

Using CQRS Pattern for Improving Performance in
Relational Databases

Valmir Sinani
Faculty of Information and Communication Technologies

University of St. Kliment Ohridski,

1 Мај bb., 7000 Bitola, Republic of Macedonia

sinani.valmir@uklo.edu.mk

Abstract—Data-intensive applications, such as social

media, financial and trade systems, rely heavily on data

generated by users. This type of application requires high

performance, and traditional architecture may not be

suitable for complex applications. CQRS is a programming

model pattern that changes the traditional mentality of

using one programming model as CRUD, where writing

and reading operation work in a single model. CQRS

segregates CRUD into two programming models. CQRS

pattern treats retrieving data and writing data separately

with different responsibilities. Here in the introduction,

some quotes describe the CQRS pattern. Also, here are

some motivations for the implementation of the CQRS

pattern. The Case Study section presents an

implementation of the CQRS pattern in API applications

with the intention of optimization. Below is presented the

value of segregating the reading data model from data store.

Keywords—CQRS pattern, CRUD, performance, use case.

I. INTRODUCTION

This paper will present one table which will be used to
perform traditional functions such as Create, Update, Delete and
read data using MSSQL. This table will contain rows of products
and will have five columns: Id, Product Name, Producer, Price,
and Description. The aim of creating this table is to test the load
performance while comparing traditional CRUD with CQRS
pattern. The CQRS pattern will use two different models: one
model for creating, updating, and deleting, and another model
for reading data only. Each model will be treated separately, as
shown in Fig 1.

To test performance and show a comparison between
traditional CRUD and CQRS patterns, it will present a Web API
in .NET for both approaches. To evaluate the performance in
data retrieval, the Apache JMeter application was used. Apache
JMeter application helps in testing load performance of Web
applications. More information about Apache JMeter can be
read in the documentation of this site application. [8]

The CQRS pattern has various advantages and
disadvantages. Some advantages include scalability, reduced
single points of failure, increased security, and maintainability.
However, there are also some disadvantages, such as increased

complexity, weak acid pattern, and data duplication. In this
paper, our focus is on improving performance.

In the next section, it will descript CQRS patter. Also, in the
II section, it is presented the difference between traditional
pattern and CQRS pattern.

II. CQRS PATTERN

Data-intensive applications, such as social media, financial
and trade systems, rely heavily on data generated by users. This
type of application requires high performance and availability to
handle a large amount of data in real time. Also, this application
needs to be always available to provide a seamless user
experience.

The traditional architecture uses the same model for reading
and writing data in relational databases. This architecture is
suitable for applications that are not complex. However, if the
model becomes complex and requires more focus, then the
treatment of the same model for reading and writing could
become challenging. Due to the complexity of reading and
writing data in large applications, the extensibility of it may
become difficult to manage when scaling and maintaining it.[1]
Big applications could encounter load problems, as
demonstrated in the example presented in this paper.

Data architects could improve performance and data
availability by examining data activity distinctly in creating,
reading, updating, and deleting. As a result, the data created once
may be accessed multiple times by users.[2]

Fig 1 Command and Query models using CQRS pattern.

The 20th International Conference on Informatics and Information Technologies - CIIT 2023

63

CQRS is a design pattern that separates the responsibilities
of reading and writing data into two distinct processes. CQRS
is a pattern that offers a separation between reading and writing
data.

CQRS stands for Command and Query Responsibility
Segregation. This pattern firstly was described by Greg Young
in 2010. The base of the CQRS pattern is the segregation model
for reading data from the model of retrieving data [3].

Before using CQRS pattern, it was the same object that was
used for command and query. CQRS is based on segregation in
two models, one model is used for reading while the other is
used for query. CQRS presented here is like Meyer used in
Command and Query Separation: query returns data only and
doesn’t change data, while command changes the state and
doesn’t return any data [4].

In section III, we will present a CQRS pattern, and a simple
architecture prepared for this use case. Here, we have presented
the infrastructure of the use case and application used for test
scenarios.

III. USE CASE

Below will be a product table, which will be used to analyze
performance. The performance analysis will be using simple
architecture or traditional CRUD and CQRS patterns. CQRS
patterns will be presented in two types of data management: with
a single relational database and, with two relational databases.

