

American Sign Language Alphabet Recognition
Using Machine Learning

Stefan Ladinski

Ss. Cyril and Methodius University,

Faculty of Computer Science and Engineering

Skopje, North Macedonia
stefan.ladinski.work@gmail.com

Abstract - In this paper, we propose a machine learning

model for recognizing all 26 letters in the American Sign

Language (ASL) alphabet. The model is trained using a

dataset obtained by recording a 30-frame video of hand

movements. MediaPipe is used to detect hand positions in

each frame and extract their coordinates, resulting in an

array of 63 values. These sequences of arrays are then

passed down to our Sequential model that uses LSTM as

the input layer and Dense as the output layer. We

evaluated two models, with Model 1 and Model 2 both

achieving similar accuracy. Our study demonstrates that

the proposed machine learning model consisting of

MediaPipe's hand detector and a neural network can

effectively recognize all letters of the ASL alphabet.

Keywords: sign language, alphabet recognition, machine

learning.

I. INTRODUCTION

Sign language is used all around the world. The language
consists of specific movements of the hands and body. Not a
lot of people know how to use sign language and that is why
the goal of this project is to build a machine learning model
that can recognize all the 26 different letters in the American
Sign Language (ASL) alphabet. To achieve this goal we will
be using a neural network consisting of Long-Short Term
Memory (LSTM) and Dense layers.

II. DATA

A. Why don’t we use a Convolutional Neural Network, with
images as an input?

Convolutional Neural Networks or CNNs [1] take one

image per input (letter). The problem here is that we can’t
represent all letters of the ALS alphabet with one image.

Fig. 1. Sign Alphabet

As shown in Fig. 1 the letters J and Z require movement
and thus cannot be represented with a single image.
The solution is to use multiple images to represent each letter.
Each letter will be represented by a video consisting of 30
frames. For each letter we will need multiple videos, we will
be using 60 videos per letter. Here another problem arises. We
have 26 letters and each letter has 60 videos and each video is
30 frames. This means that we will have to keep a total of 1560
videos or 46800 frames/images. Storing so many videos
presents a storage problem.

B. Using Arrays Instead of Images

Instead of storing every video individually we decided to
extract the positions of the left and right hand in every frame
and store that. To detect the hands [2] and their landmarks we
used the MediaPipe framework. MediaPipe detects 21
different landmarks on each hand. Each landmark has a
relative X, Y and Z coordinate.

Fig. 2. Detection of hand coordinates

Using MediaPipe we can detect and extract the X, Y and

Z coordinates of all 21 landmarks from each hand from a
single frame. After the landmarks are detected and the
coordinate information is extracted we will have an array of
126 values. The array contains 126 values because we have 2
hands, each hand has 21 landmarks and each landmark has 3
coordinates. Using this method we have greatly reduced the
storage requirements while also retaining the information
about the position of the hands in each frame.

The 20th International Conference on Informatics and Information Technologies - CIIT 2023

149

mailto:stefan.ladinski.work@gmail.com

Fig. 3. Coordinates of the landmark for one hand

III. DATASETS

A. Creating Dataset 1

The problem required a dataset of videos where each video
will represent one letter. We were unable to find such a dataset
and that is why we decided to create our own dataset. Prior to
collecting the data for the dataset we had to learn the letters of
the ASL alphabet.

The data is collected with a loop that runs 30 times for each
letter. Every time the loop runs it records a video that consists
of 30 frames. As the frames are being recorded we use
MediaPipe to detect and extract the landmark coordinates of
the hands for every frame. The process is repeated 30 times
for each letter, this way for each letter there are 30 sequences
30 of arrays.

B. Creating Datasets II & III

MediaPipe detects the hand coordinates relative to the
entire video feed. This means that the hand can be anywhere
in the frame, therefore resulting in more unnecessary data
variation. The method used to create Datasets 2 & 3 is similar
to the method used to create Dataset 1 only with one
difference. After MediaPipe extracts the hand coordinates,
instead of saving them as they are we scale and normalize
them. The wrist landmark's (landmark 0) coordinates are set
0 and all other landmark coordinates are scaled accordingly.
This results in dataset with much less data variation.
Dataset 2 uses the X and Y coordinates of each hand
landmark, while Dataset 3 uses all three coordinates for each
hand landmark.

C. Data Split

Once we have a sufficient dataset the next step is to use the
data to train the machine learning model. First the dataset has
to be split into separate sets: one for training, one for
validation and the other for testing. In this project all datasets
use the following split:

• Training set contains 70% of the original dataset.
• Validation set contains 15% of the original dataset.
• Testing set contains 15% of the original dataset.

IV. APPLIED MODELS

The model that was used in this project is a Sequential
model [3] from the Tensorflow library. The sequential model
is a neural network where we can add layers. Each layer’s
input is the output of the previous layer. The first layer in this
model is the input layer. The last layer is the output layer. The
output layer returns a probability for each class in the data
that tells us the likelihood that the class corresponds to the

input. All models used in this project use LSTM as an input
layer and Dense as an output layer.
Layers:

• LSTM (Long short-term memory) layers [4] are
layers that can learn from sequential data.

