
Analysis and Comparison of Chess Algorithms

Vesela Trajkoska and Gjorgji Dimeski

Faculty of Computer Science and Engineering

University ”Ss. Cyril and Methodius”

Skopje, Macedonia

vesela.trajkoska@students.finki.ukim.mk

gjorgji.dimeski@students.finki.ukim.mk

Abstract—In this paper we analyze the results of three different
algorithms programmed for playing chess – genetic algorithm,
Monte Carlo, and Minimax. The algorithms are implemented in
Python through 5 players that play chess against the Stockfish
engine, each for 10 games, after which their Elo rating, game
evaluation, game status, and time per move are compared. The
results show that the algorithms cannot compare to an extensively
trained and optimized chess engine such as Stockfish, and only
2 games of 50 total were won by the Minimax algorithm. There
were no draws. The genetic algorithm is very fast, with less
than a second needed for each move, while the other two are
much slower, with times sometimes reaching over a minute. The
Minimax algorithm’s speed decreases over time, while the Monte
Carlo algorithms’ speeds increase over time.

Index Terms—chess, genetic algorithm, Minimax, Monte Carlo,
Stockfish, comparison

I. INTRODUCTION

One of the greatest achievements for artificial intelligence

is the defeat of the world chess champion by a computer

program. The increasing popularity of chess and the eternal

admiration of the game due to the number of possible moves

and combinations continuously evoke the curiosity of many

researchers and are the reasons for the continuous creation

of new chess-playing algorithms. At the same time, it is

important to have a clear picture of the performance of the

most famous and most used such algorithms, in order to direct

further research in the right direction. We would not want to

invest in an algorithm that has a generally poorer performance

compared to another. Additionally, it is good to have a concise

way of presenting those results to the general public, so that

laymen unfamiliar with computer science, including chess

enthusiasts, have a clearer picture of the progress of AI in

this specific field.

This research paper focuses on three popular algorithms –

genetic, Minimax, and Monte Carlo – and their implementa-

tions in Python intended for playing chess. After conducting

experiments where these algorithms play chess against the cur-

rent most popular chess engine – Stockfish, their performance

is analysed and compared.

II. RELATED WORK

There is very little research where experiments aim to

directly compare different chess algorithms. We found one

paper that analyzed and compared chess engines, which is

closely related to our research questions. There is an abun-

dance of literature available regarding human chess games,

which is relevant to our paper in the context of deciding

how to analyse chess games. Additionally, research revolving

around chess ranking systems is applicable when deciding

which comparison method to use. In the following subsections,

we provide a brief overview of three related papers.

A. Analysis of human chess games

In [1], the researchers analyse 4.78 million chess games

between humans, by simulating them using Stockfish. The

research found that there was a strong correlation between

Elo ranking and winning chances. The mean ply per game

was 80, which means an average of 40 moves were taken by

each of the players. Interestingly, in games of players with

higher Elo rankings, the ply per game was lower since they

usually get a head start earlier in the games. The average ply

per game also changed throughout the years. The research

provides additional analysis on the effect of the color played

and the opening moves, which had a different effect before

and after openings theory was introduced.

B. Analysis and comparison of chess ranking systems

In [2], the authors conduct an experiment in order to

compare the Elo, Chessmetrics, German Evaluation Number

(DWZ), and Glicko-2 ranking systems. The goal was to

explore whether one of them would be able to overcome the

shortcomings of Elo. The results showed that the Glicko-2

rating system is the most appropriate for ranking evolutionary

algorithms.

C. Performance comparison between selected chess engines

In [3], the author compared different chess engines to find

the strongest and weakest, including their data and CPU usage.

The top three strongest algorithms were Stockfish at first

place, Rybka, and Bikjump, although all of them required

a higher amount of computational power and resources. In

this paper, the same methodology is used as in our research,

with the equal goal of discovering the best algorithm. The

difference is that it included official chess engines which use

varieties and combinations of algorithms, while we compare

raw algorithmic implementations.

The 20th International Conference on Informatics and Information Technologies - CIIT 2023

21



III. DEFINITIONS

A. Genetic algorithm

Genetic algorithms are a branch of evolutionary algorithms

which are inspired by and created according to the rules of

evolution, using the Darwinian principle of natural selection.

They provide a procedure that leads to the optimized or best

possible solution of a problem. The algorithm goes through

all of the phases that occur within reproduction and natural

selection: inheritance, selection, crossover (recombination),

and mutation. The goal is to reach the fittest offspring from

each generation [4].

B. Minimax algorithm

The Minimax algorithm, most popular in game theory, is

an adversarial search algorithm, where the movement of an

opponent is traced and the algorithm’s decision making is

influenced by it. The goal is to find the best achievable

utility against a rational (optimal) adversary on each turn. The

algorithm tries to minimize the possible loss in a maximum

loss scenario, while maximizing the minimum gain. This

algorithm is very useful in zero-sum games, where the player’s

gain is equivalent to the opponent’s loss, such as chess [5].

