
Performance Evaluation of Back-end Web

Application Programming Languages

Ivan Jelikj and Sasho Gramatikov

Faculty of Computer Science and Engineering

Ss Cyril and Methodius University

Skopje, North Macedonia

ivan.jelikj@students.finki.ukim.mk

sasho.gramatikov@finki.ukim.mk

Abstract—There are many programming languages that can
be used for back-end web development. Numerous aspects of the
project could be affected by the choice of a language. Because of
that, the question about the most suitable programming language
for a given web application arises.

One of the main aims of this paper is to quantitatively
compare 4 programming languages that could be used for
back-end software development: Java, Kotlin, PHP and Python.
Execution time, RAM usage, and CPU usage were selected as
evaluation criteria. In order to be able to compare them, in
all 4 given languages an application with the same functionality
was created. The measurements were performed in an isolated
environment for a different number of requests and different
realistic scenarios.

From the results it could be concluded that Java and Kotlin
have in general better execution time in comparison with PHP
and Python, especially with a larger number of requests; Python
has the smallest usage of CPU while the other 3 languages
have similar usage; the usage of RAM in Python and PHP is
significantly smaller than Kotlin and Java.

Index Terms—performance evaluation, back-end, Java,
Python, Kotlin, PHP

I. INTRODUCTION

There is a rapid increase in the number of applications

developed in the world today. Many of those applications

are web applications. Web applications usually consist of

two parts: front-end and back-end. The front-end is usually

done with HTML, CSS and JavaScript (or a language that

transcompiles to JavaScript, such as TypeScript). For the back-

end, there are many more languages that could be used.

The choice of a programming language has an impact from

many aspects on the development of software: the complexity

of the code, the execution time, the hardware requirements

needed for the software to execute, the difficulty of testing the

code, the maintenance of the code, etc. All these aspects, in

turn, have an impact on the project itself: the delivery time, the

cost of the project and ultimately the success of the project.

This paper evaluates the performance of 4 different pro-

gramming languages: Java, Kotlin, PHP and Python. All of

these languages are widely used for professional software de-

velopment [1]. There are currently 2896188 public repositories

on GitHub in Java, 252426 in Kotlin, 928190 in PHP and

3116184 in Python [2]. All 4 languages can be regarded as

reasonable candidates when developing a real world back-end

web application. This makes the analysis of this study relevant

and applicable.

The rest of the paper is organized in the following manner:

Section 2 discusses related work, Section 3 discusses the ex-

perimental environment and the functionality of the application

that was tested, in Section 4 the results and the analysis are

provided, and Section 5 is the conclusion of our paper with

the summary of the study.

II. RELATED WORK

In [3], a comparison is made between Java and Kotlin when

developing a web application with the frameworks Spring,

Micronaut and Ktor. The execution time, the usage of CPU

and the usage of RAM are measured. In this paper, Kotlin

shows worse results, but the difference is usually very small

(for example, the difference in the usage of the processor is

2%).

In [4], C, C++, Java, Perl, Python, Rexx and Tcl are

compared. From the languages that are compared in our paper,

Java and Python have similar execution time, while Python

is 2 times more efficient in the usage of memory. The time

needed to write the software was also measured, and it was

concluded that the developers needed twice as much time to

write the code in Java, with twice as much code as in Python.

This paper is one of the most influential paper in the field of

evaluation and comparison of programming languages.

In [5], 10 open source project in Java and Python are

compared. The conclusion is that the number of lines of code

is similar in both languages.

In [6], Node.js, Python and PHP are compared. It is

concluded that Node.js shows better results when there is

a high concurrency. This was true no matter the scenario.

PHP handles small requests well, but has difficulty with

large requests. Both Python and PHP show difficulty when

computing a mathematical operation (Fibonacci sequence).

In [7], PHP and Java are compared. It can be concluded

that Java shows significantly better results when doing more

complex mathematical computations, as well as significantly

better scalability.

The 20th International Conference on Informatics and Information Technologies - CIIT 2023

5



In [8] the sorting algorithm Quicksort and the game tic-

tac-toe are compared for Java and Python. Java has better

execution time than Python, especially when many elements

are sorted. Java also shows better execution time for the game

tic-tac-toe, although the difference is relatively small. The

number of lines of code is also compared and it was concluded

that Java is more verbose than Python.

Comparing and analysing programming languages, in differ-

ent contexts and in different scenarios, in which the evaluation

is done for various different criteria, is generally quite common

topic in the field of software engineering. Despite this, we

were unable to find a study regarding the evaluation of the 4

languages in this paper: Java, Kotlin, PHP and Python.

