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Abstract
Purpose This report presents the first investigation of the radiomics value in predicting the meningioma volumetric response 
to gamma knife radiosurgery (GKRS).
Methods The retrospective study included 93 meningioma patients imaged by three Tesla MRI. Tumor morphology was 
quantified by calculating 337 shape, first- and second-order radiomic features from MRI obtained before GKRS. Analysis 
was performed on original 3D MR images and after their laplacian of gaussian (LoG), logarithm and exponential filtering. 
The prediction performance was evaluated by Pearson correlation, linear regression and ROC analysis, with meningioma 
volume change per month as the outcome.
Results Sixty calculated features significantly correlated with the outcome. The feature selection based on LASSO and 
multivariate regression started from all available 337 radiomic and 12 non-radiomic features. It selected LoG-sigma-1-0-
mm-3D_firstorder_InterquartileRange and logarithm_ngtdm_Busyness as the predictively most robust and non-redundant 
features. The radiomic score based on these two features produced an AUC = 0.81. Adding the non-radiomic karnofsky per-
formance status (KPS) to the score has increased the AUC to 0.88. Low values of the radiomic score defined a homogeneous 
subgroup of 50 patients with consistent absence (0%) of tumor progression.
Conclusion This is the first report of a strong association between MRI radiomic features and volumetric meningioma 
response to radiosurgery. The clinical importance of the early and reliable prediction of meningioma responsiveness to 
radiosurgery is based on its potential to aid individualized therapy decision making.
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Introduction

Stereotactic radiosurgery (SRS) has been used for nearly 
40  years in the treatment of meningiomas and there is 
increasing evidence in support of SRS as primary therapy 
[1, 2]. Together with improved planning and fractionation 
regimes, local tumor control rates of up to 99% have been 
reported after SRS, mainly for small and growth [3, 4]. How-
ever, in large volume meningiomas, the control rate may be 
as low as 84% and even below 70% in atypical and anaplastic 
types, accompanied by increased radiation-induced toxicity 
up to 23% [5, 6].

Because of such predictive unreliability, an improved 
prediction of the individual effectiveness of SRS could help 
in the treatment planning of individual meningiomas, by 
supporting an increase in treatment radiation dose or re-
evaluation of microsurgery. On the other hand, if a fast and 
thorough tumor reduction is predicted, a lower dose could be 
administered to reduce the possible risk of adverse radiation 
effects (ARE).

Currently used prognostic indicators are clinical symp-
toms, patient age, general health, neurologic deficit, recur-
rence after previous treatment, tumor size, localization 
and delineation against brain tissue and cystic components 
[7–11]. It was reported that higher meningioma size, frac-
tional anisotropy value [12] and male gender predispose to 
meningioma progression after treatment with Gamma Knife 
radiosurgery (GKRS) [13]. In addition, diffusion-weighted 
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and diffusion tensor imaging (DWI and DTI) parameters 
were also investigated as predictors of meningioma type and 
prognosis after SRS [12, 14–16]. While the first-order tex-
ture analysis of MRI data on conventional sequences, frac-
tional anisotropy with other DTI-derived parameter maps 
and the 3rd eigenvalue of the DTI tensor turned out to cor-
relate best with treatment outcome after SRS, the standard 
deviation of histograms of T2-weighted images (T2w) best 
predicted volumetric outcome in conventional sequences 
[17].

Radiomics is an emerging approach to computational 
quantification of the tumor morphology for diagnostic, 
therapeutic, or prognostic decision support [18]. It has been 
thus far applied to meningioma to predict its grade [19, 20] 
and the presence of brain invasion [20–24]. The present 
study was carried out to investigate whether the application 
of advanced radiomics and feature selection methodology 
could improve the prediction performance achieved in the 
previous DTI study [15]. We hypothesized that the currently 
available tools for the prediction of the volumetric response 
of meningioma to radiosurgery do not provide sufficient reli-
ability, because they do not fully utilize the morphological 
heterogeneity of meningioma. The computational radiomic 
analysis is designed to exploit morphological information 
that cannot be quantified by visual inspection of MR images. 
Tumor morphology reflects growth patterns of malignant 
cells which in turn reflect the sum of molecular interactions 
within a tumor and thus present a rich source of tumor het-
erogeneity information.

