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Abstract—Predicting Blood pressure from Photoplethysmogra-
phy (PPG) signals is an active area of research and there have
been many studies exploring the feasibility of this approach.

This paper elaborates a technique for estimaton of continuous
Arterial blood pressure (ABP) waveform using PPG signals as
inputs in a developed deep learning model. The ultimate goal is
estimating the Blood pressure, but unlike the standard regression
models for predicting the Blood pressure by systolic BP (SBP)
and Diastolic BP (DBP), this approach calculates SBP and DBP
from the estimated ABP waveform, which enable further analysis
to enhance the BP estimation. The best obtained results are MAE
of 8.40mmHg, and a MAE of 11.1mmHg and 7mmHg for SBP
and DBP respectively. The promising prediction of SBP and DBP
using our proposed machine learning model has the potential to
improve clinical decision-making and resource allocation process
in emergency situations.
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I. INTRODUCTION

Blood pressure (BP) is an important vital sign that can pro-
vide valuable information about a person’s health status. Blood
pressure is the force exerted by the blood against the walls of
blood vessels, and it is an essential measure of cardiovascular
health. It is measured using two numbers: systolic pressure,
which measures the force of blood when the heart beats, and
diastolic pressure, which measures the force of blood when the
heart is at rest.A healthy blood pressure reading is typically
around 120/80 mmHg, with the systolic BP being at the top
and the diastolic BP being at the bottom. High blood pressure,
or hypertension, can increase the risk of heart disease, stroke,
and other health complications, while low blood pressure can
cause dizziness, fainting, and other symptoms [1]. Traditional
methods for measuring blood pressure typically involve using
a cuff to measure the pressure in the brachial artery. However,
non-invasive methods for estimating blood pressure have been
gaining popularity in recent years. One promising approach
for estimating blood pressure non-invasively is through the
analysis of photoplethysmography (PPG) signals. PPG signals
are generated by measuring changes in the blood volume in
peripheral blood vessels, such as those in the fingertip. PPG
signals are collected from pulse oximeters that produce visible
light (LED) on the skin and measure the micro-variations in

the transmitted or reflected light intensity through a photo-
diode [2]. If we have an ABP signal, by calculating the
maximum and minimum values in the ABP segment, we
can obtain the SBP and DBP, respectively. In recent years,
advances in machine learning and signal processing techniques
have enabled researchers to develop algorithms for estimating
SBP and DBP from PPG signals. These algorithms typically
involve analyzing the PPG waveform and extracting features
that are correlated with the BP. Machine learning models can
then be trained on these features to predict the BP from PPG
signals [3], [4]. In our study, we are building a model that
estimates an ABP waveform from PPG signals.

II. RELATED WORK

There are several published papers where the ABP wave-
form is estimated. In [5], which is known as PPG2ABP, they
used two deep learning models to estimate the ABP waveform.
An approximation network, which is a one-dimensional U-Net
network with an input of a PPG signal, was first used to ap-
proximate the waveform. They then used a refinement network
to fix the estimated ABP waveforms. A 1D MultiResUNet
model was used to improve the model. According to another
study [6], calculating ABP waveforms might be done solely
with a 1D-modified U-Net network. A different preprocessing
technique was employed in another work [7], which predicts
the ABP waveform using U-Net. LeNet-5 and U-Net, two deep
convolution autoencoders used to predict the ABP waveforms,
are compared in [8]. Using the cross-validation (CV) method,
data generalization was investigated. The outcomes show that
the U-Net works better than alternative estimating techniques
for SBP values. The LeNet-5, however, is slightly better to
predict DBP values. The ensemble of CV models is then
optimized using a deep convolutional autoencoder (GDCAE)
based on a genetic algorithm. The results show that the
GDCAE performs better than the LeNet-5 and the U-Net.
Consequently, the review discusses the results of the model
GDCAE that performed the best. Unfortunately, combining
two deep learning algorithms to get two distinct values requires
a lot of parameters, which is computationally inefficient. The
combination of two separate models can obtain two values, and
no optimal model for predicting the resulting ABP waveform
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was generated as an outcome. In [9], a 1D V-Net deep learning
system for ABP waveform prediction was proposed. Two
signals (ECG and PPG), with a 4s window, were used as
input to the model, along with several constant values. At
each timestamp, constants were encoded and treated as extra
channels. The following constants were used: the most recent
noninvasive SBP, DBP, and MAP values obtained prior to
the window, the time interval between these measurements,
the standard deviation (STD) and median of the pulse arrival
time, and the pulse rate. The PPG and ABP waveforms at
the input differ from one another. The residual error can
be learned by the model thanks to the manner it was built.
Another recent paper [10], suggested using PPG data as input
to a cycle generative adversarial network (CycleGAN) to
predict ABP waveforms. Despite the fact that the bulk of
the publications used an encoder-decoder technology, they
employed an innovative technique to estimate the waveforms
by using a generator and a discriminator network.

