
Microsoft Azure Cloud Computing - Server vs

Serverless

Marija Taneska

Faculty of computer science and engineering

Ss. Cyril and Methodius University

Skopje, North Macedonia

marija.taneska@students.finki.ukim.mk

Aleksandar Dimkoski

Faculty of computer science and engineering

Ss. Cyril and Methodius University

Skopje, North Macedonia

aleksandar.dimkoski@students.finki.ukim.mk

Abstract—Cloud computing enables us to take advantage
of powerful computing capabilities without having to make
substantial capital investments. There is a debate on what cloud
architecture should be used on what occasions, so the goal of this
paper is to identify which cloud architecture is better - server
or serverless, and specifically which serverless. To accomplish
the goal, we created simple web applications using Django and
Spring Boot frameworks, then hosted them on Microsoft Azure
cloud in both way - server using Virtual machines and serverless
using Azure Function and Azure Container App. In this paper,
we describe the differences in cloud architectures and analyze
hosting web application. This research not only highlights the
importance of performance, scalability, and cost-effectiveness but
also helps determine which solution is best for specific purposes.

Index Terms—cloud, serverless, Microsoft Azure, Function
App, Container App

I. INTRODUCTION

Businesses now approach IT infrastructure differently be-

cause of cloud computing, which enables them to take ad-

vantage of powerful computing capabilities without having to

make substantial capital investments. Server-based and server-

less architectures are two well-liked methods for deploying

applications in the cloud. A cloud architecture that relies on

servers to host and operate applications can be virtual or phys-

ical. These servers need continual upkeep and monitoring and

are often managed by the cloud provider or by the customer.

A serverless design, on the other hand, frees developers from

having to worry about managing the underlying infrastructure

so they can concentrate on building and distributing code.

Event-driven, or serverless, systems dynamically scale to meet

demand and only run when triggered by specified events.

Our main research question was ”Which cloud architecture

server or serverless is better? ” and the next question was

”Which Microsoft Azure serverless solution is better to use?”.

We created simple web applications using Django and Spring

Boot frameworks, whose specifications we describe in Section

II. In our research we used Azure virtual machines for server

based application deployment, while for serverless application

deployment we used Function App and Container App. We

provide an overview of used Azure services in Section III, and

in Section IV we give the details of application deployments.

In order to evaluate the performance and scalability, load

testing using parallel requests was conducted. Load testing

and configuration we describe in Section V, while in Section

VI we present the results and analysis.

II. RELATED WORK

Cloud environment is not an easy manage, corresponding

challenges as availability, load balancing, auto-scalling are

addressed in [4]. Serverless cloud computing by adding an

additional abstraction layer set as free from these challenges

[5]. Additionaly, deploying an application will not cost the

developer in the case where the application is idle, and the

serverless provider will only charge whenever the application

has started using resources [6]. There is common challenges

for using both cloud deployment architectures, such as secu-

rity, monitoring [4]. The testing and comparison of server vs.

serverless Azure deployments were conducted in reference [7].

The author reached the conclusion that serverless deployments

are more suitable for heavier processing and longer-running

tasks.

III. PROJECT SPECIFICATION

We created two simple web applications using Spring Boot

and Django frameworks. The application flow is shown in Fig.

1. Both applications work in the following order: through the

User Interface the user uploads a file, then a calculation is

started via API web service and at the end the Processing time

and Result file content are displayed on the user interface.

Fig. 1. Application flow

The problem specification for the Spring Boot web appli-

cation is: Creating a web application and web service (API)

for sorting numbers in ascending order. The input files contain

The 20th International Conference on Informatics and Information Technologies - CIIT 2023

59



500000 integers.

The problem specification for Django web application is:

Creating a web application and web service (API) for creating

a file where each line represents the average between two

neighboring integers. The input files contain 200000 integers.

IV. AZURE SERVICES

Microsoft Azure, sometimes known as Azure, is a cloud

computing platform run by Microsoft that offers application

and service access, management, and development across

globally dispersed data centers.