Based on the pressing need to improve the prediction of 
meningioma GKRS treatment outcome, the current study 
is the first attempt to exploit the MRI radiomic analysis to 
predict the volumetric response to GKRS.

Methods

This retrospective study was approved by the institu-
tional review board at our center, and informed consent 
was obtained from all individual participants included in 
the study. The reporting observes STROBE guidelines for 
cross-sectional studies that specify consistent reporting of 
predictive marker research to include all relevant experi-
mental detail.

Patients

Included were 93 patients between 18.4 and 81.3 years of 
age (mean = 55.2) with imaging-diagnosed intracranial men-
ingioma treated at our Gamma Knife center. MRI had been 
performed within 2 months before their radiosurgery, with 
available follow-up data from at least one MR scan after an 

interval of 12 months or longer (range 12.4:77.2 months, 
mean 35.7; Table 1).

Sixty-nine meningiomas were localized at the cranial 
base, 15 at the convexity, six at the falx, two at the tentorium 
and one intraventricularly. We were able to retrieve histology 
results from 13 to 42 cases in which a preceding operation 
was documented. Nine of the tumors were characterized as 
meningothelial and psammomatous meningioma, three as a 
fibroblastic subtype, one as transitional, all without atypi-
cal features. Cases without known histology were assigned 
as WHO grade I, based on criteria such as homogeneously 
enhancing, dural tails, no extension through cranial foram-
ina, no substantial peritumoral edema, no significant lobula-
tions. Tumor sizes ranged between 0.48 and 56.7  cm3 (mean 
8.9  cm3).

Gamma Knife treatment

All treatment were performed using a Gamma Knife model 
4C (Elekta Instrument AB, Stockholm, Sweden). Details 
of the Gamma Knife treatment technique were previously 
described [25], with the exception that at our center, MRI 
images were acquired up to 2 months before treatment. Per-
forming MRI without the placement of the stereotactic frame 
can improve image quality, by reducing possible geometric 
distortions, and permitting higher MRI acquisition accel-
eration factors, as smaller coils can be selected. On treat-
ment day, after placement of a stereotactic G frame (Elekta 
AB), MRI sequences were coregistered to the stereotactic 
contrast-enhanced 3D CT image set.

Depending on tumor size and localization, the margin 
dose varied from 9.4 to 18 Gy (Table 1). Eighty-one menin-
giomas were treated in a single session, with margin doses 
between 11 and 18 Gy (mean 13.7 Gy). According to our 
institutional protocol, meningioma abutting organs at risk 
(OAR), particularly the anterior optic pathway (AOP), were 
treated using hypofractionated radiosurgery (HFSRS). 
This was the case for 12 meningiomas that were treated 
with an application of 6 Gy for 3 days or of 5 and 6 Gy 
for 4 days. Biologically effective dose (BED) is routinely 
used to compare doses of different dose-fraction regimens, 
based on the widely accepted linear quadratic (LQ) model, 
with its acknowledged limitations for high doses  [26]. 
HFSRS doses can be converted to single fraction equivalent 
doses (SFED) [27], to intuitively compare radiation effects 
to conventional physical doses of single fraction radio-
surgery. Margin SFED of HFSRS treatments varied from 
9.4 to 13.5 Gy (mean 11.5 Gy), applying an α/β ratio of 
3.76 Gy [28]. Treatments were planned on a Leksell Gam-
maPlan 10.1 workstation (Elekta AB), by optimizing tumor 
coverage (mean 96.1%), while restricting doses to sensitive 
structures, such as the AOP, the cochlea, or the brainstem.
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MRI

MRI was performed on a 3-Tesla scanner (Achieva; Philips, 
Eindhoven, Netherlands). Our institutional MRI proto-
col for pre- and post-Gamma Knife treatment acquisition 
includes including 3D T1-weighted non-contrast (T1w), 
contrast-enhanced (CE-T1w), T2w, FLAIR, DWI, DTI, and 
for selected pathologies sequences as FIESTA, TOF, T2*w, 
ASL, QSM. Following parameters were applied for the T1w 
sequence: 3-dimensional T1 magnetization-prepared rapid 
acquisition with gradient echo (MP-RAGE), repetition time 
(TR)/echo time (TE) 6.8/3.2 ms, TI (TFE prepulse) 900 ms, 
flip angle 8°, measured voxel size 0.6*0.6*1.0 mm.

