XI INTERNATIONAL SYMPOSIUM ON AGRICULTURAL SCIENCES

26-28, May, 2022 Trebinje Bosnia and Herzegovina

PROCEEDINGS

Trebinje

2022

XI International Symposium on Agricultural Sciences "AgroReS 2022"26-28, May, 2022; Trebinje, Bosnia and Herzegovina

Book of proceedings

Publisher University of Banja Luka Faculty of Agriculture University City Bulevar vojvode Petra Bojovića 1A 78000 Banja Luka, Republic of Srpska, B&H

Editor in Chief

Branimir Nježić

Technical Editors

Biljana Kelečević Danijela Kuruzović

Edition

Electronic edition Available on www.agrores.org https://agrores.net/en/proceedings/

СІР - Каталогизација у публикацији Народна и универзитетска библиотека Републике Српске, Бања Лука

INTERNATIONAL Symposium on Agricultural Sciences "AgroReS 2022" (11 ; Trebinje ; 2022)

Proceedings [Електронски извор] / XI International Symposium on Agricultural Sciences "AgroReS 2022", 26-28, May, 2022 Trebinje, Bosnia and Herzegovina ; [editor in chief Branimir Nježić]. -Onlajn izd. - El. zbornik. - Banja Luka : University of Banja Luka, Faculty of Agriculture, 2022. - Ilustr.

Sistemski zahtjevi: Nisu navedeni. - **Način pristupa** (URL): https://agrores.net/en/proceedings/. - El. publikacija u PDF formatu opsega 354 str. - Nasl. sa naslovnog ekrana. - Opis izvora dana 23.05.2022. - Bibliografija uz radove. - Abstracts.

ISBN 978-99938-93-82-0

COBISS.RS-ID 136209409

ORGANIZERS

Faculty of Agriculture University of Banja Luka

in cooperation with

Biotechnical Faculty

University of Ljubljana

Faculty of AgriSciences Mendel University in Brno

Ss. Cyril and Methodius University of Skopje Facultyof Agricultural Sciences

andFoo

Biotechnical Faculty University of Montenegro

Institute of Genetic Resources University

of Banja Luka

Regional Rural Development Standing Working Group (SWG) Faculty of Agriculture University of Novi Sad

Mediterranean Agronomic Institute of Bari

Chamber of Commerce of Agricultural Engineers of theRepublic of Srpska

Institute of Field and Vegetable Crops Novi

And the second s

Agricultural Institute of the Republic of Srpska

RebResNet Scientific Network

Supported by

Ministry for Scientific and Technological Development, Higher Education and Information Society of the Republic of Srpska;

Ministry of Agriculture, Forestry and Water Management of the Republic of Srpska.

ORGANIZING **C**OMMITTEE

President Branimir Niežić, PhD Secretary Biljana Kelečević, PhD

Members:

Siniša Mitrić, PhD; Novo Pržulj, PhD; Željko Vaško, PhD; Miljan Cvetković, PhD; Biljana Rogić, PhD; Borut Bosančić, PhD; Danilo Vidović MA; Mladen Babić, BSc. and Danijela Kuruzović.

Scientific Committee

Novo Pržulj, president - B&H, Adrian Asanica - Romania, Marina Antić - B&H, Hrabrin Bašev -Bulagaria, Klime Beleski - North Macedonia, Geza Bujdoso - Hungary, Maria João Carvalho -Portugal, Marija Cerjak - Croatia, Miljan Cvetković – B&H, Jelena Čukanović – Serbia, Duška Delić - B&H, Arkadiusz Dyjakon – Poland, Ivica Đalović - Serbia, Zorica Đurić - Australia, Hamid El Bilali - Italy, Sezai Ercisli - Turkey, Emil Erjavec - Slovenia, Daniel Falta- Czech Republic, Vesna Gantner - Croatia, Snježana Hrnčić – Montenegro, Mirsad Ičanović - B&H, Atila Jambor - Hungary, Ivana Janeska Stamenkovska - North Macedonia, Andrei Jean-Vasile - Romania, Stoja Jotanović -B&H, Tatjana Jovanović-Cvetković – B&H, Romina Kabranova – North Macedonia, Radovan Kasarda - Slovakia, Ilija Komljenović - B&H, Danijela Kondić - B&H, Zlatan Kovačević - B&H, Željko Lakić – B&H, Ivana Majić - Croatia, Ana Marjanović-Jeromela - Serbia, Mile Markoski – North Macedonia, Dimitrije Marković - B&H, Mihajlo Marković - B&H, Milan Marković -Montenegro, Zoran Marković - Serbia, Aleksandra Martinovska- Stojčeska – North Macedonia, Jegor Miladinović - Serbia, Stanislav Minta - Poland, Siniša Mitrić - B&H, Đorđe Moravčević - Serbia, Vesna Mrdalj – B&H, Nebojša Novković - Serbia, Aleksandar Ostojić – B&H, Vojo Radić – B&H, Ljiljana Radivojević - Serbia, Biljana Rogić - B&H, Gordana Rokvić-Knežić - B&H, Đorđe Savić -B&H, Nebojša Savić – B&H, Francesco Tiezzi - Italy, Mladen Todorović - Italy, Vida Todorović -B&H, Vojislav Trkulja – B&H, Jan Turan – Serbia, Zorica Vasiljević - Serbia, Željko Vaško – B&H, Božo Važić – B&H, Dragana Šunjka – Serbia, Nery Zapata – Spain, Ervin Zečević – B&H, Svjetlana Zeljković – *B&H*, Mirjana Žabić - *B&H*.