A. Azure Virtual Machine

Azure Virtual Machine is a cloud computing option that

allows users to deploy and manage virtual machines on the Mi-

crosoft Azure cloud platform. Azure Virtual Machine enables

users to create and administer virtual machines in the cloud

without having to worry about the supporting infrastructure

since virtual machines are essentially simulations of physical

computers. The versatility of Azure Virtual Machine is one

of its main advantages. Depending on their particular needs,

users can select from a range of pre-configured virtual machine

sizes or build new virtual machines with the exact specs they

need. If their processing demands change, users can simply

scale up or down thanks to this, all without having to buy and

maintain real gear.

B. Azure Function

One of the various cloud computing choices that aims to

make scalability less painful is Azure Function. A serverless

app has a different strategy than a continuous operation: it

waits for requests to arrive, then starts as many instances as

necessary to deal with them, shutting down once the job is

finished. There is no fee if no one uses the service. Scalability,

on the other hand, is already covered in the event that

your software becomes an overnight success. In a serverless

framework, there is also the additional benefit of not having to

worry about operating systems; the platform is abstracted in

a way that allows developers to concentrate on creating their

web apps.

C. Azure Container App

Another cloud computing choice that provides a scalable

and adaptable method for delivering and managing container-

ized applications is Azure Container App. In contrast to

conventional server deployments, the Azure Container App ab-

stracts away the underlying infrastructure and operating system

to free developers to concentrate entirely on their application

code. As a result, the application may be developed more

quickly and managed more easily throughout its lifecycle.

V. APPLICATION DEPLOYMENT

This is an essential part of the project - application deploy-

ment on a cloud provider, Microsoft Azure.

A. Server hosting

We set up Virtual Machines using Ubuntu as the operating

system and configured them with a 64-bit (x86) architecture.

As part of the setup process, we generated a new key pair to

facilitate remote SSH access. Additionally, we configured the

firewall rules to allow for SSH, HTTP, and HTTPS access.

To deploy our Spring application, we installed JDK and

Tomcat web server since our application is built with Java.

Additionally, we added a firewall rule to allow incoming traffic

on port 8080. Next, we created a ’.war’ package and uploaded

it to the manager page of the Tomcat server client portal.

To deploy our Django application, we installed the neces-

sary dependencies including python3-django, python3-pip, and

python3-venv, as well as Nginx. We then configured Nginx to

act as a reverse proxy for our application.

B. Serverless hosting - Azure Functions

To deploy our application on Azure Functions, we’ll need

to make some modifications. Firstly, we’ll need to split the

application into two parts: the first being an API Azure handler

that returns a sorted array of numbers, and the second being a

REACT application that renders the data received from the

AJAX API call. As our application is built with Java and

Springboot, we’ll use the Spring Cloud Function module to

implement the backend. Once we’re done coding, we can

easily deploy the function to Azure using the command line

interface.

C. Serverless hosting - Container App

We created a Docker image of our application in order

to containerize it. Then, on Microsoft Azure, we created a

Container Registry and pushed the image there. We proceeded

to build the Azure Container App using the previously pushed

Docker image. Additionally, we manually activated Azure

Container Instances for our research and found that they can

be integrated with Azure Functions.

VI. TESTING METHODOLOGY

After completing the application deployment phase, we

moved on to performance testing by writing the request

generator. The pseudo code for the generator is as follows:

Result: Total processing time

Function upload(url, req):
create a new executor service with a fixed thread pool

of size req create an empty list for processing times

increase the maximum number of retries for HTTPS

connections repeat req times do create a file with random

numbers using createFileWithRandomNumbers function

create a new task to upload the file submit the task to the

executor service shut down the executor service wait for

all submitted tasks to finish executing before proceeding

sum up the processing times in the list and print the size

of the list and the sum return the sum as a string
end

Result: Absolute path of the file

The 20th International Conference on Informatics and Information Technologies - CIIT 2023

60



Function createFileWithRandomNumbers(num):
create a random number generator create an empty

string builder repeat 200000/500000 times do append a

random number between 1000 and 10000 to the string

builder append a newline character to the string builder

create a file create a buffered writer for the file write

the contents of the string builder to the file close the

buffered writer return the absolute path of the file

end

Pseudo code for creating a file with random numbers and

uploading it to a given URL using multiple threads

VII. RESULTS

We have reached the part of the analysis of the results which

is the purpose of this paper.

