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ABSTRACT Over the last decade, machine learning methods have revolutionized a large number of domains
and provided solutions to many problems that people could hardly solve in the past. The availability
of large amounts of data, powerful processing architectures, and easy-to-use software frameworks have
made machine learning a popular, readily available, and affordable option in many different domains and
contexts. However, the development and maintenance of production-level machine learning systems have
proven to be quite challenging, as these activities require an engineering approach and solid best practices.
Software engineering offers a mature development process and best practices for conventional software
systems, but some of them are not directly applicable to the new programming paradigm imposed by
machine learning. The same applies to the requirements engineering best practices. Therefore, this article
provides an overview of the requirements engineering challenges in the development of machine learning
systems that have been reported in the research literature, along with their proposed solutions. Furthermore,
it presents our approach to overcoming those challenges in the form of a case study. Through this mixed-
method study, the article tries to identify the necessary adjustments to (1) the best practices for conventional
requirements engineering and (2) the conventional understanding of certain types of requirements to better
fit the specifics of machine learning. Moreover, the article tries to emphasize the relevance of properly
conducted requirements engineering activities in addressing the complexity of machine learning systems,
as well as to motivate further discussion on the requirements engineering best practices in developing such
systems.

INDEX TERMS Machine learning, requirements engineering, software engineering, software requirements.

I. INTRODUCTION

Artificial intelligence (Al) and its sub-field machine learning
(ML) have had significant research activity and commercial
use for decades, but over the last decade, they have become
significantly more popular and accessible to the wider com-
munity. To a large extent, that has happened as a result of the
significant progress made in the ML sub-field known as deep
learning (DL) [1], which relies on deep neural networks to
learn meaningful representations from raw data and bypasses
the need for manual feature engineering. The significant
achievements that DL has made possible in many fields
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(e.g., [2], [3]) have been mainly a result of the improvements
in the techniques used to train deep neural networks, the
availability of larger datasets and more powerful computers,
as well as the significantly reduced training time [4]. This
progress has gradually made ML algorithms ubiquitous in
many areas of our society and everyday activities.

ML methods introduce a different approach to software
programming in which, instead of writing problem-solving
instructions in software code, learning algorithms learn
solutions to problems through data. This new approach
generally consists of specifying a goal of the program
behavior, e.g., by collecting relevant data, limiting the solu-
tion search space through a rough skeleton of code, and
letting the learning algorithm find the best solution [5].
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Although ML systems typically require a significant amount
of conventional software code to support the ML models
which are at their core [6], the new approach to software
programming introduced by ML challenges the established
software development process and best practices. The ML
software development process is characterized by its data-
centricity, non-linearity, and multiple feedback loops between
stages, which can become even more complex in systems with
multiple ML components that interact in complex ways [7].
Previous experience has shown that while developing and
deploying ML systems can sometimes be a relatively fast and
inexpensive process, maintaining such systems over time can
be challenging and costly, mainly because ML systems are
prone to accumulating hidden technical debt [6]. In addition
to engineering challenges, Al systems introduce a new set
of challenges related to predicting their exact behavior in
different situations, predicting their effect on individuals or
society, and ensuring their trustworthiness. Sometimes it can
be challenging to predict the behavior and outcomes of Al
systems precisely because of their complexity, susceptibility
to imperfections of the data they learn from, the difficulty
in interpreting the functional processes that generate their
output, as well as any new behavior arising from their inter-
actions with the world or changes in their environment [8].
In that context, the research literature has reported an example
of bias in a commercial ML system that had been discov-
ered only after the system had been released for use, and
negative user experiences had been reported [9]. Develop-
ing an appropriate solution to a real problem through ML
is a complex process that requires meticulous analysis of
the system capabilities, behavior, risks, limitations, qualities,
and intended/unintended use cases. It also requires analysis
of the potential trade-offs between the stakeholders’ (some-
times too high) expectations and their feasibility constrained
by the available data and resources, between the aspiration
for higher model accuracy (often leading to higher model
complexity) and the compliance with quality, ethical, and
legal constraints, between the time spent on experimenting
and the expected time to delivery of an initial value to the
stakeholders, to name just a few.

The analysis of ML systems’ feasibility, the formulation
of their important quality, ethical, and legal attributes, their
limitations, constraints, and risks, the decisions on the accept-
able trade-offs, and the choice of system validation strategies
in agreement with their stakeholders are all activities that
belong to the requirements engineering (RE) stage in the
conventional software development process. This leads to
the conclusion that RE activities are as crucial to the ML
development process as they are to the conventional one.
However, when ML components replace conventionally pro-
grammed ones, the software requirements should correspond
to the different development process and the ML specifics.
Otherwise, the consequences of incorrectly engineered or
missing requirements may be even greater in the case of
ML systems, given the effects these systems may have on
individuals, the control mechanisms they require, and the
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ethical or legal requirements they are subjected to. Never-
theless, not much is available on RE for ML systems, nor
have the RE activities from the related domain processes,
such as Cross-Industry Standard Process for Data Mining
(CRISP-DM) and Knowledge Discovery in Databases
(KDD), been detailed sufficiently by the RE and ML commu-
nities [10]. All of the above was a motivation for this article
which tries to answer the following research questions:

1) Are conventional RE activities relevant to the ML
development process, what challenges does this pro-
cess bring them, and what are their necessary adjust-
ments to better fit into this process?

2) What types of requirements are particularly impor-
tant in addressing the ML systems specifics, do these
specifics affect the conventional understanding of the
requirements, and how should this understanding be
adjusted?

The article answers the research questions through a
mixed-method study, i.e., (1) areview of previously published
literature in the fields of ML and RE, and (2) a case study
involving a research project of the authors of this article [11].
The mixed-method study was primarily motivated by the lack
of practical examples of (1) RE activities in ML projects and
(2) requirements specifications for ML systems reported in
the literature. The case study gave us the opportunity to share
the challenges we faced during the RE activities in a research
project involving ML, our approach to dealing with those
challenges, and excerpts from the requirements specification
for the developed ML system.

The objectives of this article are the following:

1) Emphasizing the importance of RE activities in dealing

with the complexity of ML systems.

2) Analyzing the aspects of conventional RE that need to
be adjusted to the ML specifics.

3) Giving an overview and sharing our experiences on
this relatively unexplored to date, but, in our opinion,
important topic.

The rest of the article is organized as follows. First,
an overview of the related work on RE for AI/ML systems
is presented. Next, a description of the methodology used to
identify relevant articles for the research questions is given.
Two sections dedicated to answering the research questions
follow. The article concludes with a discussion of the most
important findings and a conclusion.

Il. RELATED WORK
The number of research articles dedicated to RE for Al
and ML systems is relatively small to date, as noted
in [10] and [12] also. Furthermore, in their review Martinez-
Ferndndez et al. [13] have identified only one article,
i.e., [10], that covers the whole RE process. For these reasons,
this section includes articles that are not entirely dedicated to
RE for Al or ML systems but which mention this process as
part of the broader software engineering process they analyze.
Belani et al. [14] discuss the RE challenges in the devel-
opment of systems which the authors call Al-based complex
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systems. The article presents the RE4AI taxonomy of chal-
lenges related to recognized elements of Al (data, model,
and system), which are aligned with the typical RE activities.
Vogelsang and Borg [10] present the findings from interviews
with four data scientists on their experience with RE activ-
ities in the development of ML systems. Among the rest,
the authors conclude that requirements engineers should be
aware of the new quality requirements and integrate the ML
specifics in the established RE process. Chuprina et al. [15]
describe their ongoing work on an artifact-based RE method
for data-centric systems, i.e., systems that include both Al
and ML systems. The authors state that these systems require
a new approach to RE and define a conceptual model
of artifacts, contents, and relations that should guide the
RE process. Heyn et al. [16] identify four challenging RE
areas in the development of systems which the authors call
Al-intense systems, i.e., systems that fundamentally depend
on Al functionalities. The four areas include (1) defining
requirements for the context in which the system would
operate, (2) defining quality attributes and data requirements,
(3) defining performance metrics and monitoring if the
system has the guaranteed behavior, and (4) gaining an
understanding of the human factors that influence the user
acceptance and trust.