Postprocessing

In all 93 patients, meningioma volumes were delineated by a 
neuroradiologist (PS) and neurosurgeons (JB, GH, DR, LS, 
SV) with respectively 45, 11, 9, 11, 9, 11 years of experi-
ence. Tumor volumes were measured from CE-T1w images 
on the Leksell GammaPlan workstation (version 10.1). All 
image sets were verified for high image quality. Sequences 

with artifacts were excluded. All available sequences for 
each individual patient were separately uploaded to the 
QMENTA cloud platform for radiomics analysis.

Feature extraction

The computational analysis was performed within the 
boundaries of tumor ROIs by using the open-source Pyra-
diomics batch extractor [29, 30]. Feature computation was 
performed on original images and after their transforma-
tion by the built-in pre-processing filters: Laplacian of 
Gaussian (LoG), logarithm and exponential. Six classes of 
computational image analysis algorithms were employed: 
first-order statistics, shape descriptors and second-order 
texture features based on gray-level co-occurrence matrix 
(GLCM), gray-level size zone matrix (GLSZM), gray-
level dependence matrix (GLDM) and neighboring gray-
tone difference matrix (NGTDM). Shape-based descriptors 
were calculated only on unfiltered original images from the 
label mask, independently of the image’s gray values. Radi-
omics features were extracted from the quality-controlled 
three-dimensional volumes with z-score normalization but 

Table 1  Patients, treatment 
characteristics and treatment 
results

SRS stereotactic radiosurgery, RT radiotherapy, GK gamma knife, BED biologically effective dose, SFED 
single fraction equivalent dose, Gy gray

Patient and treatment characteristics Value Range

Number of patients 93 –
Age in years (mean, range) 55.2 (18.4/81.3)
Pre-SRS tumor volume in  cm3 (mean, range) 8.91 (0.48/56.72)
previous RT, SRS 0 –
Single fraction SRS treatments 12 –
KPS before SRS 88.4 60/100
Hypofractionated SRS treatments 81 –
Number of fractions (mean, range) 1.38 (1/4)
Coverage index (mean, range) 96.1% (56.0%/100%)
Selectivity index (mean, range) 65.9% (33.0%/99.0%)
Paddick conformity index (mean, range) 63.2% (32.7%/88.3%)
Margin physical dose in Gy (mean, range) 14.5 (11/24)
Maximum physical dose in Gy (mean, range) 29.0 (22/48)
Margin BED in Gy (mean, range) 62.3 (33.1/104.6)
Margin SFED in Gy (mean, range) 13.4 (9.4/18.0)
Treatment results
 Follow up period in months (mean, range) 35.7 (12.4/77.2)
 Complete response 0 [0%] –
 Partial response 13 [14.0%] –
 Minor response 36 [38.8%] –
 Stable disease 37 [39.8%] –
 Progressive disease 7 [7.5%] –
 Absolute volume change in  cm3 (mean, range) -1.47 (-8.15/22.21)
 Relative volume change (mean, range) -22.5% (-91.3%/125.4%)
 Volume change per month (mean, range) -0.67% (-3.46%/5.28%)
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without re-segmentation. The descriptions of the extracted 
337 radiomics features can be found in the PyRadiomics 
documentation at https:// pyrad iomics. readt hedocs. io/ en/ lat-
est/ featu res. html.

Sample size calculation

The prospective sample size calculation required 68 patients 
with 7 positive cases. This calculation was based on the pilot 
experiment involving 40 patients which delivered the fol-
lowing parameters necessary for sample size calculation: 
alpha = 0.05, beta = 0.20, and AUC = 0.79 (Medcalc 14.8.1; 
MedCalc Software Ltd., Ostend, Belgium). The actually 
obtained AUCs for the two calculated radiomic scores were 
0.81 (LASSO) and 0.88 (multivariate stepwise regression), 
with a final sample size of 93 patients.

