
Minimax Algorithm for a King and Rook vs King
Chess Endgame

Adrijan Božinovski and Filemon Jankuloski

School of Computer Science and Information Technology

University American College Skopje

Skopje, Macedonia

bozinovski@uacs.edu.mk
filjankuloski@gmail.com

Abstract—In this paper, we will take a look at an Аrtificial
Intelligence based chess program, which portrays a White King

and Rook vs Black King endgame scenario. First, we will take a

look at the evolution of this chess program, and how it

progressed from being purely algorithmic to employing

Artificial Intelligence. Next, we will briefly explore how the

main program works and scrutinize all of its possible functions.

Moreover, the version of the program which obtains all

relevant statistics as well as the circumstances surrounding

their attainment will also be discussed. Finally, we will

conclude the paper by analyzing the results of the exhaustive

testing and showcasing a hypothesis derived from the

aforementioned results.

Keywords—Chess, Artificial Intelligence, Statistics, King and

Rook vs King endgame

I. INTRODUCTION

A. Goal of the Project

Artificial Intelligence (AI) has become increasingly
prevalent in our current society. We can find AI being used
in many aspects of our daily lives, such as through the use of
smartphones and autonomous driving vehicles such as the
Tesla [1]. Leading textbooks on AI define it as the study of
“intelligent agents”, which can be represented by any device
that perceives its environment and takes actions that
maximize its chances of achieving its goals [2]. In the
context of this paper, the intelligent agent is a chess-playing
AI, which implements the Minimax algorithm and controls
the moves of both Black and White in a particular endgame
scenario. The aforementioned endgame scenario that we will
be exploring is a White Rook and White King, versus a
Black King, both of which are controlled by AI. Such a
program has already been created, and it was the first
Macedonian chess program, which was created by Stevo
Božinovski in 1969, and was written in Fortran for the IBM
1130 computer [3]. However, in the case of this paper, the
AI is written in Java and uses Netbeans as its IDE. The goal
of this project is to showcase the Minimax algorithm’s
capabilities and to test if increasing the number of steps -
i.e., the depth of the Minimax/Maximin tree - will improve
the AI’s level of chess play. The evolution of this chess AI,
the program, the relevant methods, the results, as well as
how they were produced, will be showcased in a subsequent
section.

B. Evolution of the Current Chess Program

 This chess program’s first version was created by Stevo
Božinovski in 1969 [4]. This program used several different

methods for specific purposes. “DATSW” was used to plot
the chess board, “POTEZ” was used to determine the
legality of the human move, “POZIC” was the algorithm
which served as both a position analyzer and a move
generator, and “MATIR” determined if the state of the
chessboard was in checkmate. All versions following the
first version were made by Filemon Jankuloski and Adrijan
Božinovski.

 The second version of this program was finished in
2021. This program was purely algorithmic and needed
immense amounts of conditionals to cover all possible
situations, but was far more specialized than the first
version. It also had a position evaluator just for White’s
moves, since Black was programmed to be played by a
human player. The second program also was capable of
instantaneously resetting the chessboard to the initial
position at any point during a game, generating new and
valid random starting positions, creating an enumeration for
the state of the chessboard and its pieces, and calculating the
value of the state of the board, based on the positions of all
pieces on the board.

 The third version of this program was finished in 2022,
and was successfully converted to a heuristics-based
program. This version had position evaluators for the moves
of the White King and White Rook separately, while Black
was played by a human player. Inside the position evaluators
were different sets of criteria, and each individual factor in
these criteria could increase or decrease the total value. The
lower the total value, the more preferable the White Player
(i.e., the AI) would find the corresponding move for that
value. The heuristic used in this program resembled that of
an A* Search algorithm. The standard A* Search displays a
metric of the current node in the search from the starting
point, as well as an estimate of the cost for a future node that
would be searched [5]. However, in the case of this program,
the initial point could be described as the state of the board
before a move was made, and nodes could be described as
every potential square that the White pieces could move to.
The A* Search algorithm uses the equation f(n) = g(n) +
h(n), where g(n) is the cost of traversing from one node to
another, h(n) is the heuristic approximation of the node’s
value, and f(n) is the final cost [6]. In this version of the
program, however, g(n) was the value of the current
position, h(n) was calculated through position evaluators,
and f(n) was the final cost of the move. The goal of the
program was for White to deliver a checkmate, by moving to
squares where the total cost would be, by design, the lowest.