Studer et al. [17] extend the CRISP-DM data mining pro-
cess model to address the specifics of the ML development
process. This new process model consists of six phases, i.e.,
(1) business and data understanding, (2) data preparation,
(3) modeling, (4) evaluation, (5) deployment, and (6) mon-
itoring and maintenance. The authors provide a description
of the RE activities throughout the phases. While Késtner
and Kang [12] describe a course on software engineering for
systems which the authors call Al-enabled systems, they also
mention software requirements as one of the stages in the
software engineering life cycle. In that context, the authors
emphasize the lack of specification for AI components, the
importance of identifying and measuring quality require-
ments beyond model accuracy, the importance of defining
safety and security requirements, as well as the importance
of properly planned error handling. Zhang et al. [18] have
surveyed 195 DL practitioners to identify software engineer-
ing challenges in DL application development. The authors
present 13 findings that reveal the challenges in different
development phases, and 7 improvement recommendations.
Requirement analysis, integration testing, acceptance test-
ing, and problem definition are identified as the most
labor-consuming tasks throughout the process. Require-
ment analysis is recognized as a more difficult task in DL
applications than in conventional ones. Kuwajima et al. [19]
study the open problems in engineering safety-critical ML
systems, particularly in terms of ML model/system require-
ments, design, and verification. The authors conclude that
ML models are characterized by a lack of requirements spec-
ification, design specification, interpretability, and robust-
ness. Through gap analysis of standard quality models and
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ML model characteristics, they conclude that the lack of
requirements specification and robustness have the great-
est impact on those models. Rahman et al. [20] present a
project which uses ML in detection and correction of trans-
action errors. In terms of RE, the authors emphasize the
need for iterative refinement of the requirements since they
evolve frequently. They further emphasize the importance
of properly conducted feasibility analysis of ML systems
in relation to the available data, as well as the importance
of identifying the data requirements before any large data
acquisition. Wan et al. [21] present analyses of information
obtained from 14 interviewees and 342 survey respondents
from 26 countries. The authors’ analyses reveal significant
differences between the ML and non-ML software develop-
ment process at different stages (e.g., requirements, design,
and testing). Some of the differences related to RE include
the need for preliminary experiments while collecting the
requirements for ML systems, the greater uncertainty of
the requirements, and the need to anticipate any potential
performance degradation. Giray [22] presents an overview
of research articles on software engineering for ML sys-
tems. In terms of RE, the author points to the challenges
with proper management of customer expectations, with
the requirements elicitation, analysis, and specification, with
the new quality attributes, and the new types of require-
ments such as data requirements. The author suggests that
future research should focus on improving the alignment of
performance metrics with business objectives, proper integra-
tion of the requirements for ML and non-ML components,
risk assessment frameworks, and data privacy regulations.
Martinez-Fernandez et al. [13] provide a review of 248 arti-
cles on software engineering for Al systems, of which 17 are
dedicated to software requirements. The authors conclude
that many of the latter focus on quality attributes, several
deal with specification approaches, and only one offers a
holistic view of the RE process. They point to the soft-
ware requirements as one of the underrepresented areas in
the entire set of articles, with great potential for further
research. In terms of quality, they emphasize that stan-
dards developed for conventional software systems should
be updated. Serban and Visser [23] analyze software archi-
tectures that enable robust integration of ML components
through a systematic literature review, interviews, and a
survey. They identify RE challenges such as (1) the dif-
ficulty in understanding the project and estimating the
effort in advance, (2) the difficulty in defining functional
requirements for ML components, and (3) the potential reg-
ulatory restrictions. Pereira and Thomas [24] analyze the
safety challenges in the development of ML-based cyber-
physical systems. In terms of RE, the authors indicate that
while high-level requirements can be defined explicitly, the
low-level requirements are defined implicitly through the
dataset, making the requirements traceability inapplicable.
They suggest specifying requirements for data management,
model development, model testing/verification, and model
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deployment. The potential risks include incomplete data def-
inition, incorrect loss function, wrong performance metrics,
incompleteness of the testing process, and inadequacy of the
safe operation values. Lorenzoni et al. [25] summarize the
software engineering practices and challenges in developing
ML models. Through their review of research articles, the
authors have found an evident lack of techniques related to
RE for ML models. Lwakatare et al. [26] present a taxon-
omy of engineering challenges related to commercial systems
containing ML components. Through several case studies,
the authors have identified five stages in the evolution of
ML components, from an experimental stage to autonomous
functioning. Some of the presented challenges, which, in our
opinion, are related to RE, are those associated with the
problem formulation and the desired outcome specification
in the experimental stage, as well as with the failure to eval-
uate models with business-centric metrics in the noncritical
deployment stage. Maass and Storey [27] analyze if ML could
benefit from conceptual modeling. Additionally, the authors
outline specification languages useful in specifying various
types of requirements for ML systems. Villamizar et al. [28]
present a catalog of 45 concerns related to ML systems
that should help requirements engineers in defining require-
ments for such systems. The concerns cover five perspectives,
i.e., objectives, user experience, infrastructure, model, and
data. In a second research article, Villamizar et al. [29] pro-
pose an approach for analysis and specification of the five
perspectives of ML systems outlined in [28]. The authors
provide a diagram of ML tasks and concerns, as well as a
specification template. Pei et al. [30] review research articles
published from 2016 to 2022 on RE-related collaboration
challenges occurring between the different roles involved
in ML development. The authors summarize the solutions
proposed in the reviewed literature and give an example
from the industry. Ahmad et al. [31] present a systematic
mapping study of 43 primary studies on RE for Al. The
authors analyze (1) the methodologies used in specifying
requirements for Al-based software, (2) their limitations,
(3) the evaluation method which the primary studies use,
and (4) the application domains. The authors also pro-
vide recommendations for future research. Ahmad et al. [32]
also analyze human-centered approaches in RE for Al
software. Their (1) analysis of industry guidelines for Al soft-
ware and (2) survey of industry practitioners have revealed
the current practices and gaps. Jahic et al. [33] propose a
textual domain-specific language that facilitates the spec-
ification of data requirements and necessary ‘‘recognition
skills” the neural networks should acquire through their
training. Through an example, the authors show the bene-
fits of the proposed approach. Through a literature review,
De Hond et al. [34] outline guidelines and quality criteria
for development and evaluation of Al models for healthcare.
The guidelines include many aspects relevant to RE, such as
understanding the problem and its context, quality require-
ments, risk management planning, and similar.
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Several research articles focus on non-functional require-
ments (NFRs) and quality-related aspects of AI/ML systems.
Pons and Ozkaya [35] summarize the unique characteristics
of several quality attributes of Al systems that are used by
the public sector, i.e., security, privacy, data-centricity, sus-
tainability, and explainability. Horkoff [36] outlines a set of
challenges associated with NFRs for ML systems, as well
as research directions to solve them. The author states that
the current knowledge of NFRs should be at least partially
rethought in the context of ML, because although many
techniques related to NFRs for non-ML systems are still
valid, some need adjustment or complete renewal. Kuwajima
and Ishikawa [37] analyze the quality attributes relevant to
Al systems. The authors try to identify what needs to be
modified or added to quality standards for them to be adapted
to the ML specifics and the Ethics Guidelines for Trustworthy
Al from the European Commission [38]. Siebert et al. [39]
present a process for constructing quality models for ML
systems, describe the elements of the process, and present a
use case from the industry. The authors conclude that some
of the existing quality attributes relevant to conventional
software systems should be redefined, and new ones rele-
vant to ML systems should be added. Nakamichi et al. [40]
propose a requirements-driven method for deriving qual-
ity attributes for ML systems. They extend conventional
quality attributes with those relevant to ML systems and
describe a method that allows deriving quality attributes and
measurements dependent on ML systems’ goals. Habibul-
lah and Horkoff [41] present findings from interviews with
ML industry practitioners regarding ML-relevant NFRs, their
measurement, and challenges. The authors conclude that
the NFRs for ML systems are neither well structured nor
well documented, their measurement is challenging, and
although important, their consideration in ML systems is still
at an early stage. In a journal article, Habibullah et al. [42]
extend these findings by analyzing the importance of different
NFRs, their associated challenges, and the different percep-
tion of NFRs that exists between practitioners from industry
and academia. Habibullah et al. [43] present an exploratory
study on the definitions of NFR relevant to ML systems,
their shared characteristics, and past research interest in
each NFR. The authors conclude that the research inter-
est in different NFRs differs significantly, and they manage
to identify six clusters of NFRs sharing similar properties
and purpose. Hu et al. [44] address reliability requirements
for machine vision components by defining relevant image
transformations, classes of reliability requirements, a method
for instantiating requirements of each class of reliability
requirements using human performance data, and, finally,
amethod to verify that components satisfy such requirements.
The requirements are defined as a tolerated range of visual
changes which should not affect the component behavior.

As mentioned at the beginning of this section, a small
number of research articles cover the challenges imposed
by ML specifics throughout the whole RE process, as it is
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done in this article. Compared to [10], which analyzes RE
challenges through interviews with data scientists, our article
does so through a literature review and a case study. Several
research articles [18], [21], [23], [25] cover the challenges
associated with the various software engineering activities
during ML software development. However, in our opinion,
the challenges related to RE activities are not covered as
extensively as in our article. Two research articles [13], [22]
provide an in-depth overview of the challenges associated
with the different stages of ML software development, includ-
ing those related to RE. Compared to the referenced articles,
our article (1) summarizes the challenges not only in terms of
the conventional RE activities but also in terms of a variety
of conventional types of requirements, (2) presents insights
into the reasons for the relevance of those RE activities and
types of requirements for ML systems, (3) provides a brief
overview of the most relevant definitions and trade-offs for a
set of ML-specific quality attributes, and (4) shares our expe-
riences in dealing with those challenges in a real ML project,
along with excerpts from its requirements specification. Our
article also differs from [31] in the research questions it
answers and the method it uses to answer them. Namely,
our article (1) focuses particularly on the challenges intro-
duced in the conventional RE process by the ML specifics
and on the ways to address them, (2) systematizes them by
conventional RE activities and a large set of conventional
requirement types, (3) reviews research articles which may
not be explicitly devoted to RE for ML, but are implicitly
related to a RE activity or requirement type (e.g., articles
related to risks, limitations, success metrics, assumptions,
constraints, various quality attributes of ML systems), there-
fore, in our opinion, it gives a broader overview of the topic,
and, finally, (4) shares our practical experience in dealing
with those challenges through a case study.

lll. METHOD

This article answers the research questions through
(1) a review of literature in the fields of RE and ML and
(2) a case study. The article is organized according to the
conventional RE activities and software requirements. Most
sections begin with a short definition of the RE activity or
software requirement to which they are dedicated, continue
with a brief review of the ML domain literature relevant to the
activity/requirement, and end with experiences from the case
study. The following two sections describe the methodology
and its limitations.

A. RESEARCH ARTICLES REVIEW

The conventional RE activities and software requirements
were analyzed through well-known publications from the RE
domain (e.g., [45]). The impact on the conventional RE activ-
ities and software requirements in ML projects was analyzed
through a review of previously published research articles
that were identified using Google Scholar! through the search

1 https://scholar.google.com/
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TABLE 1. Search queries used in identifying relevant research articles.

Search Criterion
1 General

Search Queries

(machine learning | artificial intelligence)
(requirements engineering | software re-
quirements)

(machine learning | artificial intelligence)
(user | stakeholder | functional | non-
functional | quality) requirements
(machine learning | artificial intelligence)
(ethics | trustworthiness | engineering |
challenges | metrics)

(machine learning | artificial intelligence)
(interpretability | explainability | fairness
| robustness | security | privacy | safety)

2 | Requirement types

3 | ML-specific concepts

4 | ML-specific qualities

criteria given in Table 1, in the period of June-July 2021.
The article search was repeated in April 2023 to find relevant
articles published after the initial search. A description of the
process follows.

The initial attempt to identify previously published
research articles relevant to our research questions was based
on search criteria 1 and 2 in Table 1. However, the query
results mainly consisted of articles devoted to the use of
ML methods to facilitate RE, which is irrelevant to this
article. One of the reasons for such results could be the
small number of research articles devoted to RE for ML at
the time of searching. Another reason could be the use of
inconsistent terminology for certain RE activities or soft-
ware requirements, like (1) the use of synonyms for the
term “‘requirement,” (2) the disagreement over the nam-
ing of certain RE activities, e.g., “requirements validation”
over “requirements verification”, further discussed in [45],
or (3) the disagreement over the nature, terminology, and def-
inition of the non-functional requirements, further discussed
in [46]. A third reason could be the significant difference
between the conventional and the ML software development
process, leading to a potential terminological inconsistency of
the second one with the first. The potentially relevant articles
were initially selected based on their title and abstract, taking
into account only journal, conference, conference workshop
articles, and preprints (available on arXiv?), all written in
English. These initially selected articles were then analyzed
more thoroughly from our side. The articles in the final
selection were not necessarily dedicated to RE for ML or Al
systems in their entirety but contained findings on the subject.
Since the number of selected articles was again small, the
references and the articles which cited those articles entirely
dedicated to RE for ML or Al (e.g., [10], [36]) were analyzed
in the same manner to identify other relevant articles. Finally,
the selected articles were used to extract and synthesize the
answers to the research questions. This process is illustrated
in Figure 1.

The search criterion 3 in Table 1 allowed us to identify
influential articles in specific sub-fields of ML. Although not
explicitly dedicated to RE for ML, some of these articles

2https ://arxiv.org/
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FIGURE 1. General flowchart of the literature review process (search criteria 1 and 2).

contain findings that, in our opinion, should be considered
during RE in ML projects. These findings include new types
of implementation, ethical or trustworthiness risks, new types
of success metrics, assumptions, limitations, and similar. Due
to the broadness of the sub-fields this search criterion covers,
the articles were selected based on our estimation of their
usefulness in answering the research questions. A thorough
review of these sub-fields is out of the article’s scope, and
therefore, throughout this article, we only briefly summarized
the findings we considered important. This process is illus-
trated in Figure 2.