C. Monte Carlo algorithm

Monte Carlo is a broad class of randomized algorithms

which use repeated random sampling to obtain numerical

results. The underlying concept is to use randomness to solve

problems that might be deterministic in principle. This means

that running the algorithm repeatedly will eventually produce

correct results, as long as the probability of a correct answer

is greater than zero and there is a method to determine the

correctness of the answer [6].

D. Elo rating

The Elo rating system is a method of calculating the skill

level of players in zero-sum games. The rating is represented

by a number that rises or falls depending on whether the side is

winning or losing. How much the rating shifts is determined by

the rating difference of the two sides, the greater the difference

– the greater the increase and decrease of the rating in both

sides [7].

IV. METHODOLOGY

For the experiments within our research, we use freely

available implementations of the aforementioned algorithms

found on GitHub.

A. Genetic algorithm

The genetic algorithm is implemented by Victor Sim [8].

It generates the best agent using crossover, mutation, and

fitness evaluation. We generated two agents – one trained for

6 generations with a population size of 8, and another trained

for 15 generations with a population size of 10. During each

generation, all of the agents play chess among themselves and

a fitness function constantly reevaluates their fitness. During

the games, legal moves on each turn are traversed using a

Monte Carlo search tree and each of them is evaluated by a

neural network with 5 layers for 5 epochs. The move with the

highest evaluation score is played [9].

After the agent is trained, the same method that was used

to evaluate each position in the training phase is again used

to generate moves throughout the games. This method takes

the current position of the board and the evaluation function

as inputs, and returns the best calculated move.

B. Minimax algorithm

The Minimax algorithm is implemented by Ishaan Gupta

[10]. At its core, this algorithm is a tree search algorithm

with every node of the tree representing a specific move, or

rather, board state, possible at that point in the game. The

depth of the tree represents the number of moves the algorithm

has analysed ahead of the current state. As the algorithm

needs to minimize the loss in a maximum loss scenario while

maximizing the gain in a minimal gain scenario, it must use

an evaluation function to determine the loss or gain in a given

state. The implementation uses predefined weights for each of

the pieces with the King having the greatest weight – infinity.

Conversely, the pawns have the least weight out of all pieces.

Analyzing every state is a costly operation that takes a

lot of computing time, and every extra level analyzed adds

to that complexity. The time needed for the algorithm to

analyze all of the board states grows exponentially with the

depth of the tree and increasing the depth for greater analysis

becomes cumbersome. Therefore, an optimization is applied to

the Minimax algorithm called alpha-beta pruning, which stops

the evaluation of nodes that have already been proven to be

worse than the current best. The alpha value is the maximum

evaluation the algorithm can guarantee while the beta value

is the minimum evaluation. With alpha-beta pruning, the

Minimax algorithm can substantially increase its performance

while not sacrificing its efficacy.

For our experiments we used a Minimax algorithm opti-

mised with alpha-beta pruning with a maximum search depth

of 3.

C. Monte Carlo algorithm

We used Ishaan Gupta’s implementation of the Monte Carlo

algorithm as well for our research [10]. The Monte Carlo

algorithm conducts multiple iterations of three phases known

as rollout, rollback, and expand, in order to choose the best

evaluated move. In the rollout phase the algorithm plays out a

game from a particular board position, or tree node in our

case, simulating random games. After the rollout phase is

completed, the algorithm performs a rollback, where all of

the moves done in the rollout phase are undone, returning to

the original position. This is done so that the algorithm can

try different continuations of the position and see how they

compare to the continuation used in the rollout phase. During

the expand phase, the algorithm analyses the continuations

used during the rollout phase and the most promising ones

are selected for further exploration [11].

The 20th International Conference on Informatics and Information Technologies - CIIT 2023

22



We experimented with two different iteration counts for

the Monte Carlo algorithm, one with 10 and another with 30

iterations.

D. Setup for the experiment

Since games could last exceedingly long, we limited the

maximum number of turns to 30. If the game reached the

30th turn inconclusively, we evaluated the board position

and assigned the winner according to the evaluation. For the

results, we adjusted the evaluations to reflect the algorithms’

performance with negative evaluations correlating to bad per-

formance and positive evaluations to good performance. If the

game was a loss for our algorithms, we assigned a negative

max evaluation. Conversely, if it was a win we assigned a

positive max evaluation.

Each algorithm’s starting Elo rating was set to 400.0 at the

beginning of the experiment. We used the Stockfish engine [?]

as an adversary for the algorithms, set its Elo rating to 400.0

as well and kept it constant in order to match the starting

rating of the algorithms. We evaluated the algorithms across

10 games.