The 20th International Conference on Informatics and Information Technologies - CIIT 2023

16

mailto:bozinovski@uacs.edu.mk

 The final and most current version of the program was
finished in March 2023, and employs Artificial Intelligence
through the utilization of the Minimax algorithm. The
Minimax algorithm is an algorithm where White’s moves
are calculated based on Black’s potential future moves,
whereas Black’s moves are calculated based on White’s
potential future moves; since Black’s goal and its means of
calculation are opposite to that of White, it is said that Black
utilizes the Maximin algorithm.

 In regards to the Minimax algorithm, a “step” represents
how many moves the algorithm is looking ahead, whereas a
“step” in the Minimax/Maximin tree pertains to a full move
in chess, i.e., when a move has been made by both White
and Black. The more steps are implemented into the
algorithm, the better the AI’s moves are expected to be. A
position evaluator is also used in this version of the code;
however, it is a single evaluator where the same criteria are
shared by every piece, meaning the Black King, the White
King, and the White Rook. A brief overview of the Minimax
algorithm’s implementation, as well as the position
evaluator, will be given in the subsequent section.

II. THE MAIN PROGRAM

A. The User Interface of the Program

Fig. 1 User Interface when the Program is Executed

 The user interface for the chess program looks much like
a normal chess board, as shown in Figure 1, with files being
labeled “a” to “h” and ranks being labeled “8” to “1”. The
frame of the window shows whether it is White’s or Black’s
turn, as well as the enumeration of the current state of the
board. There are also buttons with different functionalities.
Clicking the “Read Me!” button will open a window which
explains to the user how the program and all of the buttons
function. Clicking the “New” button will generate a new
random legal starting position. Clicking the “Start” button
will commence the game with a move from the White
pieces. Clicking the “Reset” button will reset the chess
pieces back to their initial position before the “Start” button

has been clicked. Clicking the “Next” button will initiate
either Black’s or White’s next move, depending on which
side’s turn it is. Clicking the “About” button will open a
window where users can read a short description about the
creators of this program.

 Clicking the “Tree” button will open a new window with
a tree diagram, where the depth is equal to double the
amount of steps, plus the root node. The root node
represents the initial position of the board before a move is
made. If it is white to move, a step consists of all potential
moves which can be made by White, followed by all the
potential moves which can be made by Black starting from
those potential White moves - this is what is known as the
Minimax tree. A Maximin tree is analogous to the Minimax
tree, except that it is generated upon, i.e., after, Black’s
move. Each node on the tree diagram is represented by a
string of numbers and characters (e.g., 120k12R35K65),
which, in their respective order, represent: the value of the
position, followed by the coordinates of the Black King,
White Rook, and White King.

B. The Minimax Algorithm

 The Minimax algorithm begins with the root node (i.e.,
the 0th level), which is represented by the enumeration of
the initial state of the chess board. Next, from the root node,
the nodes in the 1st level consist of all legal White moves.
The enumerations of these moves, as well as their values,
are stored inside a linked list. From every White move,
every legal Black move is stored inside a linked list on the
2nd level, including the Black move’s: enumeration, value,
and a value known as the “origin”. The origin represents one
of the potential White moves that can be made which follow
the root node. At this point in the algorithm, one step has
been completed. In the third and fourth level, all legal White
moves and Black moves, respectively, are recorded inside a
linked list, which includes: the enumeration, the value, and
the same origin node from the 1st level. The process of
sorting out the nodes begins once there is a linked list which
contains every node of the last level on the tree. Nodes on
every level of the tree have a root node, with the exception
of the 0th level. Nodes which share the same root node,
including the root node itself, is what comprises what is
known as a “subtree”.