A widely accepted classification of quality attributes rel-
evant to ML systems does not exist at the time of writing,
although certain research articles address this challenge
(e.g., [37]). Therefore, the research articles dedicated to
ML-specific quality attributes were identified through search
criterion 4 in Table 1, but this list of quality attributes should
not be considered a complete one. Section V-D summarizes
the findings we found relevant to RE from a selected set of
articles dedicated to each quality attribute, regardless of their
mentioning of RE related terminology, since the RE literature
indicates that elicitation, prioritization, and specification of
quality requirements in a specific, measurable, attainable,
relevant, and time-sensitive manner falls in the domain of
RE [45]. More recent review articles, which have a large
number of citing articles, were prioritized in our selection
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process. Their references were used to find articles that pro-
vide definitions/insights into the relevant quality attributes as
well. Furthermore, a brief summary of some of its trade-offs
with other quality attributes was compiled for each quality
attribute. This way, we tried to emphasize the importance
of those quality attributes to ML systems, emphasize the
consequences of giving them insufficient attention during the
RE activities, and provide the reader with valuable references
for further reading. This process is illustrated in Figure 2.

Finally, despite our efforts to identify and include in our
review as many of the previously published research articles
relevant to RE for ML systems as possible, due to the afore-
mentioned challenges and the volume of articles in certain
ML sub-fields (e.g., certain quality attributes), relevant arti-
cles may still be missing.

B. CASE STUDY

The object of our case study is an ML system, Aca-
demic Disciplines Detector (ADD), which detects concepts
defined as academic disciplines by the community editing
Wikipedia, based on textual excerpts from their Wikipedia
articles and their similarity to the academic disciplines that
are part of expert-created classification systems [11]. As an
example of an integrative ML system, incorporating several
custom-trained and third-party ML models in its core func-
tionalities while attempting to solve a real-world challenge,
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we believe that ADD is a suitable object of our case study.
Although the inclusion of a single case study may be consid-
ered a limitation, we believe that our experience can still be
helpful in analyzing the RE challenges in ML projects.

IV. REQUIREMENTS ENGINEERING ACTIVITIES IN
MACHINE LEARNING PROJECTS

Requirements engineering covers the activities related to
(1) requirements development (requirements elicitation,
analysis, specification, and validation) and (2) require-
ments management, which are inevitable activities in any
project regardless of its approach to software development
(e.g., waterfall or agile) because they give reassurance that
the problem is properly understood and resolved [45]. This
section analyzes the research questions related to the rele-
vance of conventional RE activities to the ML development
process, the challenges this process brings to the activities,
and their necessary adjustments to better fit into this process.

A. REQUIREMENTS ELICITATION AND ANALYSIS

1) LITERATURE REVIEW

As with all other software systems, the success of
production-level ML systems depends primarily on their
fulfillment of specific business goals or end-user needs.
Goodfellow et al. [4] indicate that the definition of goals
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and performance metrics, as a first step towards successful
practical application of ML, should always be guided by
the problem to be solved. In that sense, any software devel-
opment project begins with activities that provide a proper
understanding of the problem to be solved, the factors that
have motivated the project, and the context in which the
system would be used. In conventional RE, the requirements
elicitation is the process through which the stakeholders’
needs and constraints are identified, and it is intertwined with
the requirements analysis and requirements specification
activities [45].

Identification of all relevant stakeholders is inevitable for
a successful elicitation of the requirements. However, in ML
systems, the requirements may depend not only on the stake-
holders’ needs but on the available data as well. In that
sense, data scientists assess the feasibility of the stakeholders’
requirements through analysis and experiments, so, as Vogel-
sang and Borg [10] indicate, they are important stakeholders
to be consulted during the requirements elicitation. Certain
stakeholders may have unrealistic expectations of the ML
systems’ performance, adoption process, or functionality,
so they should be helped in making their targets more reason-
able, as well as in accepting the uncertainty of the time and
cost estimates [13]. Stakeholders should be aware that despite
its enormous potential, ML introduces nontrivial challenges
to the software development process, which can sometimes
make it a less suitable (e.g., in terms of interpretability) or a
more expensive option (e.g., in terms of time/resources) than
other available options. For example, while DL stands out in
solving closed-end classification problems with sufficiently
large training datasets and test datasets that closely resemble
those from training, any deviation from these assumptions
or misunderstanding of DL limitations can be a source of
problems [47]. Supervised DL algorithms may require at least
10 million labeled examples to achieve or exceed human
performance [4], which can hardly be obtained in certain
domains. Furthermore, Martinez-Ferndndez et al. [13] bring
attention to the applicability of research results in practice
because sometimes they can oversimplify reality and be inap-
plicable in real conditions. In short, the decision to implement
an ML-based solution to a problem should be based primarily
on the outcome of the problem-specific analyses.

In addition to the stakeholders’ requirements related to
the system functionality, it is essential to understand their
requirements related to the system quality attributes. For
example, these include their interpretability requirements,
and when less interpretable classes of models are taken
into consideration, their requirements for the system out-
put explainability, as further elaborated in Sections V-B
and V-DI1. Furthermore, it is important to properly collect
the stakeholders’ security, privacy, and safety requirements,
as well as to identify potential sources of bias that may
lead to a discriminatory outcome for a particular group of
individuals. Therefore, legal experts are another important
group of stakeholders to be consulted during requirements
elicitation [10].
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D’Amour et al. [48] also highlight that real ML sys-
tems typically have behavioral requirements that go beyond
generalization to an independent and identically distributed
test dataset (e.g., requirements on interpretability, fairness).
When those relevant requirements are not well specified
and enforced on the ML pipeline, i.e., are “‘underspecified”,
many near-optimal solutions that fit such incomplete speci-
fication but behave differently in different dimensions (e.g.,
the previously mentioned interpretability or fairness) may
exist and be selected over the desired one, which can be
a cause of failure in applied ML [48]. In addition, deep
neural networks are sometimes prone to learning undesirable
“shortcut” solutions to problems, i.e., decision rules that
perform well on independent and identically distributed test
data but fail on out-of-distribution data (data that may be
closer to real data) [49]. Avoiding such solutions, therefore,
requires a thorough understanding of what makes a particular
solution easy to be learned in a given context, the impact
of the various factors throughout the ML pipeline, and their
interactions [49].

2) CASE STUDY

The ADD project was motivated by the importance of the
established disciplinary system to society and the challenges
in tracking its changes over time. Our previous work [50],
[51] had made us aware of these challenges, so we hypothe-
sized that integrating different data sources into a data-driven
methodology could be helpful in addressing them. Addi-
tionally, we identified a gap in the field related to the use
of Wikipedia and the new ML breakthroughs. Neither a
detailed study of Wikipedia’s potential in this field nor a
study of the potential of those ML breakthroughs when
applied to sufficiently large domain-specific datasets was
available. Therefore, we hypothesized that if used appro-
priately, Wikipedia could provide large amounts of data to
maximize the capabilities of ML algorithms in studying the
disciplines, their relations, and evolution over time [11]. All
of the above made ADD conceptually and methodologically
different from the similar methodologies proposed in research
articles (for more details, see [11]).

Due to the research nature of the ADD project, the
requirements elicitation was mainly done through individual
activities, e.g., analysis of available classification systems
of academic disciplines, reading related literature, and anal-
ysis of Wikipedia’s policies. To better understand how to
make ADD as useful as possible to the communities for
which it was intended, the characteristics of its stakehold-
ers were identified first. The stakeholders were classified
into four classes, (1) team member, (2) research community
member (Knowledge Organization (KO) and related fields),
(3) research community member (ML and Natural Lan-
guage Processing (NLP)), and (4) data consumer. Given the
fact that we did not have direct representatives of some
of the stakeholder classes, studying their characteristics
through imaginary personas [45] helped us better define their
(hypothesized) needs and requirements. For example, the
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research communities for which ADD was intended were
divided into two classes due to the hypothesized differences in
their interests and level of knowledge in the fields that ADD
covered. While we expected that the KO research community
members have an extensive knowledge of the achievements
related to academic disciplines detection, we did not expect
this to be the case with the members of the ML and NLP
communities. On the other hand, the latter communities were
expected to have greater familiarity with the ML and NLP
methods used in ADD, which, among other things, implied
different presentation clarity expectations by the different
communities. Furthermore, we expected that the ML and
NLP community members would be mainly interested in the
comparison of the state-of-the-art text encoders based on deep
neural networks to conventional text analysis methods on a
new domain-specific dataset, while the other communities
in the comparison of the detected academic disciplines to
previously published results. A separate stakeholder class
interested in the end results but with limited knowledge of
the technical aspects of ADD was called data consumers.

The analysis of some of the available academic discipline
classification systems and Wikipedia’s policies resulted in a
number of insights that were later incorporated into the func-
tional and non-functional requirements. Several examples
include Wikipedia’s policies on article titles, lead sections,
and life cycle, as well as the ML domain recommendations
for imbalanced dataset evaluation metrics (for more details,
see [11]). The initial requirements were further refined in
the data analysis and experimentation phases, e.g., through
analysis of Wikipedia’s article titles, article interlinks, cate-
gory graph, and similar. In addition to refining the already
identified requirements, new requirements were discovered
in these phases, such as requirements related to data pre-
processing.

B. REQUIREMENTS SPECIFICATION

1) LITERATURE REVIEW

In conventional software development, the approach to for-
mal specification of the requirements largely depends on
the selected approach to software development, with best
practices already in place for each. We are not aware of best
practices defined for ML systems specifically. Maass and
Storey [27] indicate that the field of conceptual modeling
already has proven specification languages for functional,
non-functional, and business requirements. Data requirement
should use those already available for database systems and
linked data, whereas the approaches to specifying perfor-
mance, ethical, interpretability, and resilience requirements
require further refinement [27]. Adaptation of formal meth-
ods has been proposed as another possible direction for
designing AI systems with provable correctness against
mathematically specified requirements [52]. Model-driven
engineering principles have also been used in specifying
requirements for neural networks [33]. Through a litera-
ture review, Ahmad et al. [31] have found that the most
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commonly used modeling notations or languages in speci-
fying requirements for Al systems are (1) Unified Model-
ing Language (UML), (2) Goal-Oriented RE (GORE) and
(3) Domain Specific Models, but the authors conclude that
they still have limitations when it comes to their use for this

purpose.

2) CASE STUDY

The requirements specification approach used in the ADD
project was mainly based on best practices from conventional
RE, tailored to ML specifics when necessary. A combination
of text and visual models was used. Excerpts from the ADD
requirements specification are given in Section V.

C. REQUIREMENTS VALIDATION

1) LITERATURE REVIEW

The requirements validation ensures that the right require-
ments which meet the needs of the stakeholders are captured,
and it is performed through activities such as requirements
reviews, development of conceptual tests, definition of accep-
tance criteria and similar [45]. The use of ML affects this
RE phase as well, especially in terms of testing approaches.
Riccio et al. [53] point to a limitation in the effectiveness of
conventional testing approaches when applied to ML sys-
tems, primarily because of the program logic dependence on
training data and the stochastic nature of the learning process.
The authors emphasize the need for novel techniques that
address the specifics of ML systems. Since the testing of ML
systems is a rapidly progressing research field at the moment,
readers are directed to Riccio et al. [53] and Zhang et al. [54]
for a more thorough review of the challenges and novel
methods.

