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Abstract - In this paper, we propose a machine learning 

model for recognizing all 26 letters in the American Sign 

Language (ASL) alphabet. The model is trained using a 

dataset obtained by recording a 30-frame video of hand 

movements. MediaPipe is used to detect hand positions in 

each frame and extract their coordinates, resulting in an 

array of 63 values. These sequences of arrays are then 

passed down to our Sequential model that uses LSTM as 

the input layer and Dense as the output layer. We 

evaluated two models, with Model 1 and Model 2 both 

achieving similar accuracy. Our study demonstrates that 

the proposed machine learning model consisting of 

MediaPipe's hand detector and a neural network can 

effectively recognize all letters of the ASL alphabet. 

Keywords: sign language, alphabet recognition, machine 

learning. 

I. INTRODUCTION 

Sign language is used all around the world. The language 
consists of specific movements of the hands and body. Not a 
lot of people know how to use sign language and that is why 
the goal of this project is to build a machine learning model 
that can recognize all the 26 different letters in the American 
Sign Language (ASL) alphabet. To achieve this goal we will 
be using a neural network consisting of Long-Short Term 
Memory (LSTM) and Dense layers. 

II. DATA 

A. Why don’t we use a Convolutional Neural Network, with 
images as an input? 

 
Convolutional Neural Networks or CNNs [1] take one 

image per input (letter). The problem here is that we can’t 
represent all letters of the ALS alphabet with one image. 
 

 
Fig. 1. Sign Alphabet 

As shown in Fig. 1 the letters J and Z require movement 
and thus cannot be represented with a single image. 
The solution is to use multiple images to represent each letter. 
Each letter will be represented by a video consisting of 30 
frames. For each letter we will need multiple videos, we will 
be using 60 videos per letter. Here another problem arises. We 
have 26 letters and each letter has 60 videos and each video is 
30 frames. This means that we will have to keep a total of 1560 
videos or 46800 frames/images. Storing so many videos 
presents a storage problem. 
 

B. Using Arrays Instead of Images 

Instead of storing every video individually we decided to 
extract the positions of the left and right hand in every frame 
and store that. To detect the hands [2] and their landmarks we 
used the MediaPipe framework. MediaPipe detects 21 
different landmarks on each hand. Each landmark has a 
relative X, Y and Z coordinate. 
 

 
Fig. 2. Detection of hand coordinates 

 
Using MediaPipe we can detect and extract the X, Y and 

Z coordinates of all 21 landmarks from each hand from a 
single frame. After the landmarks are detected and the 
coordinate information is extracted we will have an array of 
126 values. The array contains 126 values because we have 2 
hands, each hand has 21 landmarks and each landmark has 3 
coordinates. Using this method we have greatly reduced the 
storage requirements while also retaining the information 
about the position of the hands in each frame. 
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Fig. 3. Coordinates of the landmark for one hand 

 

III. DATASETS 

A. Creating Dataset 1 

The problem required a dataset of videos where each video 
will represent one letter. We were unable to find such a dataset 
and that is why we decided to create our own dataset. Prior to 
collecting the data for the dataset we had to learn the letters of 
the ASL alphabet. 

The data is collected with a loop that runs 30 times for each 
letter.  Every time the loop runs it records a video that consists 
of 30 frames. As the frames are being recorded we use 
MediaPipe to detect and extract the landmark coordinates of 
the hands for every frame. The process is repeated 30 times 
for each letter, this way for each letter there are 30 sequences 
30 of arrays. 

B. Creating Datasets II & III 

MediaPipe detects the hand coordinates relative to the 
entire video feed. This means that the hand can be anywhere 
in the frame, therefore resulting in more unnecessary data 
variation. The method used to create Datasets 2 & 3 is similar 
to the method used to create Dataset 1 only with one 
difference. After MediaPipe extracts the hand coordinates, 
instead of saving them as they are we scale and normalize 
them. The wrist landmark's (landmark 0) coordinates are set 
0 and all other landmark coordinates are scaled accordingly. 
This results in dataset with much less data variation. 
Dataset 2 uses the X and Y coordinates of each hand 
landmark, while Dataset 3 uses all three coordinates for each 
hand landmark. 