Evaluation of predictive performance

Evaluation of the predictive performance for the demo-
graphic, MRI, clinicopathological and the radiomic fea-
tures was approached by the Pearson correlation (Statistica 
12, Statsoft, Hamburg, Germany), univariate linear regres-
sion (IBM SPSS software package v28, IBM Corporation, 
Armonk, NY, United States) and receiver operating charac-
teristic (ROC) analysis (IBM SPSS v28), With the menin-
gioma volume change per month as the endpoint. Statistical 
analyses were based on the continuous values of independ-
ent variables and the dependent endpoint variable. The only 
exception was ROC analysis which can only be calculated by 
consideration of the categorized dependent variable.

Model selection

Predictive models were constructed using the features 
selected by the least absolute shrinkage and selection opera-
tor (LASSO) regression (Stata/MP 17, StataCorp, College 
Station, TX, United States) and stepwise multivariate linear 
regression (IBM SPSS v28). Both methods were performed 
by the inclusion of all 284 calculated radiomic features, 
together with the 12 non-radiomic features listed in Table 2. 
Of the 284 included radiomic features, LASSO immediately 
removed 81 based on their collinearity. Features selected 
by LASSO or stepwise multivariate linear regression were 
used for the calculation of the Radiomic Scores based on the 
formula: score = variable1*coefficient1 + variable2*coeffici
ent2 + variable3*coefficient3.

Validation

The bootstrap technique with 10,000 random resamples of 
data was applied to adjust the original confidence intervals 
(95% CIs) and p values, thus correcting for over-optimistic 

bias of the univariate linear regression analysis (IBM SPSS 
v28). Split-sample cross-validation was a validation tool for 
selecting an optimal penalty coefficient λ within the LASSO 
regression analysis in Stata/MP 17.

Follow up

Imaging and clinical follow-up were performed at 6-month 
intervals for the first 2 years after GKRS, with annual fol-
low-ups thereafter. The volume of meningiomas at the latest 
imaging follow-up was compared to pre-SRS imaging data 
and categorized according to RANO criteria for meningi-
omas [31].

Results

Patients’ characteristics

The treatment results and characteristics for this patient 
group are presented in Table 1. After a mean follow-up 
period of 35.7 months, the control rate was 92.5%. RANO 
criteria for meningiomas divide response into five types 
(complete, partial, minor, stable, progressive) based on CE-
T1w imaging and meningioma segmentation [31] (Table 1).

The predictive performance of the demographic, MRI 
and clinicopathological parameters in this patient group is 
presented in Table 2. The selectivity index, KPS [32] and 
Paddick conformity index [33] (PCI) reached a significant 
correlation with the endpoint defined as the change in 
meningioma volume. The respective Pearson coefficients 
of 0.257, 0.249 and 0.254 indicated that higher parameter 
values predicted meningioma progression (Table 2). Unex-
pectedly, we did not find significant correlations of KPS 
with either tumor volume pre-SRS (p = 0.16), nor previous 
surgery (p = 0.54), but we found a significant correlation of 
KPS with age at SRS (p ≤ 0.01).

The predictive model for meningioma response 
to radiosurgery

In total, 337 texture features were extracted from MRIs of 
93 meningioma patients for each T1w sequence without and 
after administration of a contrast agent. Hundred and six 
features were calculated in original images, 77 in exponen-
tially-, 77 in LoG- and 77 in logarithmically-transformed 
images. The variability was obtained by 284 features, of 
which 60 significantly correlated with the meningioma vol-
ume change. Eight features with the highest correlation to 
the outcome are included in Table 2, for T1w sequences 
without and with contrast, together with their bootstrap-cor-
rected univariate linear regression analysis (Table 2). The 
odds ratio (OD) designates the effect size of the regression 

https://pyradiomics.readthedocs.io/en/latest/features.html
https://pyradiomics.readthedocs.io/en/latest/features.html
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(Table 2). Univariate linear regression analysis revealed 
that texture features overperformed the clinicopathological 
parameters in association with meningioma volume change 
(Table 2). It was also obvious that texture features calcu-
lated in non-contrast T1w performed better than CE-T1w 
(Table 2).