The experiments were ran on a computer with an AMD

Ryzen 7 4800H processor and 16GB of RAM clocked at

3200MHz. The complete source code for the experiments is

uploaded to our GitHub repository [?].

V. RESULTS

The results for each of the algorithms during the 10 games

where measured through: Elo rating, the game evaluation

(positive value – better board evaluation for the algorithm,

negative value – worse board evaluation for the algorithm or

0 – equal board evaluation), and game status (1 – win, -1 –

loss or 0 – draw).

After the 10 games, the genetic and Monte Carlo algorithms

had a continuous decrease in their Elo ratings (due to losing

all of their games), while the Minimax algorithm had a slight

increase from the 8th and 10th games. The Elo ratings of the

genetic and Monte Carlo algorithms were identical with the

Minimax algorithm’s up to the 7th game, and then decreased

to 361.95, 357.46, and 353.10 in the 8th, 9th, and 10th game

respectively.

From the aspect of game evaluation, both genetic agents

performed similarly, even though the second one was trained

across more than double the amount of generations. Their

game evaluation was constantly -9999, except when the second

agent reached a game evaluation of -4 in the second game,

which means that it almost evened out the board position by

the end of the turn limit. Similarly, both Monte Carlo algo-

rithms have almost identical results, with the only difference

being that the first player managed to reach a game evaluation

of -3 in the last game, again meaning that it evened out the

board position by the end of the turn limit. The rest of the

evaluations were -9999 as well.

From Table I we can see that Minimax was the only

algorithm which managed to ”win” against Stockfish, by

having a better evaluation after the turn limit in two games

(not by checkmate – this is an important distinction to make,

Minimax did not checkmate its opponent but rather had a

better board position after the turn limit passed).

TABLE I
MINIMAX ALGORITHM

Game Game statistics

Index Elo Game evaluation Game status

1 395.00 -132 -1

2 390.07 -1317 -1

3 385.21 -1 -1

4 380.42 -274 -1

5 375.70 -2300 -1

6 371.05 -9999 -1

7 366.47 -3 -1

8 371.95 338 1

9 367.35 -388 -1

10 372.82 1277 1

A. Speed visualization

In “Fig. 1”, the average time per move is visualized for the

Minimax and Monte Carlo algorithms. The genetic algorithm

always had a time per move between 0 and 1 (within millisec-

onds), but closer to 0, which made it incomparable with the

other two algorithms.

Fig. 1. Comparison of average time per move

Here we see opposite behavior – the Minimax algorithm

starts with a very low time per move, which increases through

the games, while Monte Carlo starts with a higher time per

move, which decreases throughout the games. Still, Monte

Carlo’s lowest times vary around 5 seconds for 10 iterations

and around 15 seconds for 30 iterations, which can be con-

sidered fast or comparable to a human player, but extremely

slow compared to the genetic agent.

The 20th International Conference on Informatics and Information Technologies - CIIT 2023

23



VI. DISCUSSION

A. Game results

In general, all of our algorithms performed poorly even

against the Stockfish engine set to lowest performance.

The genetic agent generated from a population of size 8

across 6 generations lost all of the games against the engine

before reaching the maximum turn. The second agent managed

to nearly even out the board state before the maximum turn had

been reached at the third game, but lost the rest of the games.

It is expected for the second more extensively trained agent

to perform somewhat better. Still, the board got a negative

evaluation resulting in a loss for the agent.

The situation is similar for the Monte Carlo algorithms.

Interestingly, the Monte Carlo algorithm set to 10 iterations

evened out the board state at the last game while the one set

to 30 iterations got checkmated at every game. Considering

that Monte Carlo is based on random sampling, these results

aren’t out of the ordinary.

The Minimax algorithm performed best. With a maximum

search depth of 3, it managed to last through all of the 30

turns in all but one game – all while almost evening out

two games and winning 2 by evaluation. It is also the only

algorithm that managed to win against the engine, even if not

by checkmate but by board evaluation. This does not mean

that the specific implementation of the Minimax algorithm is

much better than the other two in the general case, it simply

confirms that Minimax is better suited for zero-sum games.

B. Speed

The genetic agent had outstanding results for required time

per move – nearing 0 seconds – making it incomparable

with the other two algorithms which sometimes needed entire

minutes to calculate their next move. However, the agent needs

time to be generated and trained, while the other algorithms

need no previous setup. The required training time depends on

the size of the population and number of generations. Since

higher values for these parameters yield a better trained agent,

the required training time for a large-scale chess engine based

on a genetic algorithm would need to be very long for the

engine to reach acceptable results.

If we compare Minimax and Monte Carlo separately, as

we previously stated, they had opposite behaviors – Minimax

started with a low time per move which gradually increased,

while Monte Carlo started with a high time per move which

gradually decreased.