C. Data Split 

Once we have a sufficient dataset the next step is to use the 
data to train the machine learning model. First the dataset has 
to be split into separate sets: one for training, one for 
validation and the other for testing. In this project all datasets 
use the following split: 

• Training set contains 70% of the original dataset. 
• Validation set contains 15% of the original dataset. 
• Testing set contains 15% of the original dataset. 

IV. APPLIED MODELS 

The model that was used in this project is a Sequential 
model [3] from the Tensorflow library. The sequential model 
is a neural network where we can add layers. Each layer’s 
input is the output of the previous layer. The first layer in this 
model is the input layer. The last layer is the output layer. The 
output layer returns a probability for each class in the data 
that tells us the likelihood that the class corresponds to the 

input. All models used in this project use LSTM as an input 
layer and Dense as an output layer. 
Layers: 

• LSTM (Long short-term memory ) layers  [4] are 
layers that can learn from sequential data. 

• Dense layers [5] are layers where all the input nodes 
of the layer are connected to all the output nodes of 
the previous layer. 

• Dropout layer [6] is a layer used to combat 
overfitting. The layer choses a number of output 
nodes from the previous layer and it disregards their 
output. 

 
Model 1 is a sequential model consisting of:  

• LSTM layer with an input of (30, 42 or 63) and 
output dimensionality of 64. 

• LSTM layer with an output dimensionality of 128. 
• LSTM layer with an output dimensionality of 64. 
• Dense layer with an output dimensionality of 64. 
• Dense layer with an output dimensionality of 32. 
• Dense layer with an output dimensionality of 26 that 

corresponds to the 26 letters in the dataset. 
 
Model 2 is a sequential model consisting of:  

• LSTM layer with an input of (30, 42 or 63) and 
output dimensionality of 128. 

• LSTM layer with an output dimensionality of 128. 
• Dropout layer that drops 20% of the neurons for the 

previous layer. 
• Dense layer with an output dimensionality of 26 that 

corresponds to the 26 letters in the dataset. 

A. Results 

Long short-term memory is a type of neural network 
architecture used to classify sequential data. Each letter is 
represented by a sequence of arrays so this type of architecture 
is suited. Using the dataset that was collected we tested many 
different configurations of the neural network, these were the 
best results: 
 

Model 1 is a neural network consisting of three LSTM 
layers and three Dense layers. The model was tested with all 
three Datasets. 

• Dataset 1:  
o Accuracy score = 0.70 
o F1 score = 0.57 

• Dataset 2:  
o Accuracy score = 0.92 
o F1 score = 0.90 

• Dataset 2:  
o Accuracy score = 0.89 
o F1 score = 0.88 

 
Model 3 uses less layers than the previous model. Model 

3 has two LSTM layers, one Dropout layer (used to combat 
overfitting) and one Dense layer. 

• Dataset 1:  
o Accuracy score = 0.64 
o F1 score = 0.63 

• Dataset 2:  
o Accuracy score = 0.98 
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o F1 score = 0.95 
• Dataset 2:  

o Accuracy score = 0.95 
o F1 score = 0.96 

 

B. Testing 

The performance of all the models was measured by 
testing their F1 score and Accuracy score using the testing 
dataset. It is useful to visualize this information using a 
matrix. The diagonal of the matrix shows us how many times 
each letter has been guessed correctly (darker color means 
more guesses). We can also see how many times each specific 
letter has been misclassified as another letter.  

 

 
Fig. 4. Results from the testing dataset 

V.  CONCLUSION 

Storing individual videos to use as data takes a lot more space 
than just storing the coordinates of the hands in each frame of 
the video. The dataset that we are using in this project consists 
of 1560 videos. That means that for every letter in the alphabet 
we have 60 sequences of arrays representing it. The dataset 
was created specifically for use in this project. All the models 
that were tested showed the same trend: Fairly high results 
while training, but lower results while testing. The fairly high 
results achieved while training indicate that the models are 

able to learn from the data. The lower results while testing 
might indicate issues with the models, but I think the more 
likely culprit are errors in the dataset. Since this dataset was 
created manually with amateur equipment it is prone to errors. 
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