It was essential to reduce the number of 60 predic-
tively significant features by selecting those that exhibit 
the highest predictive robustness and non-redundancy. 
This was achieved by LASSO and multivariate stepwise 

linear regression analyses (Table  3). LASSO regres-
sion is a machine learning method that selects covari-
ates and estimates their coefficients by use of the tuning 
parameter λ in the ten-fold cross-validation. Lasso con-
stantly increases lambda and discards the less important 
variables when their coefficients shrink to zero (Online 
resource Fig. 1). Variable selections by LASSO as well 
as multivariate linear regression were performed by start-
ing from all 284 calculated variables that showed vari-
ability. Both methods selected the two identical radiomic 

Table 2  The predictive performance of the demographic, MRI, clinicopathological and radiomic features

Pearson correlation, linear regression analysis and feature selection by LASSO were all based on the continuous endpoint defined as the percent-
age of tumor volume change per month
Exp exponential, Orig original, Emph emphasis, Dep dependence, LoG log-sigma-1-0-mm-3D, Vol volume, SDLGLE small dependence low 
gray level emphasis
*P < 0.05
a Univariate linear regression
b Univariate linear regression, corrected by bootstrap
c Feature selection by the multivariate stepwise linear regression
d Feature selection by linear LASSO

Pearson coef. OD (B)a 95%  CIb Pa P  bootstrapb F MSLR coef.c LASSO coef.d

Non-radiomic features
 Age at GKRS 0.062 0.006 -0.016/0.028 0.553 0.576 0.36 – –
 Volume before SRS 0.249* 0.026 -0.014/0.083 0.141 0.200 2.19 – –
 Number of fractions -0.178 -0.266 -0.549/0.015 0.090 0.056 2.97 – –
 SRS total dose to margin -0.183 -0.101 -0.215/0.007 0.083 0.066 3.16 – –
 BED 0.022 0.002 -0.018/0.23 0.834 0.823 0.04 – –
 SFED 0.020 0.017 -0.142/0.154 0.859 0.828 0.03 – –
 Coverage index -0.062 -0.020 -0.295/0.008 0.554 0.481 0.35 – –
 Selectivity index 0.257* 0.030 0.005/0.055 0.013 0.016 6.49 – –
 KPS before SRS 0.249* 0.034 0.014/0.057 0.016 0.005 5.99 0.03 –
 Paddick conformity index 0.254* 0.032 0.004/0.059 0.014 0.019 6.27 – –

Radiomic features—without contrast
 LoG-interquartile-range -0.377 5.8E−5 1.8E−7/0.006 0.000 0.003 14.84 -9.91 -9.92
 LoG robust-mean-abs-dev -0.365 1.7E−10 7.4E−16/6.3E−6 0.000 0.006 13.99 – –
 LoG-mean abs. deviation -0.343 8.1E−7 1.3E−10/0.0006 0.001 0.002 12.19 – –
 LoG-root mean squared -0.339 3.9E−5 1.4E−7/0.007 0.001 0.003 11.88 – –
 LoG-variance -0.337 8.7E−15 7.1E−23/1.1E−7 0.001 0.004 11.66 – –
 LoG-10percentile 0.331 1141 36.9/26903 0.001 0.001 11.20 – –
 Log-ngtdm-busyness 0.322 0.002 0.001/0.003 0.002 0.040 10.58 0.02 0.002
 Orig-glcm-lmc1 -0.265 0.070 0.005/0.54 0.013 0.030 6.89 – –