 As an example let us say that we are working with a
Minimax tree with only 1 step. The 2nd level (last level of
the tree) consists of legal Black moves, and for each subtree
we want the node with the highest value, otherwise known
as the maximizing step. Afterwards, we will switch to the
minimizing step, and what we will want will be the
minimum value from each subtree instead. In the end, there
will be only one node left which has passed both the
maximizing and minimizing step, and the origin of this node
will refer to the enumeration of the move that will be made.
It should be noted that, when there is only one subtree left in
the Minimax algorithm, and there are more than 2 nodes
which share the lowest value, one of those multiple nodes is
chosen at random.

 The analogous approach is used when it’s Black to
move, except that the initial root of the tree is the position
before Black’s move, whereas the subsequent nodes
represent all possible positions arising from Black’s moves,
and their subnodes are all possible positions arising from
White’s moves. In this case, Black wants to select a move
which will result in the greatest minimum value that White

The 20th International Conference on Informatics and Information Technologies - CIIT 2023

17

could choose, so therefore Black employs the Maximin
algorithm.

C. Position Evaluator

 Position evaluators are used to assign values to nodes.
All pieces share a single evaluator so the same criteria will
be applied regardless of whether the piece is White or Black.
There are only 2 values which are taken into consideration
and they are known as “freeSquares” and “endgameValues”,
whereas the total value of a position is obtained as the sum
of these two values.

Fig. 2 Quadrant Positioning Inside the Chess Board

 “freeSquares” is the amount of squares that the Black
King is able to move to. Similarly to Figure 2, the chess
board is divided into 4 separate quadrants, and each
quadrant is relative to the White Rook’s position on the
board, which is represented by the intersection of the x and y
axes. Quadrant 1 is to the upper right of the rook, quadrant 2
is to the upper left, quadrant 3 is to the lower left, and
quadrant 4 is to the lower right. Depending on which
quadrant the Black King resides in, there are corresponding
formulas which the program uses to find how many squares
the Black King is restricted to, depending on whether the
Rook restricts it from the top, bottom, left, or right. These
criteria can also be calculated differently depending on
several conditions, including: when the board is in a state of
check with opposition, when the board is in a state of check
without opposition, when the White Rook is not blocked off
by the White King, when the White Rook is blocked off by
the White King with no passage beyond the Rook’s line of
attack, and when the White Rook is blocked off by the
White King with a passage beyond the Rook’s line of attack.

 “freeSquares” is initially equal to 0. A position invokes
the method which calculates free squares only when the state
of the board is not checkmate or stalemate, because, by
definition, the amount of free squares that the Black King
can move to will be 0 in both situations. It is also important
to note that the White King can subtract anywhere between
0-8 squares from the total free squares count, but only when
it is within the same quadrant as the Black King. It has been
shown that the “freeSquares” value can be equal to
anywhere between 0 and 49.

 “endgameValues” are values which are assigned only
when flags (i.e., Boolean variables) light up (i.e., obtain
“true” values) for one of the five endgame situations
accounted for in this program, namely: checkmate,
stalemate, 50 move rule draw, threefold repetition draw, and
rook capture draw. Checkmate (considered a win for White)
occurs when the Black King is put in a situation where its
capture is unavoidable, i.e., when it is in a state of check and
has no free squares to move to. Stalemate (considered a
draw) occurs when it is Black’s turn to move, but it can only
stay at the square where it currently resides, otherwise it
would move into a state of check, i.e., when it has no free
squares to move to but is not in a state of check. A 50 move
rule draw occurs when both the Black and White pieces
have made 50 moves and no irreversible move has been
made (such as capture of the White Rook, checkmate or
stalemate). A threefold repetition draw occurs when the
game arrives at the same position of the board 3 total times.
A rook capture draw occurs when the White Rook is
captured by the Black King, and consequently, there are
only 2 Kings left on the board. In the case of the flags
lighting up for stalemate, 50 move rule draw, threefold
repetition draw, and rook capture draw, “endgameValues”
would be equal to 1000, whereas for checkmate
“endgameValues” would be equal to -1000.