When it comes to measuring DL models’ performance,
Geirhos et al. [49] show that measuring performance only on
an independent and identically distributed test dataset can
sometimes be misleading if the assumption that the data
generation and sampling mechanisms are the same is not jus-
tified. The authors suggest that testing on out-of-distribution
data should become a standard practice in order to distinguish
desired solutions from ‘‘shortcut” solutions [49]. Further-
more, the results presented in [48] indicate that models should
be explicitly tested for any required behavior that is not
guaranteed by the independent and identically distributed test
dataset, as some required behavior will almost certainly be
underspecified. These tests should be application specific and
based on the requirements [48].

2) CASE STUDY

The validation of the requirements for ADD was done
through reviews, development of test cases for conventionally
programmed software components, planning the ML-based
components testing, and defining criteria that the components
and the system had to meet. The planning of the ML-based
components testing included defining criteria for collect-
ing representative training/test datasets, identifying types of
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potentially ambiguous examples that may cause incorrect pre-
dictions (e.g., scientific terminology or notable people related
to a particular academic discipline), identifying exceptions
(e.g., articles on academic disciplines that do not comply
with Wikipedia’s policies), defining approaches to test model
performance changes over time, and similar [11].

V. REQUIREMENTS FOR MACHINE LEARNING SYSTEMS

This section analyzes the research questions related to the rel-
evance of different types of software requirements in address-
ing the ML specifics, the impact ML specifics have on their
conventional understanding, and the necessary adjustments
of this understanding. In conventional software systems,
the requirements can be organized into multiple levels of
abstraction, where the lower levels refine the higher ones.
For example, Wiegers and Beatty [45] suggest a three-level
model of requirements consisting of business, user, and func-
tional requirements, accompanied by non-functional and data
requirements. This section analyzes some of the well-known
types of requirements in the context of ML systems, and uses
this model to a limited extent in organizing its subsections
(for the exact three-level model of requirements, the readers
are referred to the referenced publication). Nevertheless, the
analyzed requirements in this section are only a subset of
the broader set of requirements and relevant information
suggested by the RE literature to date. Furthermore, through
the organization of the subsections, we do not attempt to
suggest a particular approach to organizing the requirements
in requirements specifications, so we direct the readers to
publications and standards written for that particular purpose.

A. HIGH-LEVEL (BUSINESS) REQUIREMENTS

The business requirements, usually coming from stakehold-
ers familiar with the reasons for undertaking the project,
refer to the needs that initiated the project and the desired
outcome [45]. A description of some of the information that
may be part of these requirements follows, analyzed in the
context of ML systems. It is supplemented with excerpts from
the ADD requirements, given in Table 2.

1) OBJECTIVES

a: LITERATURE REVIEW

Defining the objectives to be achieved through the use of
a particular software system is an essential factor for the
success of the project, regardless of whether it involves ML or
not. The specificity of ML systems in terms of their potential
impact on individuals, groups, and even society, requires
defining objectives aligned with the already recognized eth-
ical principles for this type of systems by the community.
In the ethical guidelines and principles for Al systems pub-
lished recently by the public (e.g., Ethics Guidelines for
Trustworthy AI [38]) and private sector (e.g., Google Al
Principles®), convergence towards several ethical principles
has been observed, i.e., transparency, justice and fairness,

3 https://ai.google/responsibility/principles/
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non-maleficence, responsibility, and privacy, together with
beneficence, freedom and autonomy, trust, dignity, sustain-
ability, and solidarity [55]. Although some divergence of
the ethical principle definitions and uncertainty about their
implementation in practice has been highlighted in [55],
we firmly believe that the aspiration for development of
ethical ML systems based on recognized principles has to be
clearly and unambiguously stated in the high-level require-
ments that guide the project. Consequently, these principles
have to be included in the low-level requirements, incor-
porated in the development practices, implemented in the
system, validated, and monitored.

b: CASE STUDY

An excerpt from the objectives of ADD is given in Table 2.
Some of the listed objectives exactly refer to the development
of a thoroughly evaluated system, transparent in terms of its
methodology.

2) SUCCESS/PERFORMANCE METRICS

a: LITERATURE REVIEW

The ML community has defined various performance metrics
appropriate for different types of ML problems, such as accu-
racy, precision, recall, f-measure, mean squared error, and
others. Performance is usually measured on a dataset unseen
during the model training stage to ensure proper functioning
of the model on unseen data in a real-world setting. Never-
theless, in certain tasks it may be challenging to find an ML
performance metric that corresponds to the desired system
behavior, or measuring that behavior may be impractical [4].
In addition, a preferred and realistic level of performance
that makes the ML system worthwhile, safe, and useful has
to be determined [4]. It is recommendable to document the
approaches to uncertainty and variability, e.g., k-fold cross-
validation, as well [9]. Some articles [10] indicate that it
is the requirements engineer’s job to translate the customer
expectations to appropriate metrics.

b: CASE STUDY

ADD success metrics were defined at two levels of abstrac-
tion, i.e., (1) high-level success metrics that refer to the
system’s overall success in achieving its objectives and
(2) ML performance metrics specified for each ML com-
ponent separately, together with the expected performance.
An excerpt from the high-level success metrics for ADD
is given in Table 2. The high-level success metrics indicate
that the number of detected academic disciplines should
be similar to that in expert-created classification systems.
They also require processing of multiple Wikipedia exports
over a period of four years, in order to demonstrate the
low variability of the test performance, and the high overlap
of the detected disciplines in adjacent processed exports.
Examples of ML performance metrics, along with reasons
for selecting them over others, are given in Table 3 and
Section V-C.
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3) LIMITATIONS

a: LITERATURE REVIEW

ML models are trained and tested under certain assumptions
and conditions. Therefore, it should not be assumed that they
work equally well in other settings. As the “no free lunch”
theorem for ML [56] states, no algorithm is universally better
than any other, including random guessing, when averaged
over all possible tasks [4]. For example, the limitations of
DL models, summarized in [47], indicate that they have poor
performance when their training data is limited, when their
test data differs significantly from their training data, as well
as in broad example spaces filled with novelties. The quality
attribute definitions have their own limitations as well [57].
Given these facts on the one hand, and ML systems’ potential
effects on individuals (or even autonomy in some cases) on
the other, it is essential that the limitations of ML systems are
clearly stated, communicated to its stakeholders, and agreed
upon. Communicating clearly what the system outputs mean
and what they do not, what the intended and unintended use
cases are, helps in avoiding misinterpretations or inappropri-
ate use. As Jacovi et al. [58] highlight, vaguely specifying the
expected behavior of an Al system, which users should trust
to be upheld (called a ““contract” by the authors), can lead to
unwarranted trust in the system and its misuse, as users may
implicitly assume “contracts” that during the development of
the system have not been considered to be upheld.

b: CASE STUDY

An excerpt from the limitations of ADD is given in Table 2.
The limitations in the excerpt primarily refer to the interpreta-
tion of the system output, i.e., what the output means and what
it does not, and its proper use, i.e., intended and unintended
use cases.

4) RISKS

a: LITERATURE REVIEW

Risks are conditions that should be identified, evaluated, and
controlled, because they can negatively affect the success
of a project in terms of user acceptance, implementation,
competition, and similar [45]. ML systems face risks that are
not inherent in conventional software systems, like specific
ethical, moral, legal, security, and other similar risks. While
Al algorithms have the potential to augment human well-
being, at the same time, they can sometimes exhibit behavior
with unintended and unanticipated consequences by their
creators, both positive and negative [8]. As their properties
and operating environments become too complex to allow
an analytical formalization of some of their behaviors, pre-
dicting their effects on individuals and the society becomes
challenging as well [8]. In that sense, anticipating any poten-
tial risks from the influence these systems have on people and
the other way round, although absolutely necessary, can be
rather challenging. This section summarizes some of the risks
specific to ML systems, like the implementation challenges
that may turn into risks. An additional discussion on the

72195



IEEE Access

A. Gjorgjevikj et al.: Requirements Engineering in Machine Learning Projects

risks associated with various quality attributes is available in
Section V-D.

Engineering robust ML systems has specific challenges
that are not inherent in other types of software systems.
ML models are highly sensitive to changes in their input
data distribution and learning hyperparameters, and such
changes may lead to model retraining, further affecting all
of its dependent models in a way that cannot always be pre-
dicted [6]. They may depend on data from external systems
or models, changes of which may be beyond our control,
and be sensitive to changes in the environment which they
interact with [6]. Inadequate model update frequency in fre-
quently changing environments can be a risk factor to its
performance, as can failing to evaluate the model perfor-
mance on an important data slice, especially if it differs
from the overall performance [59]. Reproducibility, debug-
gability, and auditability are important aspects that require
version control of the model specifications [59] and tracking
of the data on which the model was trained, but proper data
management and versioning are more complex than doing
the same for software code [7]. ML systems face specific
security, privacy, and safety risks that must be adequately
addressed because of their potential consequences. The lack
of interpretability or explainability is another risk factor to
the stakeholders’ trust and acceptance of the system. In the
context of DL, many cases of failure can be attributed to
so-called “‘shortcut” solutions [49]. Underspecifying rele-
vant behavior to be learned by the ML pipeline can lead to
such “‘shortcut” or otherwise undesirable solutions, because
the ML pipeline can choose one such solution over another
which has the same test performance and much greater
compliance with the “unspecified” but desired behavioral
requirements [48], [49].

b: CASE STUDY

An excerpt from the risks of the ADD project is given in
Table 2. The risks in the excerpt refer to the potential nonac-
ceptance of the system by the users (due to its significant
differences with previously published systems and method-
ologies), as well as to the difficulties to precisely define the
ground truth in the evaluation process (due to imprecisely
defined domain-specific terminology and nonexistence of a
widely-accepted finite set of academic disciplines).

B. USER REQUIREMENTS

1) LITERATURE REVIEW

Since ML systems may have user interactions that affect
users and their acceptance of the system, collecting the user
expectations from such systems can reveal useful interactions
and quality requirements. For example, studies have shown
that the perception of an ML system interpretability depends
on the audience to which the explanations are presented
and the task [60], [61]. Although different types of post-hoc
explanations may be appropriate to different end users in
different tasks (e.g., textual explanations, visual explanations,
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TABLE 2. An excerpt from the high-level requirements for ADD. The
implementation of the requirements is described in [11].

Objectives

1. Develop a thoroughly evaluated and accurate methodology for
detecting academic disciplines based on state-of-the-art methods
for text representation at the time of development.

2. Make a detailed qualitative and quantitative comparison of state-
of-the-art methodologies for text representation and conventional
bag of n-grams methods on the task.

3. Make the methodology transparent by publishing the source code
of the core system modules under appropriate license(s).

Success/Performance Metrics

1. The number of detected academic disciplines is comparable to
their number in an expert-created classification system.

2. The performance on the test dataset does not vary by more than 1-
2% between the processed Wikipedia exports over a period of four
years.

3. Atleast 90% of the academic disciplines detected in a Wikipedia
export overlap with those detected in the nearest previous and
subsequent Wikipedia export processed by the system.

Limitations

1. The thematic structure ADD detects is an academic discipline, and
any other thematic structure is out of scope.

2. ADD does not suggest any sort of ordering or subordination of the
academic disciplines it detects.

3. ADD is an experimental software. Therefore, its results should
not be used as a substitute for expert-created academic discipline
classification systems, but only as a source of data that could
complement them.