Radiomic features—with contrast
 Orig_ngtdm_busyness 0.351 0.002 -0.004/0.003 0.001 0.008 12.6 – –
 LoG-gldm-SDLGLE -0.276 -1011.4 -1813/-181 0.008 0.010 7.40 – –
 Exp_glszm_LargeAreaEmph 0.268 -1.45E−11 -8.1E−12/3.8E−11 0.010 0.210 6.96 – –
 Exp_gldm_DepNonUnif 0.251 6.8E−6 -1.9E−6/1.5E−5 0.016 0.147 6.07 – –
 Exp-gldm_LargeDepEmph 0.244 0.011 0.001/0.022 0.019 0.043 5.68 – –
 Orig-shape_SurfaceVolRatio -0.242 -4.16 -8.0/0.18 0.020 0.037 5.59 – –
 LoG-glszm_ZoneVariance 0.240 3.68E−9 -2.9E−9/1.1E−8 0.020 0.20 5.50 – –
 Exp-gldm_SmallDepEmph -0.239 -1416.1 -2682.1/-199.9 0.020 0.030 5.43 – –
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features in the non-contrast enhanced T1w imaging: LoG 
Interquartile range and log-NGTDM-Busyness (Online 
resource Fig. 1, Table 3). Although KPS was not selected 
by LASSO, it was the first variable just under the selected 
l value (Table 3). Neither of the feature selection methods 
could deliver any features for the CE-T1w sequence. The 
radiomic scores were calculated by using coefficients and 
feature values presented in Table 3 and the formula indi-
cated in the Methods section.

The correlation analysis of the two main LASSO-selected 
predictive features with tumor volume before SRS showed 
that LoG-Interquartile-Range did not significantly correlate 
(Pearson coefficient = -0.12; p = 0.24), while log-NGTDM-
Busyness feature did show a significant positive correlation 
with tumor volume before SRS (Pearson coefficient = 0.62; 
p = 0.001). This result indicates that larger tumors present 
more pronounced T1w inhomogeneities, as the inhomogene-
ity defined by log-NGTDM-Busyness feature is described as 
the rate of change in greylevel intensities on the very close, 
neighbouring pixel range.

Unlike LASSO and multivariate regressions, ROC anal-
ysis demands a binary outcome. Therefore, the change in 
meningioma volume was categorized by the three cutpoints, 
illustrated in Fig.  1A: progressive volume (volumetric 
change =  + 1.5%/month), stable volume (− 0.68%/month) 
and minor volume (− 1.81%/month). The predictive per-
formance was optimal for the progressive volume cutpoint 
(+ 1.5%/month) and thereafter declined as the cutpoint was 
lowered to − 0.68 and − 1.81% (Fig. 1A). The change of 
meningioma volume in individual patients is presented in 
Fig. 1a. ROC analysis of radiomic scores is indicated in 
Fig. 1b.

Figure 2 visually presents the major predictive clue by 
comparing the T1w images with extreme high and low val-
ues of LoG-Interquartile-Range. This feature is of particular 

importance because it was selected as the predictively opti-
mal (Tables 2 and 3; Online resource Fig. 1).

Seven cases presented treatment failure with progressive 
disease after a mean follow-up period of 28.8 months. Pre-
SRS tumor volume was on average 11.25 cc [0.95–26.45 cc], 
all these meningiomas were treated with single fraction SRS 
with prescription doses of 13.0 Gy on average. Though his-
tology was not available for five cases with progressive 
disease, pre-SRS histology of the meningioma with largest 
tumor growth rate (5.3%/m) was described meningothelial, 
while for the meningioma with third largest growth rate 
(4.5%/m) pre-SRS histology was obtained as transitional. 
The LoG-Interquartile-Range value resulted to be on average 
0.1058 ± 0.0278 for the seven cases. Malignant transforma-
tion was not observed at last imaging follow-up.

Discussion

Unlike the traditional visual interpretation of morphology 
seen in medical images, we treated MRI as mineable data 
by extracting quantitative computational features. This 
approach gains in importance because increasingly wide-
spread clinical imaging provides an ample source of tumor 
morphology information with potential predictive value. 
This report provides the first description of a strong associa-
tion between imaging features and the volumetric response 
of meningioma to radiosurgery.

Tumor macroscopic morphological heterogeneity has 
been increasingly recognized as the source of novel pre-
dictive clues for radiotherapy resistance [34, 35]. MRI is 
commonly used to acquire macroscopic tumor morphol-
ogy because of its advantages that include specific tissue 
enhancement, the ability to perform functional, diffusion 
and perfusion imaging, high contrast and spatial resolution 

Table 3  Texture feature selection

KPS karnofsky performance status, GKRS gamma knife radiosurgery, Lambda (λ) a tuning constant used in LASSO variable selection, LASSO 
least absolute shrinkage and selection operator
Variable selection was performed by LASSO and stepwise multivariate linear regression 
a Selected lambda=0.40; based on the lowest predictive error in cross-validation