 Since White wants to restrict the Black King to
progressively smaller amounts of free squares, so as to
eventually deliver checkmate (and thus arrive at the -1000
“endgameValues” value position), White’s goal is to choose
moves with the smallest possible values for both
“freeSquares” and “endgameValues” whenever possible,
which is why White employs the Minimax approach.
Conversely, Black wants to maximize the number of free
squares available and eventually achieve any of the 4 draw
scenarios (and thus arrive at any 1000 “endgameValues”
value position) which is why Black employs the Maximin
approach.

III. THE PROCESS FOR PRODUCING RESULTS

A. Attaining All Legal Initial Positions

 Before testing the difference between 1-step and 2-step
Minimax, first, all legal chess positions must be attained.
The program is capable of displaying an enumeration for
each position, and the enumeration is calculated such that
each piece is given a numerical value based on which field
on the chessboard it is placed (from 0 to 63, inclusive).
Then, each piece’s value is multiplied either by 1, 64, 642 (in
this paper, the pieces which get those factors are the Black
King, the White Rook and the White King respectively) and
the sum of all those values gives the enumeration of the
position reached. Given the formula above, one can
calculate that there are a total of 262,144 total enumerations
representing every single possible combination of
coordinates for the White King, White Rook, and Black
King. However, not all of these positions are legal according
to the rules in chess, since, for example, placing two pieces
on the same square is illegal in chess.

 A program was created in Netbeans IDE known as
“JavaApplication13” which was assigned the task of
creating a file named “legalpositions.txt”. After creating the
file, a for loop is initiated, starting from 0 up until 262,143.
These values are converted from enumerations into
coordinates, and then are put through a filter to check for
legality. The conditions for legality are that none of the

The 20th International Conference on Informatics and Information Technologies - CIIT 2023

18

pieces are to have the same coordinates and that the game
cannot start in a position of check or checkmate (an initial
stalemate position is allowed, since it is always White to
move first, so White could make a move to alleviate the
stalemate). Once the position has been determined to be
legal, its enumeration is written into the “legalpositions.txt”
file. All legal positions in the file are delimited by a newline,
and the total number of all legal positions is equal to
175,168.

B. Testing All Legal Positions

 A different program from “JavaApplication13” was
assigned the task of testing all legal positions, and it was
named “JavaApplication12”. This program is similar to the
main chess program, with some substantial differences.
Firstly, all GUI aspects of the program have been removed
in this program, in order to increase performance. Secondly,
the program creates both a directory named
“LegalPositionTests” and 175,168 files which are placed
inside the aforementioned directory. These files are all
named after a legal enumeration (e.g., “194.txt”) and are
created before the legal enumeration is put through a
simulation game (i.e., a chess game which runs on its own,
without the need for human input). Moreover, there are new
functions added to this program for the sake of writing test
results into the files and these results will be explained in
detail subsequently.

 The first thing to be written into the file is the starting
position of the legal enumerations, represented in Forsyth-
Edwards notation, i.e., FEN. FEN is a way of representing
the chessboard and the position of all the pieces. For
example, the Forsyth-Edward notation of Figure 1 would be
“8/8/6k1/3R4/8/3K4/8/8”. The Black King, White Rook, and
White King are written as “k”, “R”, and “K” respectively.
Numbers represent the amount of squares without pieces on
them from left to right. The first 2 rows are empty, so they
are simply written as “8”. However, because there is a Black
King on the 3rd row, this row is written out as “6k1”
because there are 6 free squares behind the Black King and 1
in front of it.

