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Abstract—This paper studies the problem of assortative par-
titions of complete graphs. Assortativity is a measure of the
similarity of each node to its neighborhood. The results from
numerical simulations suggest that for this class of graphs the
assortative partitioning problem becomes more difficult as we
increase the assortativity threshold. We observe a significant
difference in the performance of the Gradient Descent algorithm
when our assortativity threshold is set to 4 instead of 2. This
numerically supports the hypothesis that the problem becomes
more difficult.

Index Terms—combinatorial optimization, NP class, complete
graphs, graph partitioning, statistical physics.

I. INTRODUCTION

Let us have a graph and let each of its nodes belong to one

of two types. We want each node to be connected to as many

nodes of its own kind as possible, thus we want to minimize

edges whose ends are of different kinds. The assortativity of

the graph is a measure of the ”happiness” of all nodes. If each

node is located in a neighborhood where most nodes are of its

own kind, then we will say that the node is happy (the terms

friendly and assortative are also found in the literature). The

problem becomes trivial if we let all nodes be of the same

kind. We introduce the condition that we want the two node

partitions to be roughly of the same cardinality. This condition

is also called zero magnetization in statistical physics. For the

problem defined in this way, we introduce another parameter,

the assortativity threshold H. To consider a node happy, we

need at least half of its neighbors to be of the same kind as

the node we are considering. The threshold of assortativity

indicates how much above the half we need to consider the

node happy. Example: we have a node with degree 8, and

assortativity threshold H=2, then we require this node to have

at least 6 nodes like it in its neighborhood to consider it happy.

The work in the project will consist of an analysis of the value

of this parameter and the complexity of finding a favorable

configuration.

II. RELATED WORK

For H=0, equivalent to requiring only half of the neighbors

to be of the same kind, we have a problem for which the

literature [4] indicates that it is easy to find a satisfactory

configuration. For H¿0, the problem in some types of graphs

exhibits the Overlap Gap property. A detailed interpretation of

the Overlap Gap Property can be found in [2]. This property

is an obstacle in many optimization problems and is closely

related to the NP-complexity of algorithms. The Overlap Gap

property refers to a large distance between two solutions that

are close to optimal. We want to check whether it is reasonable

to expect the Overlap Gap Property and thus high complexity

in given classes of graphs that are not sufficiently explored.

In a paper [10] from this area, the author investigates the

co-evolutionary process based on the Bak-Snappen model,

where very high degrees of adaptability are achieved for all

kinds. The purpose is to see if a simple model for the co-

evolutionary process of species can serve as a basis for a useful

technique in Artificial Intelligence. In this paper the authors

observed that on geometric graphs the new approach proposed

is much faster in reaching a good solution than Simulated

Annealing. In Simulated Annealing [1] we have much larger

jumps in the beginning and it takes many more iterations

to reach a low value of the loss function. This means that

the author’s two initial hypotheses are correct, but only for

the specific problems investigated in the paper and only for

geometric graphs. However, it should be noted that not all NP-

hard problems will be so prone to Extremal Optimization and

not all types of graphs will show similar results. Although

the min-bisection problem is mentioned in this paper, it is

not the primary focus of the work. However, there are quite

a few useful guidelines that can be applied to our specific

problem. As an example, the possibility of overcoming large

energy barriers (local minima in our local search problem) is

quite promising for the different types of graphs that we will

explore. Furthermore, the way the numerical simulations are

conducted has parallels with our approach.

III. OF PRACTICAL MEANING

The assortativity problem is fundamentally related to the

minimum-bisection problem. Its complexity is of particular

importance for many practical applications: electrical circuit

design, Hopfield networks [7] and partitioning of sparse ma-

trices. Because there are already studies on regular or valence

graphs in the literature [3], we want to extend these analyzes

to complete graphs. For this, we will use the algorithm based

on Gradient Descent and inspired by Extremal Optimization

[5].
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IV. HYPOTHESIS

Guided by the existing literature, it is intuitive to assume

that the problem is indeed hard, and it gets harder as we

impose more stringent conditions. However, we divide this

assumption into two parts, which we can test experimentally.

A. Overlap Gap Property

Based on the stability analysis of the minimum bisection

problem, we assume that the Overlap Gap Property also

applies to graphs of a different nature than regular. Overlap

Gap Property in our case means that when we find a favorable

configuration, if we change only one node, it will start a

chain of consequent changes and many other nodes will have

to swap partition before we reach a favorable configuration

again. If it is true for valence graphs, given that all (and even

valence) graphs can be represented in a complete graph with

appropriately chosen weights, we assume it will also be true

for complete graphs.

B. Clear demarcation of phases

We assume that Gradient Descent on all complete graphs

will encounter obstacles in finding a favorable configuration.

We expect to clearly differentiate stages of algorithmic com-

plexity for different values of the assortative threshold.

V. METHODOLOGY

The question explored in this paper is based on several

scientific theories. The hypothesis is set so research can be

conducted in two ways: through formal mathematical proofs

or through numerical simulations. Numerical simulations alone

are not enough to prove or disprove the hypothesis, but because

we will work with a large amount of data, the results will at

least be meaningful. The data (graphs) will be generated by

random generators. For each graph we will pass a specific seed

so that we are able to generate the same graph in the future.

It follows that we will apply quantitative methodology and we

will experimentally test our hypothesis.

VI. GRADIENT DESCENT

In the general case, the Gradient Descent algorithm is used

when we want to optimize something, usually by looking

for the global minimum of some loss function. In our case,

the algorithm works a little differently. For a graph that is

not initially partitioned, its nodes are randomly divided into

two partitions. Of course, these partitions are probably not

very assortative. However, it is always possible for the nodes

to have high assortativity (half of their degree). Gradient

Descent is simply a loop that doesn’t end until this is achieved.