Honorary Committee

- 1. Srđan Rajčević, MSc Minister for Scientific And Technological Development, Higher Education and Information Society, Government of Republic Srpska
- 2. Prof. dr Boris Pašalić Minister of Agriculture, Forestry and Water Management, Government of Republic Srpska
- 3. Mirko Ćurić, MSc Mayor of City of Trebinje
- 4. Prof. dr Radoslav Gajanin Rector of the University of Banja Luka
- 5. Prof. dr Zlatan Kovačević Dean of the Faculty of Agriculture, University of Banja Luka
- 6. Prof. dr Nataša Poklar Ulrih Dean of the Biotechnical Faculty, University of Ljubljana, Slovenia
- 7. Prof. dr Nedeljko Tica Dean of the Faculty of Agriculture, University of Novi Sad, Serbia
- 8. Prof. dr Božidarka Marković Dean of the Biotechnical Faculty, University of Montenegro, Montenegro
- 9. Prof. dr Pavel Ryant Dean of the Faculty of AgriScience, Mendel University of Brno, Czech Republic
- 10. Prof. dr Maurizio Raeli Director of the Mediterranean Agronomic Institute of Bari, CIHEAM –IAMB, Italy
- 11. Prof. dr Dragana Latković President of Bord of Directors in Institute of Field and Vegetable Crops Novi Sad, Serbia
- 12. Doc. dr Marina Antić Director of the Institute of Genetic Resurces, University of Banja Luka
- 13. Prof. dr Vojislav Trkulja Director of the Agricultural Institute of Republic of Srpska
- 14. Prof. dr Andrei Jean-Vasile Director of RebResNet scientific network
- 15. Prof. dr Vjekoslav Tanaskovik Dean of the Faculty of Agricultural Sciences and Food of Ss. Cyril and Methodius, University in Skopje, North Macedonia
- 16. Prof. dr Branko Kramberg Dean of the Faculty of Agriculture and Live Sciences, University of Maribor, Slovenia
- 17. Prof. dr Dušan Živković Dean of the Faculty of Agriculture, University of Belgrade, Serbia
- 18. Prof. dr Tomo Milošević Dean of Agronomi Čačak, University of Kragujevac, Serbia
- 19. Prof. dr Zoran Grgić Dean of the Faculty of Agriculture, University of Zagreb, Croatia
- 20. Prof. dr Krunoslav Zrnajić Dean of the Faculty of Agrobiotechnical Sciences, University of Osijek, Croatia
- 21. Jasenko Nedinić, Bsc president of the Chamber of Agricultural Engineers of Republic of Srpska