 The second thing to be written into the file is the
standard chess notation of the moves taken during the entire
game. For example, if we were to write the first move in
chess notation, it could look something like “1. Kc2 Ka7”.
The number represents which move one would be reading
and “Kc2” and “Ka7” represent White’s move and then
Black’s move respectively. If we were to break down the
meaning of “Ka7”, “K” would be the piece moved and “a7”
would be where it was moved to. So in the case of the first
move, the White King moved to the file “c” and rank “2”
while the Black King moved to the file “a” and rank “7”.
Regardless of whether the White King or the Black King is
moved, all chess piece abbreviations are written with their
respective capital letters, so King is always written as “K”.
There are also special cases when it comes to chess notation.
When White delivers a check, a “+” is attached to the end of
its move. When White delivers a checkmate, a “#” is written
at the end of its move. When White delivers a stalemate, a
“$” is written at the end of its move. If White or Black’s
move causes a threefold repetition draw, or Black’s move
causes a 50-move-rule draw or a rook capture draw, then
“½-½” is attached to the end of the respective move.
Additionally, in the case of a rook capture draw, an “x”
would be placed between the abbreviation of the piece and

where the piece moved to perform the capture (e.g.,
“Kxc7”).

 The third thing to be written is the amount of moves it
takes for the game to come to a conclusion. The fourth thing
to be written is the outcome of the game, and this would be:
“checkmate”, “stalemate”, “50-move-rule draw”, “threefold
repetition draw”, or “rook capture draw”, as applicable.

 Since each file contains the results of both the 1-step and
2-step simulation game from the given starting position, “1-
Step Minimax/Maximin” and “2-Step Minimax/Maximin” is
written before the aforementioned results are printed out, for
the sake of differentiation.

C. The Circumstances Surrounding the Testing and

Gathering of the Results

 Although there were 175,168 different positions to be
tested, because they were tested in 1-step and 2-step, this
means the actual number was a staggering total of 350,336
simulation games. This immense number of games required
a powerful computer if the tests were to be complete within
a reasonable amount of time. Luckily, all tests were
completed within approximately 40 hours. The computer
used to complete these tests came equipped with an Intel
Core i7-4790K processor, 32 gigabytes of RAM memory,
x64-based processor, and had Windows 10 Pro installed on
it. The tests were not done in a single go, and instead were
separated into two halves of 87,584 positions each. Both of
them were carried out during 2 separate days, each taking
roughly 1,200 minutes to run to completion. After the
“LegalPositionTests” directory was filled with all 175,168
files, it was placed within another project folder, to be used
by another application named “JavaApplication11”. This
application was used to read every file within the directory
and compiled results for the 1-step and 2-step algorithms
separately, such as: the percentage of each outcome
obtained, the average number of moves per game and the
percentage increase and/or decrease in these statistics from
1-step to 2-step.

IV. RESULTS AND THE 7-STEP HYPOTHESIS

 The results for 1-step and 2-step are completely separate
and the assumption before the testing was that 2-step would
incur better results than 1-step, as viewed from White’s
perspective. Since all 175,168 positions were tested
exhaustively, the results should be mostly accurate.
However, since there is a possibility that the randomization
of moves with tied values could affect results to some
degree, there is some doubt that the results are fully
accurate. A comprehensive set of test results would require a
minimum of 30 tests of each initial starting position, for both
1-step and 2-step, which was not done because of the
limitation of the capabilities of the available hardware, as
well as time constraints.

 From the obtained results, in 1-step, 48.27% of games
resulted in checkmates and the other 51.73% resulted in 50-
move-rule draws. The average number of moves per game
was 37 moves. In 2-step, 84.25% of games resulted in
checkmates and the other 15.75% resulted in 50-move-rule
draws. The average number of moves per game was 23
moves. The number of checkmates increased by 74.54%,
the number of 50-move-rule draws decreased by 228.44%,
and the average amount of moves per game decreased
35.14% from 1-step to 2-step. Overall, the results show

The 20th International Conference on Informatics and Information Technologies - CIIT 2023

19

notable improvement from 1-step to 2-step, as seen from
White’s perspective.

 Unfortunately, due to limitations on both time and
computational power, it was impossible to test or feasibly
run games with more than 2 steps. There are no stalemates,
rook capture draws, or threefold repetition draws in the
results because White was able to make moves based on its
calculation of Black’s future moves. For example, if the
White Rook were to move next to the Black King, one of
Black’s potential moves would be capturing the White
Rook. The “endgameValue” variable inside of the position
evaluator would be equal to 1000 for such a move, which
would make this move highly undesirable for White and it
would stand no chance of being chosen during White’s
minimizer step, since it would surely be one of the largest
values in the subtree.