Additionally, we repeat the procedure as many times as we

define restarts. Finally, we select the best value from all restarts

for the given graph.

VII. EXPERIMENTS

For an under-explored class of graphs (complete graphs),

we do the following:

• Generating graphs of different sizes (from 32 nodes to 16,777

nodes). 100 different graphs are generated for each size to

reduce the probability of random results;

• Setting the threshold for assortativity;

• Running Gradient Descent, which reliably finds an assorta-

tive solution (assortativity of at least 1 for each node). This

algorithm works with multiple restarts of the same graph,

which means that the same graph gets a different initial

configuration. This algorithm was made parallel so that we

have 10,000 restarts for each instance of the graph;

• Collecting results, pre-processing of data and presenting

trends;

A similar approach (but a different class of graphs and

different algorithms) can be found in paper [3].

Fig. 1. Percentage of graph instances for which there is not a single successful
restart. A successful restart is one where all nodes have an assortativity of at
least 2. Failure is concentrated in graphs of size 32.

Fig. 2. How many successful restarts we have on average (the percentage)
for all instances of a graph of a given size. A successful restart is one where
all nodes have an assortativity of at least 2. We observe an exponential decay.
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Fig. 3. Percentage of graph instances for which there is not a single successful
restart. A successful restart is one where all nodes have an assortability of at
least 4.

Fig. 4. How many successful restarts we have on average (the percentage)
for all instances of a graph of a given size. A successful restart is one where
all nodes have an assortability of at least 4.

VIII. RESULTS

In a complete graph, every node is connected to all other

nodes. Because our goal is to assign all nodes to a partition

so that they are assortative (located in a good neighborhood),

to prevent the algorithms from assigning all nodes to one

partition we will also introduce edge weights. Our problem

now takes on a slightly different definition, although in fact the

question, the experiments, and the conclusion are completely

equivalent. Every edge is assigned weight of +1 or -1 with

equal probability. If an edge has a negative weight, then the

two nodes it connects want to belong to a different partition.

Accordingly, if the edge is of positive weight, just as in

the previous problem definition, the nodes want to be in

the same partition. Here it is important to emphasize that

we want to have roughly equal numbers of negative and

positive weight edges. Since there are already papers in the

literature indicating that it is easy to find a solution for a given

Fig. 5. Comparison of Gradient Descent performance when we change the
assortativity threshold. It can be seen that for threshold 4 the performance of
the algorithm drops significantly.

assortative threshold for given classes of graphs, we now need

to set an assortative threshold for complete graphs. There is a

difference here for graphs with even and odd number of nodes.

For example, if we want half of the neighborhood to agree

with our node, then if we have an even graph, the number of

edges we will consider is odd, so the half should be defined

accordingly. Because we will be working with graph sizes that

are powers of 2, all graphs are even-sized. For each node and

the corresponding neighbor, we check whether they are in a

happy connection or not, and sum the values. For example, if

we have a weight on the edge of -1 and both nodes are in a

different partition, we add 1 to the assortativity of the node we

are looking at, and if they are in the same partition we subtract

1. In even-sized graphs, we will never get an assortativity

of 0-it will always be odd. So any good assortativity is of

positive value. Additionally, an assortativity of 1 is similar

to an assortativity threshold of 0 in valence graphs. That

is why our question of interest is whether assortativity of

more than 2 can be achieved. Because we want all nodes to

have good assortativity, we consider a successful restart of

Gradient Descent to be the one in which the worst node has

assortativity at least 3. To analyze the data, we look at the

percentage of restarts that were successful and the number

of graphs for which the algorithm fails to find a satisfactory

configuration in all restarts. Figure 4 shows on average how

many of the restarts are successful for the parameters defined

in this way (assortativity threshold 4). Because we are working

with 100 graph instances, it is unlikely that the results are a

product of chance. This distribution resembles an exponential,

indicating that indeed the problem becomes more difficult for

large graphs. On the other hand, if we relax the assortativity

condition to 2, we still keep an exponential distribution (Figure

2). So, the problem becomes more difficult for both thresholds,

but from the comparison in Figure 5, it can still be seen

that the problem with a higher threshold is more difficult
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and Gradient Descent performs much worse. This supports

our hypothesis of differentiating phases of complexity. From

Figure 1 we can see that Gradient Descent still manages to

find a solution (at least one successful restart) for almost all

graph instances when the threshold is set to 2. The exception

is graphs of size 32, but this is expected because the graph is

too small to reach the thresholds of assortativity that we set.

However, the picture is quite different for the threshold of 4,

where Gradient Descent often fails completely for graphs with

size above 1024. Accordingly, we see a sharp increase in the

percentage of graphs for which Gradient Descent fails around

graph size 1024 (Figure 3).

IX. DISCUSSION AND CONCLUSION

After the experiments, we can see that as the graph in-

creases, we have less and less successful restarts with the Gra-

dient Descent algorithm if we define success as all nodes with

assortativity greater than to 2. This provides a numerical basis

to assume that our initial hypothesis is correct and that indeed

the min-bisection problem for high assortativity thresholds is

hard and exhibits the Overlap Gap property. Further experi-

ments with different algorithms are necessary to strengthen this

hypothesis, and the proof would undoubtedly be theoretical,

but this paper focused on the minimum-bisection problem in

complete graphs and shows experimentally that it is reasonable

to expect Overlap Gap Property and algorithmic hardness in

this problem.
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