TABLE OF CONTENTS

		Pages
	TABLE OF CONTENTS	5-7
	PREFACE	8
1.	Miloš Nožinić, Dejan Simić	
1.	ANALYSIS OF SOYBEAN VARIETAL TRIALS IN 2015 AND 2016 /	
	DANUBE SOYA PROJECT	9-19
2.		
2.	RESPONSE OF XANTHIUM ORIENTALE L. TO GLYPHOSATE	20-30
3.	Dalibor Tomić, Miloš Marjanović, Mirjana Radovanović, Vesna Đurović, Đorđe	
	Lazarević, Vladeta Stevović, Nenad Pavlović	
	INTERDEPENDENCE OF SEED YIELD COMPONENTS OF PUMPKIN	
	(CUCURBITA PEPO L.) GENOTYPES	31-39
4.		
	Bojanić	
	EFFECT OF GLYPHOSATE ON WHEAT SEEDLINGS DEPENDING ON THE CHARACTERISTICS OF THE WATER	40-48
-		40-48
5.	ANALYSIS OF CLIMATE CHANGES IN PERI - PANNONIAN BASIN AND	
	DINARIC REGION: BASIS FOR FUTURE AGRICULTURAL STRATEGIES	49-63
6.		.,
0.	Aleksić, Dejan Sokolović	
	ACCUMULATION OF HEAVY METALS IN ROOT AND SHOOT OF RED	
	FESCUE GROWN AT THE FLOTATION TAILINGS DUMP	64-72
7.	······································	
	Dželetović, Uroš Aleksić, Slaviša Đorđević	
	THE EFFECTS OF FERTILIZATION TREATMENTS ON	
	PHYTOREMEDIATION PROPERTIES OF TALL FESCUE (FESTUCA	72 00
0	ARUNDINACEA SCHREB.)	73-80
8.	Nikolina Đekić, Vida Todorović, Đorđe Moravčević, Borut Bosančić, Jelena Sladoje	
	INFLUENCE OF SHADING NET ON CHLOROPHYLL CONTENT,	
	RELATIVE WATER CONTENT AND WEIGHT OF LETTUCE	81-88
09.		
	Harbinja, Jasmina Kustura	
	INFLUENCE OF NATURAL AND ENRICHED PYROPHYLLITE ON ONION	
	YIELD (ALLIUM CEPA L.)	89-98
10.		
	Mikić, Željana Prijić, Ana Dragumilo, Tatjana Marković	
	THE INFLUENCE OF ORGANIC BIOSTIMULATORS ON THE GROWTH	
	AND DEVELOPMENT OF MEDICINAL AND AROMATIC PLANT SPECIES OCIMUM BASILICUM L. AND LEVISTICUM OFFICINALE L	00 107
11	Lisov Nikolina, Petrović Aleksandar, Plavšić Ivana, Ljiljana Gojković Bukarica	99-107
11	EXTRACTION KINETICS OF PHENOLIC ACIDS DURING PROLONGED	
	MACERATION TIME AND VINIFICATION OF CABERNET SAUVIGNON	
	GRAPE VARIETY	108-113

12.	Svjetlana Zeljković, Ivana Kozomara, Jelena Davidović Gidas, Margarita Davitkovska, Zvezda Bogevska SEED GERMINATION OF <i>CALENDULA OFFICINALIS</i> L. UNDER INFLUENCE OF DIFFERENT LIGHT CONDITIONS	114-121
13.	Zoran Pržić, Nebojša Marković, Aleksandar Simić, Željko Dželetović, Mariana Niculescu TECHNOLOGICAL CHARACTERISTICS OF CABERNET	
14.	SAUVIGNON CV CLONES GROWN IN CONDITIONS OF KRNJEVO VINE AREA Nenad Pavlović, Miloš Marjanović, Jelena Mladenović, Dalibor Tomić, Ljiljana	122-129
1.5	Bošković Rakočević, Đorđe Moravčević, Jasmina Zdravković HEREDITY MODE OF DURATION OF VEGETATIVE STAGE IN ONION (<i>ALLIUM CEPA</i> L.) Mirjana Mlađenović, Nataša Saric	130-138
15.	COURT GARDEN IN SREMSKI KARLOVCI – NATURAL AND CULTURAL HERITAGE OF SERBIA Gorica Paunović, Radmila Ilić, Tomo Milošević, Ivan Glišić, Mila Terzić	139-149
16. 17.	ECONOMIC BENEFITS OF RASPBERRY GROWING IN A PROTECTED AREA Zorana Miladinović, Siniša Mitrić, Boban Jakšić, Branimir Nježić	150-157
	EVALUATION OF POTENTIAL OF FOUR ENTOMOPATHOGENIC NEMATODES TO CONTROL BUXUS TREE MOTH (<i>CYDALIMA</i> <i>PERSPECTALIS</i> WALKER)	158-165
18.	Slavica Vuković, Dragana Šunjka, Sanja Lazić, Antonije Žunić, Dragana Bošković, Miloš Petrović CONTROL OF <i>CYDIA POMONELLA</i> L. IN APPLE ORCHARDS USING SPINETORAM, PYRIPROXYFEN AND CHLORANTRANILIPROLE	166-171
19.	Sanja Lazić, Dragana Šunjka, Slavica Vuković, Dragana Bošković, Aleksandra Šušnjar, Antonije Žunić DISSIPATION AND RESIDUES OF EMAMECTIN BENZOATE IN PAPRIKA	172-179
20.	Đorđe Moravčević, Marko Krstić, Jelica Gvozdanović-Varga, Aleksandar Ž. Kostić, Ana Vujošević, Sofija Kilibarda, Sandra Vuković THE CONTENT OF METALS AND METALLOIDS IN BULBS OF	
21.	DIFFERENT GENOTYPES OF <i>ALLIUM</i> SPECIES Marija Nikolić, Tamara Paunović, Dejana Vučković APPLICATION OF NEW TECHNOLOGIES IN TRANSFER OF	180-190
22.	KNOWLEDGE AND INFORMATION IN AGRICULTURE Nemanja Jalić, Aleksandar Ostojić, Vesna Mrdalj EXTERNAL PRICE PARITIES OF WHEAT AND MAIZE IN THE REPUBLIC OF SRPSKA	191-200 201-212
23.	Mihajlo Munćan, Jelena Đoković, Vladimir Zdravković IMPACT OF CLIMATE CONDITIONS OF VOJVODINA ON SOYBEAN YIELDS	213-221
24.	Miroslav Nedeljković, Adis Puška, Milorad Đokić EVALUATION OF CRITERIA WHEN SELECTING AGRICULTURAL MACHINERY SUPPLIERS	222-233
25.	Zorica Srđević, Ružica Stričević, Bojan Srđević, Aleksa Lipovac CLIMATE CHANGE ADAPTATION MEASURES IN AGRICULTURE: PERSPECTIVE OF DIFFERENT EXPERTS' GROUPS	234-241
26.	Dragan Dokić, Maja Gregić, Mirna Gavran, Vesna Gantner THE ANALYSIS OF BUSINESS BEHAVIOUR IN TERMS OF THE CRISIS OF THREE AGRICULTURAL COMPANIES FROM CROATIA, SERBIA	