LASSO (selected l = 0.40)a T1 without contrast

coefficient (B) λ

LoG interquartile range -9.916 0.53
Log-NGTDM-busyness 0.002 0.46
KPS before GK – 0.32

Multivariate stepwise linear regression Coefficient (B) p value

LoG interquartile range -8.681 0.000
log-ngtdm-busyness 0.002 0.000
KPS before GKRS 0.028 0.029
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Fig. 1  Predictive performance of the radiomic scores for different 
outcomes. A Waterfall plot of changes in tumor volume for individual 
patients. At the time of the last follow-up, seven of 93 meningiomas 
were characterized as progression (black, left), 37 as stable (gray, 
middle), 36 as the minor response (white, middle) and 13 as partial 
response (gray, right). Meningioma volume-outcome was categorized 
with the indicated three cutpoints. B Receiver operating characteris-
tic (ROC) curves for the radiomic scores obtained by linear LASSO 

(solid line) and multivariate stepwise linear regression (MSLR, 
dashed line). The position of predictive scores above the reference 
line indicates that higher score values predict meningioma progres-
sion. Plots reveal discrimination efficiencies of the continuous values 
of predictive scores calculated against the outcome categorized by the 
cutoff for meningioma progression defined as + 1.5% volume change 
per month (arrow). MSLR multivariate stepwise linear regression, 
AUC  area under the curve

Fig. 2  Identification of the major morphological predictive clue(s) 
by visual comparison of MR images with extreme values of LoG-
Interquartile-Range as the predictively best-performing feature. A 
Meningioma with volume regression and a high value of LoG-Inter-
quartile-Range. B Enlarged ROI of meningioma, shown in A. C LoG 

transformation of the ROI shown in B. D Meningioma with volume 
progression and a low value of LoG-Interquartile-Range, E Enlarged 
meningioma ROI from A. F LoG transformation of the image shown 
in B. LoG laplacian of Gaussian, IQR interquartile range
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[36]. We tried to achieve an exhaustive extraction of the 
morphological clues in meningioma MRI by calculating 
the full range of radiomics image-analysis algorithms. Such 
a comprehensive approach necessitated a reliable feature 
selection that would reduce the model to a small number 
of predictively best performing and non-redundant features. 
The selection results obtained in this study were exception-
ally consistent because the two different feature selection 
methods both selected the same radiomic features for the 
non-contrast T1w images: LoG Interquartile range and log-
NGTDM-Busyness. However, neither of the feature selec-
tion methods could identify any sufficiently predictively 
robust features in the CE-T1w images. This indicated a pre-
dictive inferiority of the CE-T1w images.

The LoG-Interquartile-Range is a simple feature describ-
ing the difference in pixel intensities between the first and 
the third image pixel intensity quartiles (25th and 75th per-
centile). But its interpretation is complicated by the fact 
that it was calculated on images transformed by the edge 
detection Laplacian pre-processing filter (LoG), a deriva-
tive filter used to highlight areas of rapid change (edges) 
in images. LoG-Interquartile-Range could be interpreted 
as a measure of the tumor morphology whereby the larger 
amount of edges introduced by the LoG pre-processing filter 
predicted progressive disease. The predictive significance 
of this feature was previously reported in the single study 
which exploited T2WI to predict the preoperative T stage 
in rectal carcinomas [37]. The second selected predictive 
feature, log-NGTDM-Busyness, was calculated from a 
neighborhood gray-tone difference matrix (NGTDM) after 
a logarithmic pre-processing of images. It also reflects the 
rate of change in greylevel intensities, but on the close range, 
between the voxel and its 26 immediate neighbors in three 
dimensions or eight pixels in two dimensions. A high value 
for busyness defines a complex, ‘busy’ image, with rapid 
changes of intensity between neighboring pixels and it pre-
dicted less favorable volumetric reduction of the meningi-
omas in the current study. The better-known contrast feature 
differs from busyness by depending on the dynamic range of 
pixel intensities, besides the common spatial change rate of 
pixel intensities. The predictive value of the log-NGTDM-
busyness is more established in comparison to the LoG-
Interquartile-Range. Log-NGTDM-Busyness was found 
to discriminate between glioblastoma and primary central 
nervous system lymphoma [38], it classified PET images of 
benign and malignant solid pulmonary nodules [39], pre-
dicted survival outcomes among lung cancer patients [40] 
and also predicted tumor aggressiveness [41].