III. EXPERIMENTAL ENVIRONMENT

When doing performance evaluation, the server and the

client are often separate machines and are connected through

a network. The network itself could have an impact on the

end results, and that’s why that approach was avoided in this

paper.

The same machine was used for creating the request as well

as serving the request, i.e., it could be said that the client and

the server were run on the same machine. It was possible

to do so because the environment in which the applications

ran was containerized through Docker. Docker has a very

lightweight use of memory and very fast time for creating

containers [9] [10]. For those reasons, Docker is very suitable

for performing performance evaluation, especially because

in performance evaluation each measurement is usually per-

formed many times. In our experiment, each measurement

was conducted 10 times, and after each measurement the

application and the database environment were recreated.

The machine on which the application was run was Intel i7-

920 processor, DDR2 RAM with capacity of 17,8 GB, HDD

with capacity of 500 GB and operating system Ubuntu 16.04.

The technologies used in the experiment were: Apache

JMeter 5.4.1 for creating the requests and measuring them;

Docker 18.06 was used for containerization; Python 3.8 with

Flask 2.1 and SQLAlchemy 1.4; PHP 7.4; Java JDK 11.0.5

and Kotlin 1.6 with JRE Java 11.0.13, together with Spring

Boot 2.6.1 and Hibernate Commons Annotations 5.1.2, and

PostgreSQL 14.1. For each language a suitable web server

was chosen: Java and Kotlin with Tomcat 9.0.55, Python with

Gunicorn 20.1.0, and PHP with Apache HTTP Server 2.4.38.

Each server was configured using the best practices for the

given number of requests.

The application had 7 different scenarios: creating an entry,

reading entries, updating an entry, deleting an entry, CRUD

operation in which all the previous operations are executed

one after the other, a mathematical operation (sum of numbers)

and input operation (finding the word frequency in the sonnets

of Shakespeare by reading a text file and then processing

it). For the scenarios of updating an entry, deleting an entry,

reading an entry and the CRUD operation, authentication was

required. The concepts of encryption and authorization, as

well as comparing the security aspects of the languages, were

outside the scope of this paper. Each scenario is implemented

in the given language using the same logic. 1000, 2500, 5000

and 10000 simultaneous requests were made.

IV. RESULTS

A. Execution time

Fig. 1 shows that the average execution time of Kotlin and

Java is similar (30,6s vs 31,1s). The average execution time

of PHP and Python is 64,1s and 62,7s.

The scalability of Python and PHP is worse than Java

and Kotlin. Fig. 2a shows that for a smaller number of

simultaneous requests the ratio difference between the average

execution time is smaller (Kotlin, as the fastest language for

1000 requests has an execution time of 11,27s, while Python,

which has the slowest average execution time of 17,21s, which

means that Kotlin is 1,5 times faster). That difference becomes

bigger for 2500, 5000 and 10000 requests. For 2500 requests,

for example, Kotlin has an average execution time of 19,6s

and Python of 43,49s, which means that Kotlin is 2,2 times

faster. It can also be concluded that Kotlin and Java have

similar average execution time regardless of the number of

simultaneous requests.

Fig. 2b shows the biggest difference from all the seven

scenarios in the average execution time, the mathematical

operation sum. For 1000 requests, Java as the fastest language

has an average time of 7,62s and Python as the slowest of

37,05s, which is a difference of 4,9 times. As in the other

scenarios, the difference for higher number of simultaneous

request is bigger. For 10000 users, Java has a time of 20,65s

and PHP of 234,75s, which shows that PHP is in this case

11,4 times slower.

Fig. 1: Average execution time.

Table I shows the share of each language for the different

scenarios in the execution time. The share is calculated by

initially calculating the share of the given programming lan-

guage for a given number of requests in the given scenario

(for example, the share of Java in the total execution time

when the scenario is creating an entry for 1000 simultaneous

requests). After that calculation, the same is done for other

requests (for example, for 2500, 5000, 10000) and the average

is taken. It can be seen that for the operation read, Python has

The 20th International Conference on Informatics and Information Technologies - CIIT 2023

6



(a) For all operations. (b) For the operation sum.

Fig. 2: Average execution time.

the smallest share of 21,18%, for the operation sum Java has

the smallest share(6,66%) and for all other scenarios Kotlin

has the smallest share in the execution time. Python has the

largest share for 5 scenarios and PHP for 2.

Fig. 3 shows the share of a given language in the execution

time for all scenarios combined. It can be seen that Kotlin has

the smallest share in the execution time and Python has the

largest.

Fig. 3: Share in the execution time.