XI International Symposium on Agricultural Sciences AgroReS 2022

BOOK OF PROCEEDINGS

	AND SLOVENIA	242-249
27.	Miodrag Đorđević, Bratislav Pešić, Nikola Stolić, Nebojša Zlatković	
	IMPACT OF FAT LEVELS IN A MEAL ON PHEASANT CHICKS'	
	GROWTH UNDER CONTROLLED BROODING CONDITIONS	250-258
28.	Marko Živić, Bratislav Pešić, Nikola Stolić, Nebojša Zlatković HOOF TRIMMING AS FACTOR AFFECTING MILK PRODUCTION IN	
	HIGH-PRODUCING DAIRY COWS	259-267
29.	Marko Cincović, Maja Došenović Marinković, Biljana Delić Vujanović, Radojica	239 201
29.	Đoković, Miloš Petrović, Dražen Kovačević, Nenad Staničkov	
	ANALYSIS OF THE FREQUENCY DISTRIBUTION OF METABOLIC	
	PARAMETERS IN A POOLED SAMPLE IN EARLY LACTATING COWS	268-274
30.	Nemanja Marić, Bratislav Pešić, Nikola Stolić, Nebojša Zlatković, Filip	
	Stanimirović	
	AN ANALYSIS OF SIMMENTAL BREED PRODUCTION RESULTS IN	
	THE MUNICIPALITY OF LOZNICA BEFORE AND DURING THE COVID19 PANDEMIC	275-283
31.	Filip Stanimirović, Bratislav Pešić, Nikola Stolić, Nebojša Zlatković, Milena	275-285
31.	Milojević, Nemanja Marić	
	A REVIEW OF PHEASANT HATCHING PRODUCTION RESULTS AT	
	THE RISTOVAČA PHEASANT FARM IN THE PERIOD BETWEEN 2019	
	AND 2021	284-294
32.	Nebojša Savić, Dragan Mikavica	
	EFFECTS OF HIGH WATER TEMPERATURE ON EMBRYONIC DEVELOPMENT AND DIFFERENT TIMES OF INITIAL NUTRITION ON	
	SURVIVAL AND GROWTH OF JUVENILE RAINBOW TROUT	
	(ONCORHYNCHUS MYKISS)	295-303
33.	Biljana Rogić, Ljuba Štrbac, Slađana Preradović, Božo Važić	270 303
55.	PHENOTYPIC DESCRIPTION OF THE LIPICANE HORSES	
	POPULATION FROM BOSNIA AND HERZEGOVINA AND SERBIA	304-312
34.	Miroslava Polovinski-Horvatović, Saša Krstović, Dragan Glamočić, Igor Jajić,	
	Ivan Radović, Mile Mirkov, Snežana Mišović	
	THE OCCURRENCE OF HEAVY METALS (PB AND CD) IN THE KIDNEYS OF WILD BOAR (SUS SCROFA), MANGULICA AND	
	FATTENING PIGS	313-319
35.	Ksenija Čobanović, Ivan Pihler, Saša Krstović, Denis Kučević, Anka Miloradov,	515 517
55.	Andjela Todić, Baćo Zarubica	
	THE INFLUENCE OF THE SAEASON ON MILK UREA CONTENT IN	
	DAIRY GOAT FARMS	320-327
36.	Dragan Stanojević, Radica Đedović, Vladan Bogdanović, Krstina Zeljić	
	Stojiljković, Nikolija Gligović, Ivan Mitrović, Marina Lazarevć, Ljiljana Samolovac	
	THE IMPACT OF BREEDING REGION AND LACTATION ON MILK	
	YIELD TRAITS IN THE OF SIMMENTAL CATTLE POPULATION OF	
	THE REPUBLIC OF SERBIA	328-335
37.	THE REPUBLIC OF SERBIA Tina Bobić, Borna Buban, Pero Mijić, Maja Gregić, Vesna Gantner	328-335
37.	THE REPUBLIC OF SERBIA Tina Bobić, Borna Buban, Pero Mijić, Maja Gregić, Vesna Gantner FREE TRAFFIC IN ROBOTIC MILKING OF COWS THROUGH	
	THE REPUBLIC OF SERBIA Tina Bobić, Borna Buban, Pero Mijić, Maja Gregić, Vesna Gantner FREE TRAFFIC IN ROBOTIC MILKING OF COWS THROUGH ETIOLOGICAL AND WELFARE APPROACH	328-335 336-344
37. 38.	THE REPUBLIC OF SERBIA Tina Bobić, Borna Buban, Pero Mijić, Maja Gregić, Vesna Gantner FREE TRAFFIC IN ROBOTIC MILKING OF COWS THROUGH	336-344