Interestingly, the LoG-Interquartile-Range exerted the 
opposite predictive association in comparison to the sec-
ond selected radiomic feature in this study: log-NGTDM-
Busyness. The predictive value of both features is presum-
ably derived from their ability to extract tumor texture clues 

which alter the tumor volume change rate. Since LoG-
Interquartile-Range had a much higher predictive weight 
within the radiomic score than log-NGTDM-Busyness, it 
turns out that regions of longer-range rapid intensity changes 
detected by Laplacian filter are the major predictive clues in 
meningioma morphology. Our visual investigation of tumor 
ROI with progression was consistent with the expectation 
that low LoG-Interquartile-Range values actually reflected 
higher textural homogeneity. This was consistent with the 
results of our previous study which calculated the first-order 
pixel intensity features to find that higher textural homoge-
neity of T2w images, was associated with tumor progression 
[17].

The low correlation between treatment plan conformity 
and volumetric change, expressed by the Coverage Index 
correlation of − 0.062, indicating a slightly better tumor 
reduction with higher doses, is probably because most treat-
ment doses were high enough to reach the plateau of the 
sigmoid curve shoulder of tumor control probability (TCP). 
Interestingly, the radiation dose did not significantly associ-
ate with the outcome, neither was it selected by the feature 
selection approaches. Control rate for WHO I meningiomas 
was 92.4% (86 out of 93 cases) at 3 years after SRS was 
in concordance with literature, progression free survival 
(PFS) is commonly documented to be in the range 86–99% 
at 5 years after SRS [42]. The large study led by Santacroce 
[9], observed a 5-year PFS rate of 95.2%.

Selectivity can be considered as a predictor for normal tis-
sue complication probability (NTCP) and is less frequently 
considered as an indicator for tumor control. Interestingly, 
we found that the Selectivity Index reached a significant 
positive correlation with meningioma volume change, in 
other words, higher plan selectivity seems to lead to less 
control. A higher treatment selectivity can be achieved when 
planning larger or rounder, smooth-edged tumors. While 
larger tumors are more challenging to control with SRS, 
additionally, according to our findings, rounder meningi-
omas appear to have less favorable outcome. Because the 
Paddick Conformity Index (PCI) is defined as a combination 
of lesion coverage and selectivity, the significant correlation 
of selectivity with volume change also reflects in a signifi-
cant correlation of PCI with volume change.

Advantages of this study include the exceptional consist-
ency of the two used feature selection methods (LASSO and 
multivariate stepwise regression). This was an indicator of 
the robustness of our predictive model.

Limitations of this study include the patient group size, 
although we by far exceeded the sample size requirement, 
and the patient group was highly homogenized. Further-
more, predictive studies need to establish the generaliz-
ability of the obtained results by using internal or exter-
nal validation. Internal validation is performed within the 
existing patient group, while external validation uses another 
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unrelated patient group. The current study performed the 
internal prognostic validation by the two major approaches: 
bootstrap bias-correction and cross-validation. Additional 
validation studies in external groups would be needed to 
further characterize the prognostic clinical validity of the 
analysis performed in this study. Furthermore, although the 
employed computational analysis technique is fully objec-
tive, the overall workflow still included residual subjectivity 
at the level of tumor ROI selection. Lacking pathological 
characteristics in many cases, the relatively short follow-up 
period and the retrospective design of the prognostic model 
were further limitations.

Conclusion

In conclusion, we report the first strong association between 
MRI radiomic features and volumetric meningioma response 
to radiosurgery. Our data indicate that the radiomic texture 
analysis has the potential to become a useful tool for the 
identification of novel, independent and predictively more 
reliable markers for volumetric change, with AUC values 
reaching 0.88. Pretreatment radiomics analysis can be con-
sidered a step towards an automated artificial intelligence-
based process to help choose an optimal individualized treat-
ment strategy.
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