• Dense layers [5] are layers where all the input nodes
of the layer are connected to all the output nodes of
the previous layer.

• Dropout layer [6] is a layer used to combat
overfitting. The layer choses a number of output
nodes from the previous layer and it disregards their
output.

Model 1 is a sequential model consisting of:

• LSTM layer with an input of (30, 42 or 63) and
output dimensionality of 64.

• LSTM layer with an output dimensionality of 128.
• LSTM layer with an output dimensionality of 64.
• Dense layer with an output dimensionality of 64.
• Dense layer with an output dimensionality of 32.
• Dense layer with an output dimensionality of 26 that

corresponds to the 26 letters in the dataset.

Model 2 is a sequential model consisting of:

• LSTM layer with an input of (30, 42 or 63) and
output dimensionality of 128.

• LSTM layer with an output dimensionality of 128.
• Dropout layer that drops 20% of the neurons for the

previous layer.
• Dense layer with an output dimensionality of 26 that

corresponds to the 26 letters in the dataset.

A. Results

Long short-term memory is a type of neural network
architecture used to classify sequential data. Each letter is
represented by a sequence of arrays so this type of architecture
is suited. Using the dataset that was collected we tested many
different configurations of the neural network, these were the
best results:

Model 1 is a neural network consisting of three LSTM
layers and three Dense layers. The model was tested with all
three Datasets.

• Dataset 1:
o Accuracy score = 0.70
o F1 score = 0.57

• Dataset 2:
o Accuracy score = 0.92
o F1 score = 0.90

• Dataset 2:
o Accuracy score = 0.89
o F1 score = 0.88

Model 3 uses less layers than the previous model. Model

3 has two LSTM layers, one Dropout layer (used to combat
overfitting) and one Dense layer.

• Dataset 1:
o Accuracy score = 0.64
o F1 score = 0.63

• Dataset 2:
o Accuracy score = 0.98

The 20th International Conference on Informatics and Information Technologies - CIIT 2023

150

o F1 score = 0.95
• Dataset 2:

o Accuracy score = 0.95
o F1 score = 0.96

B. Testing

The performance of all the models was measured by
testing their F1 score and Accuracy score using the testing
dataset. It is useful to visualize this information using a
matrix. The diagonal of the matrix shows us how many times
each letter has been guessed correctly (darker color means
more guesses). We can also see how many times each specific
letter has been misclassified as another letter.

Fig. 4. Results from the testing dataset

V. CONCLUSION

Storing individual videos to use as data takes a lot more space
than just storing the coordinates of the hands in each frame of
the video. The dataset that we are using in this project consists
of 1560 videos. That means that for every letter in the alphabet
we have 60 sequences of arrays representing it. The dataset
was created specifically for use in this project. All the models
that were tested showed the same trend: Fairly high results
while training, but lower results while testing. The fairly high
results achieved while training indicate that the models are

able to learn from the data. The lower results while testing
might indicate issues with the models, but I think the more
likely culprit are errors in the dataset. Since this dataset was
created manually with amateur equipment it is prone to errors.

REFERENCES

[1] "tf.keras.layers.Conv2D," TensorFlow Documentation.
[Online]. Available:
https://www.tensorflow.org/api_docs/python/tf/keras/layers/
Conv2D
[2] "MediaPipe," Google Developers. [Online]. Available:
https://developers.google.com/mediapipe
[3] "tf.keras.Sequential," TensorFlow Documentation.
[Online]. Available:
https://www.tensorflow.org/api_docs/python/tf/keras/Seque
ntial
[4] "tf.keras.layers.LSTM," TensorFlow Documentation.
[Online]. Available:
https://www.tensorflow.org/api_docs/python/tf/keras/layers/
LSTM
[5] "tf.keras.layers.Dense," TensorFlow Documentation.
[Online]. Available:
https://www.tensorflow.org/api_docs/python/tf/keras/layers/
Dense
[6] "tf.keras.layers.Dropout," TensorFlow Documentation.
[Online]. Available:
https://www.tensorflow.org/api_docs/python/tf/keras/layers/
Dropout
[7] "sklearn.metrics.f1_score," scikit-learn Documentation.
[Online]. Available: https://scikitlearn.
org/stable/modules/generated/sklearn.metrics.f1_score.htm
[8] "CNN using Keras - 100% Accuracy," Kaggle. [Online].
Available: https://www.kaggle.com/code/madz2000/cnn-
usingkeras-100-accuracy
[9] "Deep Learning using Sign Language," Kaggle. [Online].
Available:
https://www.kaggle.com/code/ranjeetjain3/deeplearning-
using-sign-langugage

The 20th International Conference on Informatics and Information Technologies - CIIT 2023

151