PREFACE

The Proceedings contains 38 papers presented at XI International Symposium on Agricultural Sciences "AgroReS 2022" in Trebinje, Bosnia and Herzegovina, from 26 to 28 May, 2022. In the Proceedings are published only papers for which their authors choose that way of publishing

All papers were subject to anonymous double reviews and the category of papers were determined by the editors based on the recommendation of the reviewers.

Publisher and editors are not responsible for the content of papers and authors' opinions expressed in them. The text is not proofreded from the standpoint of English spelling and grammar, and the authors take the responsibility for the content of their papers in that sense.

The Proceedings are published only in electronic form and are available free of charge through the AgroReS website (www.agrores.org).

Editor in Chief Branimir Nježić

Technical Editor Biljana Kelečević Danijela Kuruzović

Original scientific paper

Seed germination of *Calendula officinalis* L. under influence of different light conditions

Svjetlana Zeljković¹, Ivana Kozomara¹, Jelena Davidović Gidas¹, Margarita Davitkovska², Zvezda Bogevska²

¹University of Banja Luka, Faculty of Agriculture, Bosnia and Herzegovina ²University St. Cyril and Methodius Skopje, Faculty of Agricultural Sciences and Food, North Macedonia

Corresponding author: Svjetlana Zeljković, svjetlana.zeljkovic@agro.unibl.org

Abstract

The aim of this study was to examine germination rate and morphological characteristics of English marigold seedlings under influence of different light conditions. Seeds of Calendula officinalis L. were collected from the natural population of the Botanical garden of the University of Banja Luka. Experiment was set up in four replicates for each light treatment. Petri dishes with seeds were placed in growth chamber under artificial white (FLUO) and blue, red, and combination of blue/red (LED) light with 16h/8h photoperiod. Germination energy was tested after 7 days and germination of the seeds was tested after 14 days. Results showed significant difference in germination energy, germination rate, hypocotyl height, root length, and fresh weight. The highest average values of the germination energy and germination rate of the Calendula officinalis L. were recorded under red LED light (32%; 47%) while the lowest values were recorded under blue LED light (1%; 23%). The highest average values of hypocotyl height, root length and fresh weight were recorded also under red LED light (3,70 cm; 6,33 cm; 0,97 g) while the lowest values were recorded under combination of blue/red LED light (1,95 cm; 2,52 cm; 0,28 g). It can be concluded that the use of red LED light is recommended in the seed germination phase, not only for better germination but also for better morphological development.

Key words: germination, Calendula officinalis L., morphological parameters, LED light

Introduction

The key factors for plant growth and development are light and temperature. Plants have

photoreceptors that respond to the wavelength and light intensity (Zhang and Folta, 2012). The effect of light during plant growth and fertility process is undeniable. Among the various naturally occurring abiotic factors regulating plant development, light plays an important role in photosynthesis and photoperiodism, and only wavelengths ranging 400 to 700 nm can be used (Teklić, 2012).

Many of light sources which are used to enhance photosynthetic levels have very low energy use efficiency for growing plants. Solar light consists of electromagnetic radiation with wavelengths ranging 400 to 700 nm (violet, blue, green, yellow, orange and red). The changes in the light quality (wavelength) influences seed germination, seedling growth, photosynthesis, and flowering depending on the species and developmental stage (He et al., 2017).