B. RAM usage

Fig. 5 shows that Kotlin and Java have similar RAM usage

and significantly higher usage than PHP and Python (PHP,

TABLE I: Share in the execution time.

Kotlin PHP Python Java

create 21,93% 32,92% 22,68% 22,48%

read 22,66% 32,76% 21,18% 23,41%

update 19,73% 28,86% 30,82% 20,59%

delete 19,41% 29,61% 30,63% 20,35%

CRUD 19,08% 29,07% 32,42% 19,43%

Shakespeare 19,96% 26,97% 32,86% 20,22%

sum 6,89% 36,93% 49,52% 6,66%

which has the lowest RAM usage, has an average usage of

4,18% and Kotlin, which has the highest, of 9,87%). As shown

in Fig. 4a the ratio of difference in RAM usage for Kotlin and

Java on the one hand, and PHP and Python on the other, is

biggest for a smaller number of simultaneous requests. For

1000 requests, Kotlin has a usage of 6,21% and PHP of

2,00%(3,1 more usage). For 10000 requests Kotlin, which has

again the highest usage, has a usage of 14,1% and PHP, which

has lowest, of 7,05% (2 times difference).

The biggest difference, shown in Fig. 4b in RAM usage,

is present in the scenario of reading files (the Shakespeare

scenario). When doing 1000 simultaneous request, Python, as

a language with the lowest RAM usage of 2,1% and Kotlin, as

a language with the highest RAM usage of 13,5%(a difference

of 6,4 times). For 10000 users, Python has a usage of 8,6%

and Kotlin of 25,9%(a difference of around 3 times).

Table II shows the share of each language and for each

The 20th International Conference on Informatics and Information Technologies - CIIT 2023

7



(a) For all operations. (b) For the operation Shakespeare.

Fig. 4: Average RAM usage.

scenario in the RAM usage. When doing an update operation

and when doing deletion, Java has the largest share in the

RAM usage (30,75% and 30,55%), marginally larger share

than Kotlin. In all other scenarios, Kotlin has the largest share

in the RAM usage. Python has the smallest share for the

operation CRUD (13,61%) and Shakespeare(9,72%). For all

other operations, PHP has the smallest share in the RAM

usage. Fig. 6 shows the share of each language in the total

RAM usage. PHP has the smallest share and Kotlin has the

largest.

Fig. 5: Average RAM usage.

Fig. 6: Share in the RAM usage.

TABLE II: Share in the RAM usage.

Kotlin PHP Python Java

create 35,69% 11,67% 19,50% 33,14%

read 32,99% 12,89% 22,75% 31,38%

update 30,62% 13,71% 24,93% 30,75%

delete 29,76% 14,17% 25,51% 30,55%

CRUD 36,48% 15,24% 13,61% 34,67%

Shakespeare 38,80% 13,21% 9,72% 38,27%

sum 30,76% 17,09% 23,36% 28,78%

The 20th International Conference on Informatics and Information Technologies - CIIT 2023

8



(a) For all operations. (b) For the operation sum.

Fig. 7: Average CPU usage.

C. CPU usage

In Fig. 8 it could be noticed that use of CPU is smaller

in Python and that the other three languages have similar

CPU usage. Fig. 7a shows that the difference between Python

and the other languages gets bigger for fewer numbers of

simultaneous requests (1000), and is getting smaller for more

requests (10000). For 1000 requests, Python has a CPU usage

of 263,43% and PHP, which has the biggest usage, has a

usage of 413,87% (PHP uses 1.57 times more CPU when

executing the application). For 10000 users Python has a usage

of 322,98% and PHP, which has the highest CPU usage for

this category of 357%(1.10 times more usage in PHP).

In Fig. 7b it can be seen that the biggest difference in the

CPU usage was, as it was the case with the average execution

time, with the mathematical operation sum. For 2500 requests,

Java, which had the smallest usage, was at 433,2%, while PHP,

which had the highest, at 697.7%.

Table III shows the share of each language and for each

scenario in the CPU usage. The differences between languages

in CPU usage are smaller than in RAM usage and execution

time. There are 4 scenarios for which PHP has the largest

share, 1 in which Java has it and 2 in which Kotlin has it.

For the smallest share, there are 4 in which Python has the

smallest usage, 2 in which PHP has it and 1 in which Java has

the smallest usage. Fig. 9 shows the share of each language

in the total CPU usage.

Fig. 8: Average CPU usage.

TABLE III: Share in the CPU usage.