A. Spring Boot application

Scalabilitity on Virtual machine

The testing phase involved uploading a CSV file with 500,000

numbers 100 times and calculating the average processing

time for all requests. We conducted this test as the processing

time for each request can vary due to several factors such

as cold or warm start. Our results indicate that the average

processing time for the application hosted on an Azure VM

is 343.1 milliseconds, with most requests taking between

250-500ms. To further evaluate the system, we conducted an

experiment where we sent 10 requests simultaneously to the

virtual machine API handler. However, the server crashed and

was unable to handle all the requests at once. Scalability on

Function App

During the testing phase, we uploaded a CSV file with 500,000

numbers 100 times and calculated the average processing

time of the application. The results showed that the average

processing time of the Function App was 880.43 milliseconds.

Most of the requests had an execution time in the range of 500-

1000ms. However, when we sent 10 requests simultaneously,

we saw a different result. Unlike the VM, the Function App

was able to handle the requests and return the proper response.

If we sent more than 10 requests, the Function App would

manage to process them all. The Function App waits for

requests to come in and fires up as many instances as needed to

handle the requests, shutting down once the work is complete.

The following chart shows the average processing time as we

send multiple parallel requests to the Function App.

If we do the same experiment as we did on the Virtual

machine with sending 10 request simultaneosly, we will see a

completely different results. The results are that the function

app unlike the VM, handles the requests and returns the proper

response. If we send more than 10 requests the function app

will manage to process all the requests. Azure function app

waits for requests to come in and fires up as many instances

as needed to handle the requests, shutting down once the work

is complete. In Table I we present processing times of Azure

Function, and in Fig 2 we visualize them.

Requests 5 10 15 20 25 30 35 40

Processing time 2171 3077 3245 2642 2361 2158 2671 1897
TABLE I

AZURE FUNCTION FROM SPRING BOOT APPLICATION PROCESSING TIME

Fig. 2. Azure Function processing time

B. Django application

In this section, we analyze the processing times of a de-

ployed application in both server and serverless environments.

At the outset, we observe a slight difference in processing

times for a single file upload: the server takes 279ms, while

the serverless approach takes 249ms. The Table I. shows the

that as the number of requests increases, the difference in

processing times becomes more pronounced.

Requests 10 20 30 40 50

Type of service Processing time in milliseconds

Server 3403 7986 12647 23005 25024

Serverless 2564 5075 7577 10221 12730
TABLE II

DJANGO APPLICATION PROCESSING TIME COMPARISON UP TO 50
DIFFERENT REQUEST LOADS

While testing the serverless hosted application, some issues

were encountered where not all requests were successful for

requests above 50. To address this, for a maximum of 100

requests, the failed requests were sent while maintaining a sim-

ilar level of parallelization. Despite this issue, the processing

times for the serverless hosted application were consistently

lower compared to the server-hosted application. From the

initial testing stage with a single file upload, there was only

a minimal difference in processing times, with the server

processing at an average of 279ms and the serverless hosted

application processing at an average of 249ms. However, as

the number of requests increased, as we can see from Table II.

the processing time difference between the two became more

noticeable, with the serverless hosted application consistently

outperforming the server-hosted application in terms of pro-

cessing time.

Time performance analysis showed that serverless hosted

applications performed better. From Fig. 3 we can see that

The 20th International Conference on Informatics and Information Technologies - CIIT 2023

61



Requests 60 70 80 90 100

Type of service Processing time in milliseconds

Server 26509 29395 38962 42629 41525

Serverless 15357 17914 20368 22868 25356
TABLE III

DJANGO APPLICATION PROCESSING TIME COMPARISON FROM 50 UP TO

100 DIFFERENT REQUEST LOADS

Serverless hosted applications are sometimes even (roughly)

twice as fast as server hosted applications.