In contrast to other light sources, lightemitting diode (LED) lighting system have various advantages, including the ability to set the desired spectral combination, permanence, specific wavelength, low heating and the electrical input (Lin et al., 2013). These advantages make them suitable light source for growing plants. The LEDs give wavelengths that can be matched with plant photoreceptors to provide optimal production and influence morphology and metabolism of plant (Morrow, 2008). Experimentations on impact of light variables on plant growth and development is attracting attention of plant scientists. Changes in different light attributes like intensity and duration, can influence all aspect of plant growth and physiology especially morphology and photosynthetic responses of the plants. Red and blue lights have great effects on plant growth because they contain the two main light spectra for photosynthetic CO_2 fixation in plants (Kasajima et al., 2008). It has been reported that red light is the most important light spectrum for growth and phytochrome responses in plants (Wang et al., 2016).

Red light is important for the development of the photosynthetic apparatus of plants and may increase starch accumulation in several plant species by inhibiting the translocation of photosynthates out of leaves (Paradiso et al., 2011). In contrast, blue light is important in the formation of chlorophyll, chloroplast development, stomatal opening, enzyme synthesis, activation of the photosynthesis, and photomorphogenesis (Kang et al. 2008; Demarsy and Frankhauser 2009).

Green light, in the process of seed germination of *Arabidopsis*, stimulates the early elongation of the stems, antagonizing the growth inhibition by light whereas the white and red light, in ferns can delay the chlorophyll loss due to senescence (Burescu et al., 2015). It has been reported that light is key factor regulating the seed germination in numerous plant

species. Jala (2011) found that seeds of *Nepenthes mirabilis* first germinated under white and red light, and the last germinated under green light, and the highest average speed of emergence was also recorded under red light.

Lal and Sachan (2017) investigated the effect of different colours of light (natural, red, blue, yellow, and green) on seed germination, hypocotyl growth, biomass production in *Vigna unguiculata* L. Walp., an important crops for grain and fodder purposes. Red light showed maximum % of germination (98%) at 84 hours while, green light showed almost no germination even after 96 hours. Blue light and yellow light caused significant reduction in % of germination to 71 and 56, respectively, at 84 hours. Root and shoot growth were highest in red light and the order of biomass production was red > yellow > natural > blue > green.

English marigold (*Calendula officinalis*) is an annual or biennial plant species that belongs to the Asteraceae family. It is native to North Africa and Southern Europe and represents as one of the most used ornamental plants in the gardens and green spaces. English marigold has different applications in horticulture industry: as a pot plant, garden plant, cut flower, food and medicinal plant. The aim of this study was to examine germination rate and morphological characteristics of English marigold seedlings under influence of different light conditions.

Material and Methods

Investigation was conducted in laboratory condition at the Faculty of Agriculture, University of Banja Luka. Seeds of *Calendula officinalis* L. were collected from the natural population of the Botanical garden of the University of Banja Luka. The experiment consisted of four light treatments: three different colors of light (blue, red, and combination of blue/red LEDs) as treatments, and white FLUO light, as control. The experimental design was completely randomized, with four replications of 25 seeds per experimental unit for germination test. Petri dishes were sterilized with 96% ethanol, and lined with moistened filter paper with 3 mL of purified water. One hundred surface sterilized seeds of *Calendula officinalis* L were placed in a series of five petri dishes for each colors of light.

These petri dishes were placed on shelves, exposed to different wavelength (white, blue, red, and combination of blue/red light) with 16h/8h photoperiod. Temperature during the research was constant (20±1°C). 2 ml of water per day was added to each petri dish. Seeds were kept under these conditions for 14 days. Germination energy was tested after 7 days and germination of the seeds was tested after 14 days. Both values are expressed as percentage (%). Also, after 14 days hypocotyl height, root length, and fresh weight were obtained. The

obtained data were statistically analysed (LSD, F-test, t-test) using standard computer programs and VV-Stat paket (Vukadinović, 2017). Means comparison were performed using low significant differences procedure (LSD), with a significance level of 5% (P<0.05).

Results and Discussion

Statistically analyzed obtained results of germination energy, seed germination, number of cotyledons, hypocotyl height, root length, and fresh weight of *Calendula officinalis* L. under influence of different light conditions are presented in Table 1. and Table 2.

Treatment T_1 -red LED light had the best result in all of three parameters. Germination energy and number of cotyledons were under very significant influence (p=0.01), while germination rate was under significant influence (p=0.05) of different light conditions.

The highest average values of germination energy of the English marigold was recorded in the treatment T_1 (32%), while the lowest value was recorded in the treatment T_2 -blue LEDs (1%). Also, average value of germination rate was recorded in the treatment T_1 (47%), while the lowest value was recorded in the treatment T_2 (23%). The highest average development of hypocotyls were recorded in the treatment T_1 (11.50) and the lowest in the treatment T_2 (4.5).