Assumptions

1. The scientific disciplines are a subset of the academic disciplines.

2. The academic discipline is a more generic thematic structure than
the scientific/research field, topic, or term.

Risks

1. Domain-specific terminology that lacks a precise definition,
e.g., academic/scientific (sub)discipline, research field, or
(sub)specialty. Users may have a different understanding of
the core thematic structure detected by ADD, regardless of the
provided definitions.

2. Unavailability of a precisely defined ground truth, i.e., a finite
set of widely recognized academic disciplines, which could be
used for an accurate evaluation of the methodologies for detecting
academic disciplines.

3. Acceptance of the system and its methodology by the users for
which it is intended, considering the significant conceptual differ-
ences with the competing systems and methodologies.

local explanations, explanations by example, and etc., fur-
ther discussed in [60]), it is essential that they are aligned
with the user mental models, needs, and use cases [62].
Amershi et al. [63] state that in many ML systems, their users
have been able to come up with new possibilities for explana-
tions, other than the ones they have received. Heyn et al. [16]
emphasize the importance of understanding user needs and
interactions with the system during RE, in order to provide
users with functionalities they would accept, trust, and use
properly.

Nevertheless, in the more general context of business ana-
lytics projects, Wiegers and Beatty [45] state that elicitation
of the user expectations from such systems is insufficient
to reveal the complex knowledge needed to develop them.
The same is true for ML systems. Moreover, features in ML
systems are introduced not only as a result of user needs, but
for other reasons as well, like the availability of certain data,
the need to collect additional data through user interactions,
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and similar [64]. These systems may provide outcomes based
on user data, and their behavior may evolve as they collect
more data, so in this context, Yang et al. [65] distinguish four
types of Al systems based on two factors, i.e., their capability
uncertainty and output complexity. While the first type has
bounded capabilities and a fixed set of outputs, the fourth
has evolving capabilities and adaptive open-ended outputs,
making it difficult to predict what the fourth type of Al
systems can reliably do, when they can fail or how likely the
failures are, in order to plan appropriate interactions [65].

2) CASE STUDY

Due to the experimental nature of ADD and the characteris-
tics of its users, it does not have a user interface, but users
interact with the application by running its modules with
a set of required parameters, after providing them with the
necessary files [11]. Users receive the results in local files
generated by the modules. In this sense, we were able to
identify most of the usage scenarios that involve different
classes of users. However, due to the inherent uncertainty of
ML models, it is still possible to have model outcomes or
failures that have not been anticipated.

C. FUNCTIONAL REQUIREMENTS

1) LITERATURE REVIEW

In general, functional requirements describe what a software
system should be capable of doing. Typically, the expected
behavior of conventional software components is precisely
specified in the functional requirements. This is not the
case with ML models, which learn how to relate the input
data to the expected outcome through a training process.
Nevertheless, ML systems commonly consist of both con-
ventionally programmed functionalities and functionalities
implemented by ML models. In that sense, certain func-
tional requirements are defined conventionally, by explicitly
specifying the rules that relate inputs to outputs. At the
same time, those functionalities that require training an
ML model are described through the function that the
model is expected to learn and the expected performance.
Kuwajima and Ishikawa [37] indicate that while conven-
tional software can be decomposed into smaller functions
that have separate requirements, design, and implementa-
tion, the functions implemented by ML models are usually
large and fuzzy, sometimes accompanied by large datasets.
They suggest dividing these large functions into smaller ones
by specifying relevant domain-specific conditions/contexts
through training/test dataset partitions and then evaluating the
models on each of them [37]. Kuwajima et al. [19] suggest
that model requirements are specified through the expected
operational data distribution, which can then be agreed upon
and enable the collection of test data that reflects the real
operational conditions. The authors further suggest that in
such case, the training data can be designed to allow the
achievement of that requirements specification [19]. In a
similar context, Mitchell et al. [9] discuss why measuring the
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overall performance on the entire dataset may be insuffi-
cient and why its disaggregation across different data subsets
is needed. They suggest identifying factors related to vari-
able performance, like categories of data instances with
similar characteristics, instrumentation, environmental con-
ditions etc., and measuring the performance across these
factors when possible [9]. Defining the expected performance
across the relevant factors and their combinations is essential,
as some data subsets may be more critical than others in
the context in which the system is used [66], so measuring
performance changes over individual factors or their com-
bination becomes possible [9]. An example of environment
requirements specification through a data distribution matrix,
as well as an example of performance requirements for each
environment through a confusion matrix is given in [19].

2) CASE STUDY

ADD consists of several ML models supported by conven-
tional software components. Therefore, the behavior of the
conventional components was fully specified in the functional
requirements. On the contrary, only the desired behavior,
performance expectations, assumptions, constraints, depen-
dencies and similar, were specified for the ML-based com-
ponents. An excerpt from the functional requirements for
the text classification component is given in Table 3. The
test dataset was sampled from the operational data accord-
ing to the expected data distribution across the two classes,
as detailed in [11]. Due to the highly imbalanced data distri-
bution, the f-measure was selected over the accuracy, with the
expected level of performance defined by class [11].

D. QUALITY REQUIREMENTS

A quality attribute can be defined as a measurable and testable
property of a system that shows how well the needs of the
stakeholders are met, i.e., the quality requirements are quali-
fications of certain functional requirements, or qualifications
of the whole system [67]. Examples of quality attributes are
reliability, efficiency, robustness, usability, scalability, and
many others. Different quality attributes can be of different
importance to different categories of systems. For example,
the specifics of the ML systems require paying particular
attention to quality attributes related to ethics and trust. At the
same time, these systems face new types of challenges that do
not occur in conventional software systems (e.g., in security
and privacy), so adaptation of some of the conventional qual-
ity attribute definitions, or even defining new attributes may
be necessary [36], [37].

In complex systems, quality attributes can hardly be
achieved in isolation, without affecting other attributes,
so designing a system that meets its predefined quality
requirements is partly about making the right trade-offs [67].
The same is true for ML systems, in which while optimizing
an explicitly specified objective, the learning algorithm may
neglect some other which it was not explicitly instructed
to optimize. Therefore, the quality attributes relevant to an
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TABLE 3. An excerpt from the functional requirements, assumptions, constraints, and dependencies of the text classification component. The
implementation of the requirements is described in [11].

Requirement Type Excerpt from ADD Text Classification Component Requirements
1. The text classification component will accept a short excerpt from a Wikipedia article and predict whether it defines
Expected an academic discipline or not.
Behaviour 2. The predictions will be supplemented with the text classification component confidence in the predictions.
Functional 3. The text classification component will be able to distinguish articles devoted to concepts or people closely related
Requirements to the academic disciplines from articles devoted to the academic disciplines themselves.
4. The text classification component will be able to handle the imbalanced data distribution by class.
Performance Metrics: Precision, recall, and f-measure by class.
Expected Justification: The imbalanced data distribution by class makes the accuracy an inapplicable
Performance metric.
Expected performance by class:  Class Academic discipline Other
Data distribution 1% 99%
F-measure 95% 99%
1. The approximate ratio of academic discipline articles and all other articles in the data retained after the heuristics-
Assumptions based filtering is 1% / 99%.
2. In this particular task, a limited number of terms carry most of the distinctive power in the bag of n-grams methods,
Other s0 sparse representations, common for bag of n-grams methods, can be prevented through feature selection methods.
Requirements 1. To fulfill the high-level objectives, the experiments for selection of the most appropriate text representation method
Constraints should include at least the following:
- The bag of n-grams method and term frequency — inverse document frequency weighting, with optional text pre-
processing.
- Third-party state-of-the-art (at the time of development) text encoders based on deep neural networks.
2. To ensure comparability of the text representation methods, required by the high-level objectives, the number of
features extracted by the bag of n-grams method must be comparable to the number of features extracted by the text
encoders based on deep neural networks.
1. Dependency on a selected set of third-party pre-trained text encoders, as well as software libraries required for their
Dependencies | proper functioning.
2. Dependency on third-party software libraries for certain NLP and ML functionalities.
3. Dependency on the availability of Wikipedia’s XML export files, which ADD uses on input.

ML system should be identified in cooperation with its
stakeholders, formally defined, incorporated into the data
and learning algorithm, and evaluated through appropriate
data and metrics, while addressing any potential trade-offs.
This section briefly reviews quality attributes with specific
meaning and relevance to the ML domain. Because of the
vague boundaries between certain quality attributes and the
rapid progress of ML, the list should not be considered an
exhaustive or a complete one. For a more thorough overview
of each quality attribute, the reader is referred to the refer-
enced articles. An excerpt from the quality requirements for
the ADD system as a whole is given in Table 4. While some
requirements refer to the conventional aspects of software
development, such as the requirements for system scalability
or usability, some particularly address ML specifics, such as
the requirements for the ML models interpretability or their
robustness to noisy input data.

1) INTERPRETABILITY

a: LITERATURE REVIEW

In the context of ML systems, interpretability can be defined
as an ability to explain or present in a comprehensible way
to a person [68]. It is related to the barriers to optimiza-
tion and evaluation that arise from the problem formulation
incompleteness in the ML domain, like the discrepancy
between the real objective and the one that is actually opti-
mized, the inability to define and evaluate all edge cases,
the difficulties in defining ethics or trust requirements, and
similar [68]. There are many other terms that are often
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associated or equated with the term ““interpretability,” such
as “explainability,” “‘transparency,” or ‘“‘understandability,”
among others. Therefore, this section attempts to summarize
their similarities and differences reported in the literature.
While some authors make a distinction between the terms
“interpretability”” and ‘“‘explainability,” others use them
interchangeably [69]. However, several research articles have
found that the ML community uses the term ““interpretable”
more often than the term *“explainable” [69], [70]. Lip-
ton [71] points out that interpretability is associated with
different notations, i.e., transparency (understanding how the
model works at the level of the entire model, its compo-
nents, or training algorithm), and post-hoc interpretability
(giving an explanation of the model decision, which does
not necessarily explain how the model came to that deci-
sion). Transparent models are understandable to a certain
degree by themselves, i.e., simulatable if a person can rea-
son about them as a whole, decomposable if all their parts
are understandable to a person without additional tools, and
algorithmically transparent if a person can follow the process
of producing an output from an input [60], [71]. ML mod-
els that lack transparency need a different level of post-hoc
explanations, which may even apply to transparent models,
based on the audience and their level of complexity [60].
For example, while linear/logistic regression, decision trees,
rule-based models, or k-nearest neighbors are considered
transparent models, whereas support vector machines or var-
ious types of deep neural networks are considered as models
that lack transparency [60], high-dimensional linear models,
rule-based models with a large number of rules, or deep
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decision trees tend to become less interpretable [71]. Nev-
ertheless, quantification measures of model interpretability
have yet to be formalized by the community [60], [70].

Carvalho et al. [69] state that interpretability is essentially
a subjective concept, so accordingly, when it is defined and
addressed, the domain of the problem, the use case, and
the needs of the audience asking questions about the model
decisions should be considered. For interpretability to be
implemented in the right way, it is important to analyze
what makes an explanation understandable, reasonable, and
human-friendly to its recipients in the specific context [69].
According to Miller [72], while most of the work in the
domain relies on the researchers’ intuition of what constitutes
a good explanation, it may be useful to look at the findings
from psychology, philosophy, or cognitive science of the way
people give explanations to each other.

