation matrix in order to validate

that it carries relevant information, as it was also demon-
strated in [8]. It involves a comparison of the distribution
of eigenvalues of the correlation matrix C' with that of a
random matrix R. Our analysis of a random matrix R with the
same dimension have shown analytically that its eigenvalues
fall within the range \p = (A_, A;), where A_ = 0.3104,
and A, = 2.1526 are the expected lower and upper bounds
of the eigenvalues. In Figure 2, it can be seen that many
eigenvalues of the correlation matrix C' are outside the range
AR, denoted with vertical blue lines. Therefore, we can state
that the correlation matrix captures useful information about
the relationships between the cryptocurrencies.
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Fig. 2. Eigenvalues distribution of the cryptocurrency correlation matrix.

B. Mutual Information Analysis

In addition to the linear dependencies obtained from the
correlation matrix, the non-linear dependencies between the
cryptocurrencies were also extracted by calculating a mutual
information matrix M between cryptocurrencies to get a more
precise overview of the cryptocurrencies dependencies. The
linear dependencies can be insufficient to completely describe
the relationships between cryptocurrencies over time since the
market is a very volatile environment. A large number of
cryptocurrencies are not correlated at all according to the the
correlation matrix, while the same cryptocurrencies are highly
related according to the mutual information matrix. The pairs
of cryptocurrencies like (BTCBitcoin, HNDCHondaisCoin)
and (BLAZRBIlazerCoin, HNDCHondaisCoin) are some of
the cryptocurrencies that belong to a category of currencies
that have no relationship according to the calculated linear
dependencies yet have a strong relationship according to the
information from the calculated nonlinear dependencies.

The mutual information (MI) of two cryptocurrencies is ex-
pressed as M,;; = H(i) — H(i|j), where H(i) stands for
the price entropy of cryptocurrency 4, H(i|j) stands for its
conditional entropy given cryptocurrency j, and M;; € (0, c0).
In other words it tells how much more information we can
get about 7 if we have information about j. Small value
of M;; means that there is a weak relationship between
the cryptocurrencies, while large values indicate that they
are highly related and there is a significant reduction in
uncertainty. Finally, if M;; = 0 it means that cryptocurrencies
are completely independent of each other. Statistical analyses
of the distribution of the values in the correlation and mutual



information distance matrices were carried out to identify the
differences between them, as shown in Figure 3.
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Fig. 3. Distribution of values in the correlation and MI distance matrices.

IV. CRYPTOCURRENCY NETWORKS

There are certain criteria that matrix values must fulfill to be
used for network analysis and creation of a network structure.
In [3], [8] the authors provide a thorough explanation of
why directly using the correlation matrix is inappropriate for
creating a network representation. Instead a distance metric is
typically employed to derive a corresponding distance matrix.
Different procedures are required for producing distance ma-
trices from the correlation and mutual information matrices.
A positive distance matrix D can be created from the corre-
lation matrix C' using a transformation [3], [5], [7], [8]

Df; = 4/2(1 - Cyj), (1)

where Dicj = 0 indicates perfectly correlated coins ¢ and j,
DS = 2 shows completely negatively correlated coins, while
D;; = 1.41, signifies no correlation between the coins.

To obtain a distance matrix D from the mutual information

matrix M we can use a simple transformation
M
Dij = |M7] — max (MZJ)| (2)

The meaning of the values of the transformed matrix are
changed, hence, large values of Df\f indicate that there is weak
relation between the coins ¢ and j, while small D;; means that
the coins ¢ and j are strongly related.

V. COMMUNITY DETECTION

In this work we use the affinity propagation (AP) and Lou-
vain community detection (clustering) algorithms. AP’s main
advantage is its ability to accept negative values (weights), thus
it can be applied directly on the correlation and MI matrices.
AP is an iterative clustering algorithm where information is
propagated between data points in space, i.e. nodes in our
case, in two phases of responsibility and availability for a
predefined number of iterations or until no change is detected.
The Louvain community detection algorithm, on the other
hand, is a network-based algorithm that forms communities
using a "bottom-up" approach. The network’s modularity is
the primary indicator employed in the background of com-
bining data points. The Louvain method’s primary goal is to

establish communities that will be distinguished by a high
level of modularity. With both AP and Louvain the number of
communities does not need to be predetermined.

An investigation of the stability of the communities was
carried out on a monthly basis throughout the course of
the 3-year period. An overlapping coefficient between the
communities was calculated from the monthly data and its
value varies from 20% to 35%. Such a conclusion demon-
strates the unpredictability of the cryptocurrency market. The
foregoing approaches produce very volatile communities, and
the relationships between the cryptocurrencies themselves alter
significantly on a monthly basis. Therefore, a co-occurrence
matrix was built with elements representing how often two
cryptocurrencies belong to the same community, which was
then used to build a cryptocurrencies network, in order to
amortize the high instability within communities. The co-
occurrence matrix is an N x N matrix, where NN is the total
number of cryptocurrencies (in this study N = 215).