Treatment variant	germination energy %	germination rate %	number of cotyledons
Control K	12 ^b	38 ^b	9.5 ^b
Treatmen T ₁	32 ^a	47 ^a	11.50 ^a
Treatmen T ₂	1°	23°	4.5 ^c
Treatmen T ₃	10 ^b	26 ^c	5.75°
Average	13.75	33.5	7.81
Analyses of variance - F	10.73822**	4.032787*	7.062718**
LSD	germination energy %	germination rate %	number of cotyledons
0.05	12.2941	17.0185	3.7676
0.01	17.2366	ns	5.2822

 Table 1. Influence of different light conditions on germination energy, seed germination, number of cotyledons of English marigold - *Calendula officinalis* L. seeds

(K-white FLUO light; T₁-red LED light; T₂-blue LED light; T₃-combination of red/blue light); means marked with different letters ^{a,b,c} significantly differ at p=0.05 *ns=not significant*

Data shown in Table 2. indicates very significant difference (p=0.01) between the average values of hypocotyl height, root length, and fresh weight of *Calendula officinalis* L. seeds under influence of different light conditions. Treatment T₁ - red LEDs, had the best result on all of three parameters. The highest average values of hypocotyl height and root length of

English marigold were in the treatment T_1 (3.70 cm; 6.33 cm), while the lowest average values of hypocotyl height and root length of English marigold were in the treatment T_2 (1.95cm; 2.52 cm). The same ratio was in fresh weight with the highest average values in the treatment T_1 -red LED light (0.97 g), than in control - white FLUO light (0.70 g). Lower average values were recorded in the treatment T_3 - combination red/blue LEDs (0.34 g) while the lowest average values were recorded in the treatment T_2 - blue LEDs (0.28 g) (Table 2.).

Treatment variant	hypocotyl (cm)	height	root length (cm)	fresh weight (g)
Control K	3.00 ^b		5.18 ^b	0.70 ^b
Treatmen T ₁	3.70 ^a		6.33 ^a	0.97 ^a
Treatmen T ₂	1.95°		2.52 ^c	0.28 ^c
Treatmen T ₃	2.08 ^c		2.81 ^c	0.34 ^c
Average	2.68		4.21	0.57
Analyses of variance - F	11.43219**		18.816**	8.599304**
LSD	hypocotyl (cm)	height	root length (cm)	fresh weight (g)
0.05	0.7519		1.3111	0.3397
0.01	1.0541		1.8382	0.4762

Table 2. Influence of different light conditions on hypocotyl height, root length, and fresh weight of English marigold - *Calendula officinalis* L. seeds

(K-white FLUO light; T₁-red LED light; T₂-blue LED light; T₃-combination of red/blue light); means marked with different letters ^{a,b,c} significantly differ at p=0.05 *ns=not significant*

Higher light intensities during growth of soybean - *Glycine max* (L.) Merrill resulted in increases in photosynthesis rate, light saturation intensity, and specific leaf weight (Bowes et al., 1972). Blažević (2016) confirmed that blue LED light increased the germination energy of *Calendula officinalis* L. and *Tagetes patula* L. but energy rate was not under different light conditions. Astolfi et al. (2012) investigated used of LED lamps which emitted a continuous spectrum thanks to a mixture of blue, green, red and far-red LEDs. Their results showed that plant response to light quality seems to be related to the plant species. In *Fagus sylvatica* L. seedlings fresh and dry weight, shoot height and leaf area were greatest when plants were cultured under LED light, and lowest under fluorescent lamps. Also, they found that LED-induced reduction of chlorophyll contents in *Fagus sylvatica* L. and *Quercus ilex* L. leaves resulted in an increase of the carboxylase capacity in the same plant species suggesting an improvement of light use efficiency in these plants.

Behzadi et al. (2012) confirmed that exposed basil seeds with LED light with wavelength of 620-625 nm before sowing, induced plant growth density parameters, increasing of the internal energy on seeds and change increasing growth rate, chlorophyll content, fertility, and biological parameters.

Fraszczak (2013) exposed *Anethum graveolens* L. seeds with short term of red and blue light. Results showed that the values of plant fresh mass, area and height parameters were the highest for plants treated with red light.

Conclusion

The results of this research showed positive effects on germination energy, germinaton rate, and all morphological investigated parameters (hypocotyl height, root length, and fresh weight) in English marigold (*Calendula officinalis* L.) seeds exposed to red LED light, where the following conclusions were obtained:

- the highest percentage of germination was in the treatment with red light (T_1) of 47%, with an increase of 104% over the treatment with blue light T_2 (23%);

- the highest value for the average hypocotyl height was 3.70 cm on red light (T₁) in compare with the lowest on blue light (T₂) - 1.95 cm;

- the highest value for the average root length was 6.33 cm on red light (T_1) in compare with the lowest on blue light (T_2) - 2.52 cm;

Based on the obtained results we can conclude that the treatment with red LED light can enhance seed vigor and plant productivity of English marigold (*Calendula officinalis* L.). Blue light and combination of red/blue light had a similar results in average values of hypocotyl height and root length, and significantly reduced plant growth, in compare with red light. Also, we can conclude that the effects obtained may be geater if the seeds are preventively treated with a fungicide.