The trade-off between interpretability and performance is
frequently discussed, because complex models that usually
have better performance tend to be less interpretable. How-
ever, such a trade-off may not exist in some cases when the
data is well structured and the features are of high quality, but
even when it exists, the development of sophisticated explain-
ability methods can help overcome it [60]. Herm et al. [73]
have shown empirically that this trade-off is less gradual
than assumed, when analyzed from the end-user perspective.
They have further shown that rather than being a curve, the
trade-off exhibits a grouped structure and is context depen-
dent (e.g., on the data complexity) [73].

b: CASE STUDY

Table 4 contains an excerpt from the interpretability require-
ments for the ADD system. It includes requirements for
consideration of inherently interpretable ML models in the
experimentation phase, preference for such models when they
perform similarly to the less interpretable ones, visualization
of the models input/output, and outputting supplementary
data which allows further result analysis.

2) FAIRNESS

a: LITERATURE REVIEW

With the increased use of ML algorithms in making deci-
sions about individuals, ensuring an outcome that is fair
and non-discriminatory in relation to sensitive characteris-
tics (e.g., gender, race) requires serious attention from the
ML practitioners. Fairness can be defined as an absence
of prejudice or favoritism towards individuals or groups
based on certain inherent or acquired characteristics they
possess [74]. The ML community has proposed a number of
different formal definitions of fairness. Some target individ-
ual fairness, i.e., similarly treating similar individuals, while
others target group fairness, i.e., treating different groups
equally. However, fairness definitions have their limitations
too, as discussed in [57] and [75]. The most basic definition,
known as Fairness Through Unawareness, requires protected
attributes not to be explicitly used in decision-making pro-
cesses but, still, it has shortcomings as other features may

VOLUME 11, 2023

TABLE 4. An excerpt from the quality requirements for the ADD system
as a whole. The implementation of the requirements is described in [11].

Interpretability

1. Inclusion of ML models considered as inherently more inter-
pretable in the experimentation phase, e.g., the bag of n-grams
model for text representation, or logistic regression and decision
trees for classification.

2. Preference for ML models that are more interpretable over those
that are less interpretable when their performance is comparable.

3. Visualization of ML models input features and results with ap-
plicable methods, e.g., visualization of input features in a low
dimensional vector space using dimensionality reduction methods
or visualization of decision trees together with the features they
decide upon.

4. Outputting a sufficient amount of supplementary data by the
classification modules that allows users to interpret and verify the
results.

Robustness

1. Validation of the input file format by each module and displaying
/ logging error messages as needed.

2. Processing records of large input files in batches and writing results
in output files only after successfully processing the whole batch.

3. Robustness to exceptions when processing large input files in
batches through (1) logging of information that allows users to
correct and reprocess the batch at a later time, and (2) proceeding
with processing of the next batch.

4.  Specifying default values of the modules input parameters when-
ever possible, in case the user fails to specify some of them.

5. Robustness of ML models to different types of ambiguous input
examples which do not represent academic disciplines themselves,
but are sufficiently related to them to cause erroneous predic-
tions, e.g., Wikipedia articles devoted to (1) scientific terminology
specific to an academic discipline, (2) notable people who have
contributed to an academic discipline.

6.  Robustness of ML models to non-standard input examples, i.e.,
Wikipedia articles, which refer to academic disciplines, but may
not be recognized as such due to non-compliance with Wikipedia’s
policies on article titles, lead sections, and similar.

Scalability

1. Ability to handle the constantly growing size of Wikipedia’s XML
export files.

2. Standardized format of the classification modules input and output
files, allowing their seamless modification or replacement in a
subsequent release.

Usability
1. As few mandatory user-specified input parameters of the modules
as possible.

Reusability

1. Reuse of third-party software libraries which reliably implement
non-trivial NLP and ML functionalities, in order to minimize the
risk of errors and the testing time.

2. Use of programming language that facilitates the reuse of third-
party software libraries which reliably implement non-trivial NLP
and ML functionalities.

3. Use of programming language that facilitates the reuse of third-
party text encoders based on deep neural networks.

contain discriminatory information analogous to that in the
protected attributes [75]. Demographic Parity, also known
as Statistical Parity [76], requires membership in a pro-
tected class not to be correlated with the decision. Equalized
Odds [77] requires protected and unprotected classes to
have equal true-positive and false-positive rates, while Equal
Opportunity [77] is a weaker notation than Equalized Odds
and requires non-discrimination only over the “advantaged”
outcome. While the previous three definitions fall in the
category of group fairness, the following two belong to the
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category of individual fairness. The Individual Fairness [76]
definition requires similar individuals to get similar predic-
tions by an algorithm under some carefully chosen similarity
metric. The Counterfactual Fairness [75] definition indicates
that protected attributes should not be a cause of the predictor
in any individual instance.

Bias in ML can be addressed in three stages, i.e.,
(1) by removing it from the data through pre-processing,
(2) by modifying the learning algorithm, and (3) by reassign-
ing the model predictions, when the model is treated as a
black-box [74]. One source of bias in ML is the data itself,
in which bias can take a variety of forms, like historical bias
already existing in the real world and therefore existing in
the data, representation bias when the data lacks diversity by
a particular criterion, bias in measuring a particular feature,
aggregation bias and many other types [74]. One example of
bias found in ML results, as well as a discussion of the risk
of its inheritance and even amplification by other dependent
models, is presented in [78], where a set of widely used
word vectors, the distances of which represent relationships
between words, have been found to contain a gender bias.
Since bias can be inadvertently introduced into ML systems
in a number of ways and at various stages of its development,
its identification and addressing should begin as early as
possible. Properly defined fairness requirements are the right
place to start.

3) ROBUSTNESS

a: LITERATURE REVIEW

In line with the general robustness definition, ML algorithms
should be capable of learning robust models even in the
presence of noisy training data and remain robust at operation
time. This makes robustness a rather broad attribute, closely
related to many of the other described in this section.

ML systems’ ability to stay robust at operation time, when
faced with input different from that seen during training,
is essential because non-robust ML systems may not only
show poor performance but may wrongly assume a good
performance and confidently take wrong action [79]. The
robustness of ML models has been studied extensively in the
context of adversarial examples, inputs designed to force a
model to produce erroneous outputs, most commonly through
small perturbations which make the new input close to the
original one according to a domain-specific distance met-
ric, but misclassified by the model [80]. Evaluating model
robustness is important for several reasons, i.e., (1) to prevent
models from misbehaving due to adversaries, (2) to use their
good worst-case robustness as an evidence that they will
not misbehave in the real-world due to unforeseen random-
ness, and (3) to compare models with human abilities [80].
To address ML models’ robustness properly, their perfor-
mance expectations should be defined rigorously, deviations
from such expectations should be prevented, and methods
to identify/correct such deviations should be defined, all of
which leads to accountability in the ML field [81].
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A commonly discussed trade-off is that of models’ robust-
ness and accuracy. Recent works have shown that larger
and more complex datasets are needed for robust learning
versus those needed for standard learning [82], as well as a
trade-off between the accuracy of models trained for adver-
sarial robustness and their standard accuracy achieved when
trained on unperturbed inputs [83]. They have further shown
that the learned feature representations differ in the two
settings, but models that encode prior about human percep-
tion seem invariant to perturbations to which the humans
are invariant [83]. Recent works study methods to mitigate
robustness and accuracy trade-offs [84].

b: CASE STUDY

Table 4 contains an excerpt from the robustness require-
ments for the ADD system. It includes requirements for
proper input file format validation, default input values, and
robustness to exceptions during processing of large input
files. It also includes ML-specific robustness requirements,
i.e., such requiring ML models robustness to ambiguous or
non-standard input examples.

4) SECURITY

a: LITERATURE REVIEW

The growing use of ML in many different domains, including
safety-critical ones, requires an understanding of the new
security vulnerabilities that are not present in other types of
systems and strengthening the robustness against them. Nev-
ertheless, Carlini et al. [80] indicate that while the studies of
adversarial examples in new domains are advancing rapidly,
the design of systems robust to such examples is slower.

To analyze the security of a system, it is necessary to
identify (1) security goals, i.e., requirements that, if violated,
result in a compromise of an asset and (2) a threat model [85].
This model defines the conditions under which a defense
is designed to be secure and the security guarantees it pro-
vides [80]. Some of the different models proposed in the
literature consider the adversary’s (1) goal/incentives, i.e.,
accessing system assets or denying normal operation, and
(2) capability, i.e., its knowledge of the system and con-
straints to its capability [85]. Others consider the adversary’s
(1) goal, (2) knowledge, i.e., complete knowledge of the
model or varying degree of black-box access, and (3) capabil-
ity [80]. In the context of supervised learning, the violations
can be classified across three dimensions, i.e., (1) influence
(causative or exploratory), (2) security violation (integrity or
availability), and (3) specificity of the adversary’s intention
(targeted or indiscriminate) [85]. Different examples of learn-
ing in adversarial environments have been described in the
literature, e.g., in [86] and [87].

Barreno et al. [85] have found that improving the
worst-case robustness of an algorithm can make it less
effective on average. Based on their analysis of the most
common shortcomings of adversarial example defenses,
Carlini et al. [80] have defined a set of guidelines for defense
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evaluation, emphasizing the extreme caution and skepticism
that this process requires.

5) PRIVACY

a: LITERATURE REVIEW

There are certain situations in which the exposure of a model,
its parameters, or training data should be prevented due to
confidentiality or privacy. Still, ML models’ capacity to mem-
orize elements of the training data makes it challenging to
provide guarantees that participation in a training set does
not affect the privacy of the individuals [86]. The adversaries
usually aim at recovering the training data or the model, like
recovering partially known inputs with the most probable
values or extracting the training data using the outputs [86].
Several methodologies for addressing privacy concerns in the
ML domain are differential privacy, federated learning, and
data encryption.

Differential privacy represents a mathematically rigorous
definition of privacy, which ensures that the output of a
database analysis is distributed very similarly to the output of
the analysis of another that differs from the first in one row
only, while bounding the maximum divergence between the
two distributions by a privacy loss parameter [88]. Federated
learning refers to a setting where many clients collabora-
tively train a model while being orchestrated by a central
server/service provider and while keeping their training data
decentralized [89]. The learning objective is achieved through
updates that contain the minimum necessary information for
the learning task and which are suitable for an immediate
aggregation [89]. Another way to preserve data privacy is
to train a model or make inferences on encrypted data using
methods like homomorphic encryption or secure multi-party
computation. Several examples of their use in the ML domain
include customizing ML algorithms to use homomorphic
encryption in training and inference stages [90], making
predictions with neural networks on encrypted data using
homomorphic encryption [91], and others.

In the context of trade-offs that come from the use of
privacy-preserving methods, Brundage et al. [92] point to
trade-offs between the privacy benefits, the model quality,
the developers’ experience, and the costs in computation,
communication, or energy consumption. Papernot et al. [86]
point to a fundamental tension between the security/privacy
and the precision in ML systems with a finite capacity.
In terms of neural networks and homomorphic encryption,
Gilad-Bachrach et al. [91] indicate that adding encryption
makes the training process slower, at the same time prevent-
ing the data scientists from inspecting the data or tuning the
model during training.