A. Simple Architecture and CQRS Pattern

For setting up a simple architecture was used CRUD .NET
API technology. Within this project are three roots, as could see
in Fig 2. The first root retrieved all data from the product table,
the second root retrieved product data by id, and the last root
was used to insert data in the database.

The CQRS pattern, as we can see from the acronym,
separates responsibility into two models, one model for
command and the other for the query. The command model
operates for writing in the database, while the query model is
used for reading data in database. The command model performs
only one specific task; thus, its duty is to write in the database,
therefore it is simple. Query models only operate to retrieve data
from the database and are not indicated in the writing process.
For more details about code implementation, the CQRS pattern
can be seen online.[7] Also, the CQRS architecture with two
databases uses the same technology as the CRUD pattern.
However, the CQRS pattern with one database performs both
reading and writing operations in the same database. On the
other hand, the CQRS pattern that operates with two databases
writes data in one database and reads from another database.

The functionalization CQRS pattern uses two databases
where one database operates to create, update and delete and
also could be called the primary database, and the other database
is used to perform reading data which could be called a
secondary database.

The primary relational database synchronizes data with the
secondary relational database in real-time. The synchronization
between two databases is achieved by using triggers. Triggers
are responsible for the synchronization of data from the primary
database to the secondary database in real time.

This test scenario aims to perform a comparison between
CRUD patterns and CQRS patterns.

The testing of these patterns is conducted using the ‘Apache
JMeter’ application. Firstly, we have created a thread group of
users whose duty is to execute the group of parallel users as
shown in Fig 3. This thread group was configured for our
requirements. We created an HTTP Request and an HTTP Post
and added 'View Result Table' to the executed results.

Fig 2 - Root API of Applications

Fig 3- Apache JMeter- Test Plan Scenario

B. Architecture Testing

Testing is conducted on the product table that is created in
the RDBMS. The testing is carried out on two groups of data:
one with 30k data rows and the other with 100k data rows.
Testing groups of users are used for testing. The first group
contains 10 users, the second group contains 50 users, and the
last group contains 200 users. Each user group performs 2
operations, adding new data and retrieving all products, as
shown in Fig 3.

C. Quality Of Test

The infrastructure used for the test is a laptop with the
following specifications: Core i7, 2.80GHz (8 CPUs), and 16GB
of RAM. Before testing patterns from every user group, we
ensured the eco-functioning of processes and the health of the
laptop. Additionally, before executing every group, IIS and
MSSQL services were started. During the testing, the user
groups monitored data processing using SQL Profiler and
verified the expected data to be added and retrieved.

Section IV presents the results of this case scenario.
Additionally, it will be shown the another extended possible
scenario and discussed future work.

IV. CURRENT AND FUTURE WORK

The results of the tests for this case are presented in the
charts. The charts presented in “Fig 4” and “Fig 5” are the
average taken from Table I and Table II.

The 20th International Conference on Informatics and Information Technologies - CIIT 2023

64

Table I and Table II present average results of three groups
of users who performed three different patterns of
implementation.

Fig 4- Rez. testing the http get with 30,000 rows.

Fig 5 - Rez. testing the http get with 100,000 rows.

Each column in Tables I and II presents the results of three
different application implementations: a simple CRUD
implementation (labeled 'Simple(ms)'), a CQRS implementation
(labeled 'CQRS(ms)'), and a distributed database CQRS
implementation (labeled 'ddb.CQRS(ms)'). These applications
performed operations for writing and retrieving data. Table I
presents the results for parallel user groups of 10, 50, and 200,
while Table II presents the results for parallel user groups of 10
and 50.

Based on test results which were presented in Table I and
Table II, it appears that there are differences in SIMPLE CRUD
performance. It performs well over 30k product rows for 10 and
50 parallel users, and over 100k product rows for 10 parallel
users. However, performance is weak over 30k for 200 parallel
users and over 100k for 50 parallel users.

Based on the results of Table I, which represents data from
“Fig 4”, it seems that the CQRS pattern does not have a
performance impact when reading 30k product rows for a group
of 10 and 50 parallel users. But the impact CQRS patter can be
seen in the group of 200 parallel users. Also, based on “Fig 5”,
which is derived from Table II, it seems that CQRS pattern has
improved performance in reading 100k product rows for the
group of 50 parallel users.