III. MATERIALS AND METHODS

In this section, we describe the dataset, the developed
technique for data preprocessing part and the model, as well
as the used evaluation metrics.

A. Dataset

The MIMIC-III (Medical Information Mart for Intensive
Care III) dataset is a freely available collection of de-identified
health-related data. It contains data from over 40,000 patients
who were admitted to the intensive care units (ICUs) of a
large tertiary care hospital between 2001 and 2012 [11]. We
do not use the entire MIMIC-III dataset in our research, but
rather a subset of it. The dataset we work with consists of 508
signals, sampled at Fs = 125 samples/sec for 126 patients. In
the dataset, we are only considering the files where the PPG
and ABP signals are represented in the entire window, without
null values and the window size is in the range between 1.4 and
80s. For the preparation of the input vectors for the problem
at hand, besides setting the PPG signal, we are introducing the
first and second PPG signal derivatives [3], and the model’s
output is a raw ABP signal.

B. Preprocessing

One of the main problems obstructing full exploitation
of the available biomedical databases resides in archiving
these data without any concern about their quality. Thus,
before we start training the models, we need to preprocess
the data by implementing some preprocessing techniques that
are used when working with biomedical signals and time
series data. The process of data preprocessing takes place in
the following stages: filtering and normalization, segmentation
and correlation. Also, we introduced the alignment technique
(between PPG and APB) since the model’s output is an ABP
waveform.

1) Filtering and normalization: The construction of PPG
sensors makes them susceptible to motion artifacts (MA),
which lead to signal quality distortion. The most significant
causes of MA include changes in blood flow caused light
seeping through the space between the sensor and the skin
and physical activity, which may affect where the sensor is
placed on the skin [12]. The data filtering process starts by
filtering the PPG signals, using the Python Neurokit toolbox
with a sampling rate of 125Hz. Scaling is done by using the
MinMaxScaler after the data has been cleaned. It consists of
two separate scalers, one for scaling the input signal’s values
and the other for scaling the output signal’s values. After this
step, the signals are positioned at the same range of values,
allowing signal alignment and determining whether they are
correlated.

2) Signal alignment: During the development of the model
for the ABP estimation, it was acknowledged that ABP and
PPG signals need an alignment when creating the input
(PPG) and the output (ABP) for the dataset. ABP and PPG
measurements are frequently provided without time alignment
(out of phase), since they are typically made using various
techniques and taken from different areas of the body (e.g.,
arm vs. wrist) [13]. A few methods for fixing the phase
difference have recently been published [14], [15], [16], [17].
The alignment has been carried out for all records using
cross-correlation. The cross-correlation function is defined as:

Fig. 1 shows a histogram with the phase difference of the
used signals. This phase difference is determined by the cross-
correlation of the ABP and PPG signals, then the location
of the maximum value has been considered as time lead or
lag. The signals are aligned after determining the lag between
them, since they are obtained from the same source.