References

Astolfi, S., Marianello, C., Grego, S., Bellarosa, R. (2012). Preliminary Investigation of LED Lighting as Growth Light for Seedlings from Different Tree Species in Growth Chambers. Notulae Botanicae Horti Agrobotanici 40(2): 31-38.

Behzadi, H.R., Qaryan, M., Shahi, S. (2012). The Influence of LED Light on Basil Seeds before Sowing and its Effects on Growing and Germination. International Journal of Plant Research 2(4): 108-110.

Blažević, M. (2016). Utjecaj različitog osvjetljenja na klijavost nevena (*Calendula officinalis* L.) i kadifice (*Tagetes patula* L.). Diplomski rad. Poljoprivredni fakultet u Osijeku.

Bowes, G., Ogren. W.L., Hageman. R.H. (1972). Light saturation, photosynthesis rate, RuDP carboxylase activity and specific leaf weight in soybeans grown under different light intensities. Crop Science Society of America: 77-79.

Burescu, L., Cachita, D., Craciun, C. (2015). The Effect of Different Wavelengths LED Lighting on the growth of Spruce (*Picea abies* L) plantlets. Romanian Biotechnological Letters, 20:11025-11034.

Demarsy, E., Frankhauser, C. (2009). Higher plants use LOV to perceive blue light. Current Opinion in Plant Biology, 12: 69-74.

Fraszczak, B. (2013). Effect of short-term exposure to red and blue light on dill plants growth. Horticulture science, 40(4):177-185.

He, J., Qin, L., Chong, E.L.C., Choong, T., Lee, S.K. (2017). Plant Growth and Photosynthetic characteristics of *Mesembryanthemum crystallinum* grown aeroponically under different Blue- and Red-LEDs. Frontiers in Plant Science, 8: 361.

Jala, A. (2011). Effects of different light treatments on the germination of *Nepenthes mirabilis*. International Transaction Journal of Engineering, Management, & Applied Sciences & Technologies, 2:83-91.

Kang, B., Grancher, N., Koyffman, V., Lardemer, D., Burney, S., Ahmad, M. (2008). Multiple interactions between cryptochrome and phototropin blue-light signaling pathways in *Arabidopsis thaliana*. Planta, 227:1091-1099.

Kasajima, S.Y, Inoue, N, Mahmud, R, Kato, M. (2008). Developmental responses of wheat cv. Norin 61 to fluence rate of green light. Plant Production Science, 11:76-81.

Lal, N., Sachan, P. (2017). Effect of Different Visible Light Wavelengths on Seed Germination and Photosynthetic Pigment Contents in *Vigna unguiculata* (L.) Walp. Indian Journal of Biology, 4(2), http://dx.doi.org/10.21088/ijb.2394.1391.4217.10

Lin, K.H, Huang, M.Y, Huang, W.D, Hsu, M.H, Yang, Z.W, Yang, C.M. (2013). The effects of red, blue, and white light-emitting diodes on the growth, development, and edible quality of hydroponically grown lettuce (*Lactuca sativa* L. var. capitata). Scientia Horticulturae, 150: 86-91.

Morrow, R.C. (2008). LED lighting in horticulture. Hortscience, 43: 1947-1950.

Paradiso, R., Meinen, E., Snel, J.F.H., Marcelis, L.F.M., van Ieperen, W., Hogewoning, S.W. (2011). Light use efficiency at different wavelengths in rose plant. Acta Horticulturae (ISHS), 893: 849–855.

Teklić, T. (2012): Fiziologija bilja u povrćarstvu i cvjećarstvu. Interna skripta, Poljoprivredni fakultet Osijek, 2012.

Vukadinović, V. (2017). VV-Stat - računalni program za statističku obradu podataka. Poljoprivredni fakultet Osijek. http://tlo-i-biljka.eu/Kalkulatori.html

Wang, J., Lu, W., Tong, Y., Yang, Q. (2016). Leaf morphology, photosynthetic performance, chlorophyll fluorescence, stomatal development of lettuce (*Lactuca sativa* L.) exposed to different ratios of red light to blue light. Frontiers in Plant Science. https://doi.org/10.3389/fpls.2016.00250

Zhang, T., Folta, K.M. (2012). Green light signaling and adaptive response. Plant Signaling & Behavior, 7:1-4.