Fig. 3. Django application processing time comparison up to 50 different
request loads

VIII. FUTURE WORK

Our future plans involve transforming a Spring Boot appli-

cation into an Azure Function and a Django application into

a Container App. We aim to conduct a comprehensive test

to compare the results between these different deployment ap-

proaches. Additionally, we plan to explore the reverse scenario,

where we will develop Django and Spring Boot applications

based on specific project requirements.

IX. CONCLUSION

In this paper, we compared the performance and key differ-

ences between Server architecture and Serverless architecture.

We observed that the Spring Boot server hosted applica-

tion is sometimes twice as fast compared to the serverless

application, but it is less scalable. In contrast, the Django

application serverless hosted application (Container App) is

twice as fast as server hosted application but has problems with

resubmitting requests. Therefore, we conclude that serverless

hosting may not be suitable for mission-critical applications.

Organizations should carefully consider the trade-offs between

speed, scalability, and reliability when choosing between

server architecture and serverless architecture.

Server based solutions that use virtual machines offer better

control over the environment, are better suited for long-running

processes, provide more predictable performance, and can be

more cost-effective for certain workloads. While serverless so-

lutions are advantageous in many situations, virtual machines

may still be a better choice in certain circumstances, such as

applications that require specific software or hardware con-

figurations, have long-running processes, strict performance

requirements, or consistent and predictable resource usage. If

stability is a priority and there is a good team to manage server

infrastructure, then server-based architecture is the logical

choice. Otherwise, if speed is a priority and it is not a

mission-critical application, then serverless architecture using

Container App is the better choice. Serverless computing is a

growing trend and will likely be adopted more in the future.

However, serverless computing also has its challenges. Since

the cloud provider manages the underlying infrastructure, de-

velopers have less control over the runtime environment, mak-

ing debugging and optimization more difficult. Additionally,

serverless computing can introduce new security concerns, as

code and data are stored and executed on third-party servers.

Despite these challenges, serverless computing continues to be

a growing trend in the world of cloud computing, with many

organizations adopting it to increase efficiency, reduce costs,

and improve their overall agility. As serverless technology

continues to evolve, we can expect to see even more innovation

in this space and new use cases emerging.

X. ACKNOWLEDGEMENT

This research was conducted as students projects for Cloud

Computing course at Faculty of Computer Science and Engi-

neering at ”Ss Cyril and Methodius” University in Skopje.

REFERENCES

[1] Virtual machines in Azure, available at https://learn.microsoft.com/en-
us/azure/virtual-machines/

[2] Azure Functions documentation, available at
https://learn.microsoft.com/en-us/azure/azure-functions/

[3] Azure Container Apps documentation, available
at https://learn.microsoft.com/en-us/azure/container-
apps/?ocid=AID3042118

[4] Jonas E, Schleier-Smith J, Sreekanti V, Tsai C-C, Khandelwal A, Pu Q,
Shankar V, Carreira J, Krauth K, Yadwadkar N, Gonzalez JE, Popa RA,
Stoica I, Patterson DA (2019) Cloud Programming Simplified: A Berkeley
View on Serverless Computing.

[5] Baldini I, Castro P, Chang K, Cheng P, Fink S, Ishakian V, Mitchell
N, Muthusamy V, Rabbah R, Slominski A, Suter P (2017) Serverless
Computing: Current Trends and Open Problems In: Research Advances
in Cloud Computing, 1–20.. Springer, Singapore.

[6] Hassan B. Hassan, Saman A. Barakat, Qusay I. Sarhan (2021) Survey on
serverless computing. In: Journal of Cloud Computing

[7] Server vs. Serverless: A Performance Test, available at
https://www.singlemindconsulting.com/blog/server-vs-serverless-a-
performance-test/

The 20th International Conference on Informatics and Information Technologies - CIIT 2023

62