 Despite not being able to run the game on more steps
than 2, a hypothesis can be formed from the obtained results.
An observation is that the number of games resulting in
checkmate increases and the number of games resulting in
50-move-rule draws decreases, and that the average number
of moves for the games decreases as well, when comparing
the 2-step Minimax/Maximin games with the 1-step
Minimax/Maximin games. This is because when the White
King is n squares away from the Black King, n being the
number of steps for the Minimax algorithm, it can assist the
White Rook better in delivering the checkmate, by providing
protection for the Rook. Conversely, the Black King would
attack the White Rook whenever it would be n squares away
from it, because it would be able to detect the value of 1000,
awarded for a position where the White Rook is captured, n
moves away.

 Our hypothesis is that if the game were to run on 7 steps
of Minimax/Maximin, both White and Black would play
optimally, because their prediction and calculations would
be within the entirety of the board’s 8x8 range and each
King would be able to draw closer to its piece of interest
(the White King would come closer to the Black King, so as
to assist in the checkmate and protect the White Rook from
capture as both pieces drive the Black King towards the
edge of the board, whereas the Black King would come
closer to the White Rook, so as to capture it and incur a rook
capture draw). The hypothesis also states that the 7-step
Minimax/Maximin would result in a 100% chance of
checkmate, so no games would go to 50 moves, and the
average amount of moves would decrease as well, since both
White and Black would play optimally. Therefore, the
hereby proposed hypothesis is called The 7-Step Hypothesis.

V. CONCLUSION AND FUTURE WORK

 This paper presents a program that depicts a certain chess
endgame scenario, namely White King and White Rook
versus a Black King, both of which are played by an AI. It
also hypothesizes that as the number of steps increase, the
Minimax algorithm improves the AIs level of chess play and
is capable of ending every game with a checkmate. This
claim stems from an observation made from exhaustive
testing and corresponding results obtained.
 In order for further work to be done and to fully ascertain
the capabilities of the Minimax algorithm, alpha-beta
pruning may need to be incorporated to improve
performance and lessen the processing workload. Because
more computational power is needed, and because the

amount of calculations that need to be done increases
exponentially with every additional step, it is possible that a
supercomputer will be needed to test the hypothesis, so that
exhaustive testing could be done in a reasonable amount of
time.

ACKNOWLEDGMENT

We would like to give our gratitude to Toni Jankuloski
for allowing us to use his personal computer for the sake of
the exhaustive testing and attaining the results demonstrated
in this paper.

REFERENCES
[1] Tesla.com. 2021. Autopilot. [online] Available at:

<https://www.tesla.com/autopilot> [Accessed 17 August 2021].
[2] S. Russell and P. Norvig, 2003. Artificial Intelligence: A Modern

Approach. 2nd ed. Upper Saddle River, New Jersey: Prentice Hall,
p.55.

[3] S. Božinovski, 2016. Cognitive and Emotive Robotics: Artificial
Brain Computing Cognitive Actions and Emotive Evaluations, Since
1981. In: ICT Innovations Conference 2016. Skopje, p.11.

[4] F. Jankuloski and A. Božinovski, 2020. Chess as Played by Artificial
Intelligence. In: 12th ICT Innovations Conference 2020. Skopje:
CCIS.

[5] F. Jankuloski, 2022. Signal Processing in an Artificially Intelligent
Chess Program. Seminar paper for the Signal Processing course..
School of Computer Science and Information Technology, University
American College Skopje.

[6] Simplilearn.com. 2022. A* Algorithm Concepts and Implementation.
[online] Available at:
<https://www.simplilearn.com/tutorials/artificial-intelligence-
tutorial/a-star-algorithm> [Accessed 13 June 2022].

The 20th International Conference on Informatics and Information Technologies - CIIT 2023

20