Kotlin PHP Python Java

create 28,23% 29,39% 14,57% 27,81%

read 27,00% 20,33% 25,38% 27,29%

update 28,41% 27,93% 16,78% 26,88%

delete 27,71% 28,33% 16,72% 27,24%

CRUD 28,18% 28,61% 16,21% 27,01%

Shakespeare 27,84% 21,66% 22,99% 27,52%

sum 22,40% 31,78% 23,98% 21,83%

The 20th International Conference on Informatics and Information Technologies - CIIT 2023

9



Fig. 9: Share in the CPU usage.

D. General results

As shown in Fig. 11 when we take all three criteria into

account: the execution time, the RAM usage and the CPU

usage, the smallest share, that is, the best results are shown

by Python with 23,62% share. On second place it is PHP with

23,96%, on third place Java with 26,01% and on the last place

Kotlin with 26,41%.

E. Lines of code

As shown in Fig. 10 Python has 564 lines of code, PHP

has 630, Kotlin has 863, and Java 964 lines of code. One of

the main design aims of Kotlin, to be more concise than Java

[11], has been achieved.

Fig. 10: Lines of code.

V. CONCLUSION

This paper is a measurement study of four programming

languages (Java, Python, PHP and Kotlin) in the context of

back-end web development. To the best of our knowledge,

this is the first study that does this. Seven different realistic

scenarios, with different number of simultaneous requests were

used to evaluate the language, which makes the results more

practical and applicable.

We can conclude that Java and Kotlin have much better

scalability than Python and PHP. Python and PHP show good

execution time for a small number of requests (1000), but

Fig. 11: Share of each language for all criteria.

have difficulty with larger ones. Regardless of the number of

requests, the most significant difference between the languages

in the execution time is for mathematical computation. For a

large number of requests, PHP and Python show more than

11 times slower execution time for a mathematical operation.

Java and Kotlin use significantly more memory than PHP

and Python.

With regard to CPU usage, Python shows less usage than

the other three languages, which have similar usage.

When the share of each language is taken into account for

all the three criteria together (execution time, RAM usage and

CPU usage) Python shows the best results, followed by PHP,

Java and Kotlin.

With regard to verbosity, Python is the least verbose and

Java is the most verbose language.

This paper can facilitate the process of selecting a suitable

programming language when starting a new project. The man-

ner in which the measurements are performed, by minimizing

the outside influence on the application, could also be used in

context of other programming languages. It is also possible to

do further research for the same 4 languages, but the scope or

the architecture of the application to be different(for instance,

using microservices), or to compare different functionalities

of the same languages which were not evaluated in this paper.

REFERENCES

[1] https://www.tiobe.com/tiobe-index/ [Accessed 10 March 2023].
[2] www.github.com [Accessed 10 March 2023].
[3] G. Bujnowski and J. Smołka, ”Java and Kotlin code performance in

selected web frameworks,” Journal of Computer Sciences Institute, vol.
16, pp. 219-226, 2020.

[4] L. Prechelt, ”An empirical comparison of seven programming
languages,” Computer, vol. 33, no. 10, pp. 23–29, 2000.
doi:10.1109/2.876288

[5] G. Destefanis, M. Ortu, S. Porru, S. Swift, and M. Marchesi, ”A
statistical comparison of Java and Python software metric properties,”
Proceedings of the 7th International Workshop on Emerging Trends in
Software Metrics - WETSoM ’16, doi:10.1145/2897695.2897697

[6] K. Lei, Y. Ma, and Z. Tan, ”Performance Comparison and Evaluation
of Web Development Technologies in PHP, Python, and Node.js,” 2014
IEEE 17th International Conference on Computational Science and
Engineering, doi:10.1109/cse.2014.142

[7] P. Neves, N. Paiva, and J. Durães, ”A comparison between
JAVA and PHP,” Proceedings of the International C* Conference
on Computer Science and Software Engineering - C3S2E ’13,
doi:10.1145/2494444.2494465

The 20th International Conference on Informatics and Information Technologies - CIIT 2023

10



[8] S. Khoirom, M. Sonia, B. Laikhuram, J. Laishram, and T. Davidson,
”Comparative Analysis of Python and Java for Beginners,” International
Research Journal of Engineering and Technology (IRJET)

[9] B. B. Rad, J. B. Harrison, and M. Ahmadi, ”An introduction to docker
and analysis of its performance,” International Journal of Computer
Science and Network Security (IJCSNS) 17.3 (2017): 228.

[10] D. Merkel, ”Docker: lightweight linux containers for consistent devel-
opment and deployment,” Linux j, vol. 239, no. 2.

[11] D. Jemerov and S. Isakova, ”Kotlin in action,” Manning Publications
Co.

The 20th International Conference on Informatics and Information Technologies - CIIT 2023

11