Based on “Fig 4” and “Fig 5”, it seems that the performance
of using CQRS increases significantly as the number of rows in
the database increases. Furthermore, when the number of rows
exceeds 30.000 in the group of 200 parallel users, the
performance of CQRS with a single database appears to be

lower compared to distributed databases CQRS with two
databases.

 The CQRS could advance if:

• CQRS could have improved performance and other
advantages if, in a distributed database environment, the
CQRS implementation separates the read database onto
a different machine.

• If this case study were extended to the level of table
design, the table could be extended to join with the
Products table. This would allow for data retrieval from
multiple tables. To optimize CQRS with distributed
databases, data could be written in a denormalized
way.[5]

• Another optimization of CQRS with distributed
databases could be achieved through horizontal
scalability, which would involve having more than two
read databases.

• Optimization of CQRS with distributed databases could
be improved by combining it with other database
systems. For example, CQRS could use NoSQL for
managing the read database process.[6]

TABLE I. THE RETRIEVAL OF DATA FROM A PRODUCT
TABLE CONTAINING OVER 30,000 ROWS

Reading

data by
users

Simple

(in

millisecond)

CQRS

(in

millisecond)

DDB.CQRS

(in

millisecond)

10 users 3749.91 2596.21 2326.91

50 users 17106.48 8716.16 8292.16

200 users 28404.41 17952.1 17828.1

TABLE II. TESTING THE RETRIEVAL OF DATA FROM A
PRODUCT TABLE CONTAINING OVER 100,000 ROWS

Reading

data by
users

Simple

(in millisecond)

CQRS

(in

millisecond)

DDB.CQRS

(in

millisecond)

10 users 3749.91 2596.21 2326.91

50 users 17106.48 8716.16 8292.16

V. CONCLUSION

In this paper is presented an importance of performance
databases in SQL relation. This is a comparison between the
CQRS (Command and Query Responsibility Segregation)
pattern and the traditional CRUD (Create, Read, Update, and
Delete) pattern. Two different CQRS solutions are presented,
one with write and read operations performed in the same
database and the other with read and write operations performed
in different databases.

CQRS could play a significant role in improving
performance in reading data in SQL relational databases. CQRS
pattern could be an unavoidable solution in cases when the
amount of data in relational databases is growing significantly,

The 20th International Conference on Informatics and Information Technologies - CIIT 2023

65

and there is a frequent reading of that data. However, as this
paper suggests, in some cases, CQRS may not have an impact
on loading data, and traditional patterns may be sufficient.

The CQRS pattern could potentially slow down the writing
process on the database, especially if the synchronization is in
real-time.

REFERENCES

[1] CQRS pattern - Azure Architecture Center | Microsoft

Learn." https://learn.microsoft.com/en-
us/azure/architecture/patterns/cqrs. Accessed 18 Mar.
2023.

[2] Rajković, Petar, Dragan Janković, and Aleksandar
Milenković. "Using cqrs pattern for improving
performances in medical information systems." Proc. of the
6th Balkan Conference in Informatics. 2013.

[3] "CQRS - Martin Fowler.'' 14 Jul. 2011,
https://martinfowler.com/bliki/CQRS.html. Accessed 21
Mar. 2023.

[4] Betts, Dominic, et al. "Exploring CQRS and Event
Sourcing: A journey into high scalability, availability, and

maintainability with Windows Azure." (2013), pp. 223-
234.

[5] CQRS Journey,
http://msdn.microsoft.com/enus/library/jj554200.aspx

[6] "Combining SQL and NoSQL databases for better
performance." 24 Oct. 2017,
https://www.thereformedprogrammer.net/ef-core-
combining-sql-and-nosql-databases-for-better-
performance/. Accessed 5 Apr. 2023.

[7] V. Sinani. 2023. Repository of CQRS product case.
https://github.com/valmirsinani/CQRS-Pattern. Accessed
5 Apr. 2023.

[8] "Apache JMeter - Apache JMeter™ - The Apache
Software Foundation!." https://jmeter.apache.org/.
Accessed 5 Apr. 2023.

The 20th International Conference on Informatics and Information Technologies - CIIT 2023

66