6) SAFETY

a: LITERATURE REVIEW

In the context of ML, Varshney [93] defines safety as mini-
mization of the risk and uncertainty associated with harmful
events, i.e., events related to sufficiently high cost in some
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human sense. The author identifies several sources of risk
in ML systems, i.e., (1) assumption that the training data
comes from the operational data distribution, (2) low prob-
ability density of the operational data distribution in certain
regions, (3) uncertainty coming from the way the test set was
instantiated, and (4) dependence of the loss function on the
predicted and actual values only [93]. Several approaches
to mitigate these risks include ensuring an inherently safe
design, adding safety factors or margins, adding additional
procedural safeguards beyond those designed in the core
functionality, and ensuring a safe fail [93]. In the context
of supervised and reinforcement learning, Amodei et al. [79]
have identified several sources of safety risks, i.e., (1) a
loss function that inadvertently ignores aspects of complex
environments that could be harmful if changed at operation
time (2) a loss function minimized by an easy solution during
training which was not the designer’s true intention, (3) sub-
stituting the correct loss function with another one because
the former is too expensive for frequent evaluation, (4) failure
to ensure safe actions when the system encounters unseen
input. Furthermore, Jacovi et al. [58] indicate that adequate
verification of the existence of a certain risk (an undesirable
but possible event) from the use of an Al system is a prereq-
uisite for verification of the existence of Human-AlI trust.

E. OTHER REQUIREMENTS

1) ASSUMPTIONS

a: LITERATURE REVIEW

The assumptions are an almost inevitable aspect of ML sys-
tem development. For example, assumptions are made when
certain aspects of the problem to be solved or its data are not
observable. Based on those assumptions, the real problem is
translated to an ML problem, and an appropriate class of mod-
els is selected to solve it. Other examples of assumptions are
those related to the data distribution across different classes in
the real dataset, assumptions that the statistical properties are
similar across the entire dataset [94], and similar. Assump-
tions are made about quality attributes as well. Deviations
from the assumptions on which a particular class of models
is based can be a source of problems, as summarized for
DL models in [47]. Furthermore, in DL, the assumptions
made about the neural network architecture, training data,
loss function, and optimization algorithm not only constrain
the problem solutions that can be learned, but determine
how easily a particular solution can be learned, therefore,
may inadvertently create opportunities to learn an undesir-
able “‘shortcut” solution to a problem that does not work
well in real-world settings [49]. Unclearly defined or omitted
assumptions affect accountability in Al systems, as they leave
room for avoiding responsibility for any errors resulting from
wrong assumption, by blaming unavoidable and inexplicable
software “‘bugs” [81]. Therefore, identifying and document-
ing the assumptions prevents stakeholders from neglecting or
misinterpreting them in the development process and allows
for appropriate addressing of their effects.
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TABLE 5. Brief summary of the relevance of conventional RE activities to the ML development process, the challenges this process brings them, and the
necessary adjustments to these activities to better fit into the process.

RE Activity

RE Activity Relevance to ML Develop-
ment Process

RE Activity Challenges Imposed by ML Development Process / Adjustments to Fit
Into the Process

Requirements
Elicitation
and Analysis

- RE activities through which the
stakeholders’ needs and constraints are
collected and analyzed [45].

- A successful practical application of ML
starts by defining the goals to be achieved,
based on the problem to be solved by the
ML system. [4].

- In ML systems, the feasibility of the stakeholders’ requirements depends on the
available data as well.

- New stakeholders are involved in the process (e.g., data scientists, legal experts) [10].
- Stakeholders should be helped to make their expectations from ML more realistic [13].
- Stakeholders should accept the uncertainty in the time and cost estimates [13].

- Each class of ML models has its own assumptions/limitations, and some promising
research results may not be directly applicable in real conditions [13], so the decision to
implement an ML-based solution to a problem should be based primarily on problem-
specific analyses.

- When relevant requirements are not well-specified and enforced on the ML pipeline, i.e.,
are underspecified, many near-optimal solutions that fit that incomplete specification, but
behave differently in different dimensions (e.g., interpretability, fairness) may exist and
be selected over the desired one [48].

- Preventing the learning of undesirable "shortcut" solutions requires a thorough un-
derstanding of what makes a particular solution easy to be learned in a given context,
understanding the influence of various factors throughout the ML pipeline and their
interactions [49].

Requirements
Specification

- RE activities that produce a formal
specification of requirements.

- No best practices for specifying requirements for ML systems have been found in the
literature.

- Best practices from related fields can be reused in formal specification of certain types
of requirements, e.g., non-functional, data requirements [27].

- The available approaches to specifying certain types of requirements require additional
refinement, e.g., performance, interpretability [27].

- A related research article has found that the most commonly used modeling nota-
tions/languages in specifying requirements for Al systems are (1) UML, (2) GORE and
(3) Domain Specific Models, but they have limitations when used for that purpose [31].

Requirements
Validation

- RE activities that ensure that the right re-
quirements are captured and met [45].

- The literature indicates that ML specifics limit the effectiveness of conventional testing
approaches [53].

- Novel testing techniques that address ML specifics are needed [53].

- Models should be explicitly tested for any required behavior that is not guaranteed by
the independent and identically distributed test dataset, as some required behavior will
almost certainly be underspecified [48].

- The testing of the model behavior should be application specific and developed based
on the requirements [48].

- Testing on data that is out-of-distribution can help in distinguishing desired solutions
from "shortcut" solutions [49].

b: CASE STUDY

ML systems are inevitably dependent on data, and they often

The assumptions for ADD were defined at two levels of
abstraction, i.e., high-level assumptions and assumptions
related to specific functionalities. An excerpt from the first
type is given in Table 2. It includes our assumptions related
to the definitions and subordination of the domain-specific
thematic structure detected by ADD and its related ones.
These statements are considered assumptions due to the lack
of precise definitions and widely accepted understanding
of their subordination in the domain. By clearly document-
ing them, we ensured that all stakeholders of ADD share
the same understanding. The second type of assumptions
includes those related to ML models, e.g., the expected data
distribution, relevant features, or appropriate class of models.
An excerpt from the assumptions related to the text classifi-
cation component is given in Table 3.

2) DEPENDENCIES

a: LITERATURE REVIEW

Dependencies are external factors or components on which
a project or system depends but are beyond its control,
so they can turn into risks if left undefined or inappropri-
ately monitored [45]. As already mentioned in Section V-A4,
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depend on external models or external software libraries,
so the team implementing the system may not always have
full control over them. For those reasons, proper documenta-
tion of the dependencies and monitoring their effects on the
ML system is crucial. Breck et al. [59] have summarized a
set of best practices for preventing potential risks arising from
dependencies, which can sometimes lead to model misbehav-
ior even without strange enough outputs to trigger monitoring
mechanisms.

b: CASE STUDY

Table 3 contains an excerpt from the ADD dependencies
defined for the text classification component. They primarily
refer to the component dependence on third-party pre-trained
text encoders, software libraries for ML and NLP function-
alities, and Wikipedia XML export files which ADD uses on
input.

3) CONSTRAINTS

a: LITERATURE REVIEW

Constraints are restrictions on the design and implementa-
tion choices that the developers can make about a solution,
which can result from decisions made by management,
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TABLE 6. Brief summary of the importance of different types of requirements (high-level, user, and functional) in addressing the ML specifics, the
challenges that ML specifics bring to their conventional understanding, and the necessary adjustments of this understanding.

High-Level | Performance | tems meet requirements.
(Business) | Metrics

Requirement Type Requirements Importance in Addressing | Challenges Imposed by ML Specifics / Adjustments of Requirements
ML Specifics Conventional Understanding
Objectives - Define what needs to be achieved through - The objectives should comply with the ethical principles for ML systems.
the use of the ML system. - The literature points to some divergence in the definitions of ML systems’
ethical principles and uncertainty about their implementation in practice
[55].
Success / - Allow quantitative evaluation if ML sys- | - It may be a challenge to find ML performance metrics that match the

desired behavior [4].
- Knowledge of ML performance metrics is required during RE [10].

- Clearly defined limitations prevent
over-optimistic expectations related to ML
systems’ performance in various settings.

Limitations

- Prevent misinterpretations of ML systems’
outputs or their improper use.

- ML models have limitations when the conditions and assumptions from
the training phase no longer apply [4], [47].

- The definitions of certain quality attributes in the ML domain have
limitations [57].

- Vaguely specified behavior which users should trust to be upheld by an
Al system, leads to unwarranted trust and system misuse, since users may
implicitly assume system behavior (and trust it would be upheld) which
has not been considered to be upheld by its developers [58].

- Early identification of potential risks allows
their assessment and control [45].

Risks - Failure to do so can adversely affect the
project success [45].

- The complexity of ML systems and their environment makes it challeng-
ing to anticipate the potential risks from their behavior or interactions [8].
- ML models are highly sensitive to changes in their data, hyperparameters,
environment, or other ML models on which they depend [6].

- There may be important slices of data that have different performance
than the overall one in certain conditions [59].

- Proper data management/versioning is more challenging than doing the
same with software code [7].

- ML systems face new risks related to security, privacy, safety, lack of
interpretability, biased decisions and similar.

- Underspecifying relevant behavior to be learned by the ML pipeline,
leaves space for the ML pipeline to choose an undesired solution over the
desired one, if they both have the same test performance, but different
compliance with the "unspecified", desired requirements [48], [49].

- Reveal user expectations from the system
(e.g., the most appropriate type of decision
explanations).

User - Ensure user acceptance and trust in the
system [16].

- In business analytics projects, elicitation of the user expectations from the
system is insufficient to reveal the complex knowledge needed to develop
it [45]. The same is true for ML systems as well.

- The decision explanations should be tailored to the use case and the
audience receiving them [60]-[63].

- It is difficult to predict failures and plan appropriate interactions if the
ML system’s behavior evolves over time [65].

- Define the expected behavior of the ML
model and its level of performance.
Functional - Guide the data collection process, the selec-
tion/configuration of the learning algorithm,
and the evaluation.

- ML systems usually consist of conventionally programmed functionali-
ties and functionalities implemented by ML models [6].

- The functions implemented by ML models are usually complex and
accompanied by large datasets, as opposed to the decomposable function-
alities in conventional software [37].

- The rules connecting the input to the output of the ML models are not
explicitly stated in the requirements, but learned from data.

- It can be challenging to formally specify the expected behav-
ior/performance of an ML model in all possible conditions [19].