In Minimax’s case, this is due to the increase of possible

moves as the game progresses. At the opening phase of

the game, there is a small amount of possible moves and

outcomes, which increase as the game transitions. However,

this increase in possible moves will eventually stagnate as

more pieces are removed from the board and the possibilities

are reduced, and will decrease as the games nears its end.

Monte Carlo’s iterations linearly affect the time needed

to make a move. Hence, for 30 iterations the algorithm

needs triple the time compared to 10 iterations. As the game

progresses, the amount of pieces on the board decreases,

which leaves less simulations for Monte Carlo to execute. This

interpretation could explain the decreasing time.

VII. CONCLUSION

The Minimax algorithm proved to be the best at playing

chess. Further increasing the depth of the search tree would

yield even better results, but doing so would require high

processing power and memory. Extra optimizations on top of

alpha-beta pruning could prove to be helpful in decreasing the

search time.

On the other hand, even though the genetic agent had worse

game performance, it made moves almost instantly on the

downside of requiring extra time for training before being

usable. If the requirement is faster decisions, genetic agents

can prove better.

Lastly, the Monte Carlo algorithm turned out not to be the

most suitable algorithm for playing chess, which aligns with

other research papers in this field.

As our research focused on the general performance of the

algorithms across multiple games, future work could be done

on performance analysis on specific aspects of the game. This

could include the three phases of chess and even specific board

positions and openings. Furthermore, research on Minimax op-

timization besides alpha-beta pruning could prove beneficial,

along with enhanced board evaluation heuristics.

REFERENCES

[1] M. Acher and F. Esnault, ”Large-scale Analysis of Chess
Games with Chess Engines: A Preliminary Report,” arXiv

preprint arXiv:1607.04186, Apr. 2016. [Online]. Available:
https://arxiv.org/pdf/1607.04186.pdf [Accessed: 28 Apr. 2016].

[2] N. Veček, M. Črepinšek, M. Mernik, and D. Hrnčič, ”A Comparison
between Different Chess Rating Systems for Ranking Evolutionary
Algorithms,” in 2014 Federated Conference on Computer Science

and Information Systems, FedCSIS 2014, 2014, pp. 511-518. doi:
10.15439/2014F33.

[3] M. Sojka, ”Performance comparison between selected chess engines,”
Journal of Computer Sciences Institute, vol. 24, pp. 228-235, 2022.
[Online]. Available: https://doi.org/10.35784/jcsi.2975.

[4] S. Mirjalili, ”Genetic Algorithm,” in Evolutionary Algorithms and Neu-

ral Networks, Studies in Computational Intelligence, vol. 780, Cham:
Springer, 2019, pp. 47-69. doi: 10.1007/978-3-319-93025-1 4.

[5] S. J. Russell and P. Norvig, Artificial Intelligence: A Modern Approach,
2nd ed. Upper Saddle River, NJ: Prentice Hall, 2003.

[6] D. P. Kroese, T. J. Brereton, T. Taimre, and Z. I. Botev, ”Why the Monte
Carlo method is so important today,” Wiley Interdisciplinary Reviews:

Computational Statistics, vol. 6, no. 6, 2014. doi: 10.1002/wics.1321.
[7] ”Elo rating system,” Wikipedia, Jan. 28, 2023. [Online]. Available: https:

//en.wikipedia.org/wiki/Elo rating system.
[8] V. Sim, ”Genetic Algorithm for Chess,” 2021. [Online]. Available: https:

//github.com/victorsimrbt/chess mc ga.
[9] V. Sim, ”Building a Chess AI that Learns from Experience,” Towards

Data Science, 2021. [Online]. Available: https://towardsdatascience.com/
building-a-chess-ai-that-learns-from-experience-5cff953b6784.

[10] I. Gupta, ”Chess Bot AI Algorithms,” 2020. [Online]. Available: https:
//github.com/Ish2K/Chess-Bot-AI-Algorithms.

[11] I. Gupta, ”Monte Carlo Tree Search Application on Chess,” Medium,
2020. [Online]. Available: https://medium.com/@ishaan.g

The 20th International Conference on Informatics and Information Technologies - CIIT 2023

24

https://arxiv.org/pdf/1607.04186.pdf
https://doi.org/10.35784/jcsi.2975
https://en.wikipedia.org/wiki/Elo_rating_system
https://en.wikipedia.org/wiki/Elo_rating_system
https://github.com/victorsimrbt/chess_mc_ga
https://github.com/victorsimrbt/chess_mc_ga
https://towardsdatascience.com/building-a-chess-ai-that-learns-from-experience-5cff953b6784
https://towardsdatascience.com/building-a-chess-ai-that-learns-from-experience-5cff953b6784
https://github.com/Ish2K/Chess-Bot-AI-Algorithms
https://github.com/Ish2K/Chess-Bot-AI-Algorithms
https://medium.com/@ishaan.g