In the next section we examine communities both with and
without a co-occurrence transformation, but here we visualize
only communities obtained from the co-occurrence matrices.
We employ two distinct strategies to apply the community
detection methods. AP is applied directly to the co-occurrence
data obtained from the correlation and MI matrices, while
Louvain was carried out using the Minimum Spanning Tree
(MST) produced from the co-occurrence weighted network.
The relationships between cryptocurrencies are represented as
a weighted network, where the weights are derived from the
co-occurrence matrices which are calculated from the correla-
tion and MI matrices. Figure 4 shows the minimum spanning
tree (MST) of the cryptocurrency data derived using the afore-
mentioned co-occurrence matrices, including the communities
and leading coins that are obtained. The communities with AP
are calculated on a fully connected weighted network, but the
visualization is shown as a MST.

(c) Correlation and AP (d) MI and AP

Fig. 4. Detected communities in correlation and mutual information (MI)
networks with Louvain and Affinity propagation (AP) methods.



VI. PORTFOLIO DIVERSIFICATION

After analyzing the networks produced by the correlation
matrix (C), mutual information matrix (MI), and the derived
co-occurrence matrices (C’, MI'), the final step in this study is
to apply the techniques for portfolio selection. The community
detection methods are used for diversifying the portfolio by
selecting cryptocurrencies from different communities. Two
distinct approaches were used for the selection process, and
for each approach several strategies with different "centrality"
scores were examined. In the first approach principal compo-
nent analysis (PCA) is used for an analysis of the communities
of cryptocurrencies in order to characterize the variability of
each cryptocurrency. The second approach, centrality degree
(Cp), is a node level measure calculated as the quotient of
the number of nearby nodes and the total number of network
nodes. We then use several strategies to select the nodes with
the PCA and Cp scores, namely maximum, median, and
minimum, to produce a thorough examination. For the analyses
in this section we used the same data from 2019 to 2021, but
we split it into 12 one-year train and one-year test windows,
by sliding through time by one month. The reported values
are the median of these 12 repeated trials. Table I gives the
annual returns (%) , and we can notice that the co-occurrence
matrix can be beneficial.

TABLE I
PORTFOLIO ANNUAL RETURNS (%) FOR DIFFERENT STRATEGIES

| Louvain |  Affinity Propagation
‘ C MI C’ mr ‘ C MI c’ mr
max ‘ 356 271 421 767 ‘ 264 343 363 215
§ med ‘ 253 346 357 329 ‘ 315 264 405 245
min ‘ 308 294 518 274 ‘ 464 284 242 264
max ‘ 171 342 451 510 ‘ 257 515 298 370
S med ‘ 328 357 339 358 ‘ 320 268 416 351
min ‘ 287 357 339 358 ‘ 339 442 416 351

Table II shows the standard deviation of the portfolios log-
returns over time in order to quantify the volatility to which
the particular approach is susceptible, while in Table III the
ratio between the returns in percents and the volatility is given.

TABLE I
PORTFOLIO VOLATILITY (STANDARD DEVIATION OF LOG-RETURNS)

| Louvain | Affinity Propagation

‘ C MI c Mmr ‘ C Ml c Mr

max ‘ 66 48 56 71 ‘ 52 .66 .58 .53

é med ‘ .61 58 .50 .55 ‘ 61 56 .70 .55
min ‘ S5 56 .65 48 ‘ 58 .62 51 51
max ‘ 53 .62 .59 .65 ‘ 62 71 45 57

S med | 61 50 59 58| .61 .62 59 58
min ‘ 47 50 59 58 ‘ 60 .62 .59 .58

TABLE III
PORTFOLIO ANNUAL RETURNS DIVIDED BY ITS VOLATILITY

‘ Louvain ‘ Affinity Propagation

| C MI c’ mr | c MI c mr

max | 539 565 752 1080 | 508 520 626 406

§) med | 415 597 714 598 | 516 471 579 445
min | 560 525 797 571 | 800 458 475 518
max | 323 552 764 785 | 415 725 662 649

S med | 538 714 575 617 | 525 432 705 605
min | 611 714 575 617 | 565 713 705 605

VII. CONCLUSION

In this paper we studied the application of two commu-
nity detection (clustering) algorithms, Louvain and Affinity
propagation, for portfolio construction in the cryptocurrency
market. Moreover, we examined cryptocurrency relationships
representation by correlation and mutual information matrices
and distance matrices, as well as how we can benefit from
the employment of a co-occurrence matrix which captures the
market dynamics more closely.

From these preliminary results, we can not clearly conclude
what is the best investment strategy. However, we can see
that using the co-occurrence matrices can generally bring
improvements, while using mutual information can give better
results for some strategies, but worse for others. We continue
our study with other network structures, community detec-
tion and selection methods, including graph neural networks
as described in [10]. Furthermore, we plan to examine the
application of different strategies for various time periods and
market conditions.
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