- The expected performance may vary across different data subsets, and
some may be more critical than others in certain conditions [9], [66].

requirements from external stakeholders, requirements for
compliance with standards or agreements, and a variety of
other reasons [45]. In the context of ML systems, examples
include policy constraints that may enforce certain require-
ments, e.g., on privacy [23]. Other examples include data
constraints which describe meaningful feature ranges, feature
dependencies, or invariants, ensuring the data validity after
its transformation [27]. Constraints may encode certain prior
knowledge, a preference towards a simpler class of mod-
els [4], or in other ways guide the ML pipeline in learning
models that satisfy a broader set of behavioral requirements
that are sometimes not covered by the standard ML test-
ing process (e.g., requirements related to interpretability or
fairness) [48]. For ML systems that continuously learn and
change their behavior, hard-coding rules for system behavior
that prevent it from learning behavior that does not conform
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to the relevant standards agreed upon among stakeholders has
been suggested also [95].

b: CASE STUDY

Table 3 contains an excerpt from the constraints of the ADD
project. They refer to certain imposed experimental choices to
the developers of the text classification component in order to
meet the high-level objectives of ADD related to the compar-
ison of state-of-the-art and conventional text representation
methods.

VI. DISCUSSION

This section offers a summary of all previously stated find-
ings in the article, related to the importance of the RE
activities in the development of ML systems, the importance
of certain types of requirements, the challenges associated
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TABLE 7. Brief summary of the importance of different types of quality requirements in addressing the ML specifics, the challenges that ML specifics
bring to their conventional understanding, and the necessary adjustments of this understanding.

Requirement Type

Requirements Importance in Addressing
ML Specifics

Challenges Imposed by ML Specifics / Adjustments of Requirements
Conventional Understanding

General

- Requirements related to measurable and
testable properties of the system, i.e.,
quality attributes [67].

- The quality requirements should address new concerns, atypical to
conventional software systems [36], [37].

- In complex systems, meeting quality requirements is partly about making
the right trade-offs between quality attributes [67].

Quality Interpretability

- Define the expectations from the explana-
tions of the ML systems decisions.

- Crucial to give stakeholders a better under-
standing of ML systems’ decision-making
process.

- Many terms are used interchangeably, e.g., “interpretability,
ability,” “transparency,” “understandability”.

- The concept of interpretability encompasses both (1) understanding
how the model works, and (2) explaining decisions without necessarily
explaining the background decision-making process [71].

- Even inherently interpretable models (e.g., linear models, decision trees)
may lose this property as their complexity increases [71].

- Interpretability quantification measures have yet to be formalized by the
community [60], [70].

- The implementation of interpretability requires an understanding of the
problem domain, the characteristics of the explanation recipients, and the
use case [69].

- Complex ML models tend to be less interpretable [60], so a trade-off
between performance and interpretability is often reported in the literature.
- From end-user perspective, this trade-off seems less gradual than as-
sumed and is context dependent (e.g., dependent on data complexity) [73].

explain-

2 <

Fairness

- Ensure the absence of prejudice or
favoritism towards individuals or groups
based on the inherent or acquired
characteristics they possess [74].

- In the ML domain, several formal definitions of fairness are available,
each with its own limitations [57], [75].

- In ML, bias can be inadvertently introduced at different stages of the
learning process and may even exist in the data itself [74].

- If it goes unnoticed, dependent ML models may inherit/amplify bias [78].

Robustness

- Ensure proper functioning of ML systems
from different aspects (e.g., robustness to
unforeseen input at operation time).

- Non-robust ML systems may show poor performance when faced with
new input at operation time, or may even wrongly assume good perfor-
mance and take wrong action [79].

- Adversarial examples are a common challenge for ML systems [80].

- Properly defined and addressed robustness requirements implicate ac-
countability in the ML field [81].

- The trade-off between ML models’ robustness and their accuracy in the
standard sense is often discussed in the literature [82]-[84].

Security

- Ensure that vulnerabilities of ML systems
are identified in advance and addressed
accordingly.

- ML systems face new types of security vulnerabilities that are not present
in other types of systems.

- The studies of new types of adversarial examples in new domains are
advancing rapidly [80].

- Designing and implementing a secure ML system requires defining its
security goals and threat model, i.e., analyzing adversaries’ knowledge and
capabilities from many different aspects [80], [85].

- The literature emphasizes the need for great caution and skepticism when
designing/evaluating adversarial examples defenses [80].

Privacy

- Ensure that parameters of ML models or
their training data are not exposed when
they need to remain confidential or private.

- ML models can memorize parts of their training data, making the
preservation of training data privacy challenging [86].

- Privacy-preserving methods may require making trade-offs with the
model performance or training time, and may even make training data
inaccessible to data scientists [86], [91], [92].

Safety

- Minimize the risks and uncertainties asso-
ciated with harmful events [93].

- Many sources of risks have been identified in the literature, and some
may be difficult to address [93].

- Examples of safety risk sources include making incorrect assumptions
about the training and real data distribution, defining an incorrect loss
function, ignoring relevant aspects of complex environments in the loss
function, failing to secure safe actions and safe fail [79], [93].

- A prerequisite to verify the existence of Human-AlI trust, is an adequate
verification of the existence of certain risk from the use of an Al system
[58].

with RE activities, and those associated with the conventional
understanding of the requirements.

ML systems have become ubiquitous in many segments
of our lives due to the numerous benefits from their use.
Nevertheless, ML systems are complex systems which learn
their behavior from data. Since data can be imperfect or
reflect historical human biases, ML systems are at risk of
acquiring these imperfections through the learning process.

72204

Furthermore, ML systems can implement complex deci-
sion functions, which depend on many factors and which
may lead to outcomes that cannot always be predicted
with certainty. Therefore, the importance of identifying,
analyzing, documenting, and validating the expected behav-
ior of an ML system, the intended and unintended use
cases, the risks, limitations, assumptions, the performance
and quality expectations, or the required compliance with
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TABLE 8. Brief summary of the importance of different types of requirements (assumptions, dependencies, and constraints) in addressing the ML
specifics, the challenges that ML specifics bring to their conventional understanding, and the necessary adjustments of this understanding.

Requirement Type Requirements Importance in Addressing

ML Specifics

Challenges Imposed by ML Specifics / Adjustments of Requirements
Conventional Understanding

- Documenting the assumptions about the
problem to be solved, ensures that the
correct class of ML models is selected.

Assumptions

Other

- The assumptions on which the selected class of ML models is based
should correspond to the assumptions made about the problem to be
solved.

- Deviations from the assumptions on which the selected class of ML
models is based can lead to problems [47].

- Assumptions related to neural networks architecture, training data, loss
function, and optimization algorithm, not only constrain the solutions that
can be learned but determine how easily a particular solution can be
learned [49]

- Wrong assumptions may inadvertently create an opportunity to learn an
undesirable "shortcut” solution to a problem, not working well in a real-
world setting [49].

- Unclearly defined/omitted assumptions affect accountability, leaving
room to avoid responsibility for errors resulting from such assumptions
and blaming unavoidable/inexplicable software "bugs" [81].

- ML systems have many dependencies (e.g.,
external systems, ML models, data, software
libraries) [6].

- Dependencies may turn into risks if han-
dled improperly [45].

Dependencies

- In the development of ML systems, having a complete control over the
dependencies may not be possible (e.g., external systems, data) [6], so
appropriate monitoring is required.

- The risks arising from dependencies can sometimes lead to misbehavior
of the model even without strange enough outputs to trigger the monitoring
mechanisms [59].

- Documenting the constraints ensures that

Constraints .
none of them is neglected.

- ML system development is often constrained by different stan-
dards/policies (e.g., security, privacy, ethical, legal) [23].

- During data transformation, the data constraints that ensure its validity
should be taken into account [27].

- ML systems may have a broader set of behavioral requirements (e.g., on
interpretability, fairness), so enforcing proper constraints, guides the ML
pipeline in learning models that satisfy those requirements [48].

- For ML systems that continuously learn/change their behavior, hard-
coding rules that prevent them from learning a behavior that does not
conform to relevant standards agreed upon among stakeholders has been
suggested [95].

ethical/legal constraints should not be underestimated. On the
contrary, these RE activities should be given attention as
early as possible in the ML development process. The
literature review provided in this article confirms that care-
fully conducted RE activities can add value to the rather
complex ML development process, in the same way that
they add value to the conventional software development
process.

Nevertheless, the ML development process has its own
specifics that affect the already established RE best prac-
tices. The results of the literature review and the case study
are consistent in terms of the significant impact that the
ML development process has on the conventional, well-
established RE activities, but they also highlight the benefits
of these activities in dealing with the complexity of the
process. ML introduces new activities through which require-
ments are identified and refined (e.g., data analysis and
experimentation), introduces non-trivial challenges to be
anticipated in the RE phase, and makes some of the estab-
lished RE best practices inapplicable. However, at the time
of writing, RE best practices for ML systems do not exist
and have yet to be defined by the community. Table 5
briefly summarizes the findings related to (1) the relevance
of conventional RE activities to the ML development process,
(2) the challenges that this process brings them, and
(3) their necessary adjustments to better fit into this
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process, all of which presented in the previous sections of this
article.

The literature review also confirms the importance of
each of the requirement types considered in this article to
ML systems. However, the conventional understanding of
some of them (e.g., functional requirements or certain quality
attributes) may require adjustment in the context of ML.
Table 6, Table 7, and Table 8 briefly summarize the findings
related to (1) the importance of the different types of require-
ments in addressing the ML specifics, (2) the challenges
that ML specifics bring to the conventional understanding of
these requirements, and (3) the necessary adjustments of this
understanding, all of which presented in the previous sections
of this article.

Finally, given the current prevalence of ML in software
development, we believe that the number of research articles
on this topic will continue to grow in the coming years,
offering experiences from real ML projects, as well as new or
adjusted methodologies that better fit the ML development
process. However, until widely accepted RE best practices
for ML systems are available, we believe that the already
established RE models, applied with awareness of the ML
specifics, provide a solid foundation for a thorough and
shared understanding of what needs to be implemented in and
what is expected from an ML system, while minimizing the
risk of neglecting important requirements.
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VIi. CONCLUSION

Machine learning has become a common choice in modern
software development across many domains. Nevertheless,
while it can provide data-driven solutions to many prob-
lems that people find difficult to solve, at the same time,
it challenges the well-established software development best
practices. Furthermore, machine learning introduces new
technical and ethical challenges of which the stakeholders
must be fully aware even before the project begins. Since the
requirements engineering activities provide a proper under-
standing of the problem and ensure implementation of an
appropriate solution, these are the right activities where
solving machine learning challenges should begin. As the
requirements engineering activities are also influenced by the
machine learning specifics, but best practices do not exist yet,
this article aims to analyze the impact that machine learning
has on conventional requirements engineering activities and
types of requirements, to emphasize the importance of proper
requirements engineering in machine learning projects, and to
share our experience through a case study. Most importantly,
the purpose of this article is to motivate further discussion
and sharing of practical experiences on this important topic
because, in the future, machine learning systems will become
even more present in our daily lives.

The presented literature review and case study findings
confirm that the machine learning development process
affects the conventional, well-established requirements engi-
neering activities, but they also confirm the relevance of
these activities to the process. Furthermore, the findings
confirm the relevance of the different requirement types con-
sidered in this article to machine learning systems, as well
as the necessary adjustment of the conventional understand-
ing of some of them in the context of machine learning
(e.g., functional requirements or certain quality attributes).
Therefore, we believe that the future research should con-
tinue focusing on adjusting (1) the requirements engineering
activities and (2) the understanding of the different require-
ment types so they fit even better into the machine learning
development process, as well as on presenting require-
ments engineering experiences from real machine learning
projects.
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