Fig. 1. Phase difference between ABP and PPG

3) Segmentation and correlation: Segmentation is per-
formed by dividing the signals into smaller chunks with a
window size of 1.4s. From the results of the undertaken
analyses, it can be concluded that there is a similarity between
the PPG and ABP morphologies. This is reflected in the
correlation coefficient calculated after the alignment. Pearson’s
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correlation coefficient is used to determine how similar PPG
and ABP are in terms of morphology. The value of r ranges
from -1 to +1, where the value close to +1 or -1 means that
signals have strong positive or negative similarity, respectively;
otherwise, the value is close to zero [18]. The correlation
coefficient is calculated as follows:

As suggested in the literature, the PPG and the ABP signals are
morphologically correlated if the correlation factor r>0.9 [18].
Hence, we rejected the signals with a correlation lower than
0.9. Additionally, the ABP signals’ maximum and minimum
values are calculated; if the minimum value is lower than 40
(DBP < 40) or the maximum value is higher than 220 (SBP
> 220), the signal is considered out of our working scope and
consequently - denied.
After the entire process of preprocessing and segmentation,
a dataset of 5113 PPG and ABP signals is obtained. From
the total number of data, 4641 are assigned to the training
set, 105 to the testing set, and 367 to the validation set. The
division of the sets is done before the segmentation process,
which means that the patients from the training set do not
appear in the testing and the validation set, and vice versa -
the patients from the testing set do not appear in the training
and the validation set. The set partitioning is done according
to the ratio of 85% of patients for training, 7% of patients
for validation, and 8% of patients for testing, where all of the
patients have a different number of records and the length of
each record could differ.

C. Model Structure

In this paper, we are using a deep neural network model,
the Gated Recurrent Unit (GRU). GRU is a type of Recurrent
Neural Network (RNN) that, in certain cases has advantages
over long short term memory networks (LSTM). GRU uses
less memory and is faster than LSTM [19].

The network we have built consists of one GRU input layer
with 522 neurons, and three GRU hidden layers of 350, 240,
and 182 neurons each followed by a ReLU activation function.
After the second hidden layer, there is a Dropout layer with
a value of 0.1. The last hidden layer is flattened and on the
output, there is a Dense layer with 175 neurons. The model
was trained on 100 epochs on a batch size of 32, using Adam
optimizer with a learning rate of 0.0001 and checkpoints for
early stopping and saving the best model.

D. Evaluation Metrics

The evaluation process is done by the following evaluation
metrics: MAE and MSE [20]. Mean Squared Error (MSE)
- L2 loss function and Mean Absolute Error (MAE) - L1
loss function are the most prevalently used loss function for
regression. For predicted values Ŷ = {ŷ1 , ŷ2 , ŷ3, . . . , ŷn}

and the target values Y = {y1 , y2 , y3 , . . . , yn}, they are
defined as follows:

In our experiments, we are using MSE as a loss function of
the network - the penalty is not proportional to the error but to
the square of the error. Squaring the error gives higher weight
to the outliers, which results in a smooth gradient for small
errors.

IV. RESULTS AND DISCUSSION

After training the model, it is evaluated on the prepared test
data, with the following outcomes.

Metrics SBP DBP

MSE 195 75
MAE 11.1 7

TABLE I
EVALUATION METRICS

Table I shows that the obtained results regarding MAE are
promising, although MAE can fail to punish large errors in
prediction. This analysis is somewhat confirmed since there
are significant differences between MAE and MSE values.

Fig. 2. True and predicted values: a) SBP, b)DBP

Figure 2 presents the actual and predicted values of SBP
(a) and DBP (b) for each test data point. These visualizations
can help in model improvement in a way that one can analyse
each data point separately, and address directly the ones above
some acceptable error threshold. Figure 2 also shows that there
isn’t a single person in the testing dataset with a DBP of 80
(which is considered normal blood pressure) or above, while
it is not the case for the whole dataset. To overcome this issue,
in the future, we could use the cross-validation technique, for
better utilization of our data. There is one additional results
representation that shows us percentages of the data that have
errors according to different thresholds (Table II).

<3 <5 <10 <15 >15

SBP 19% 30.5% 53.3% 67.6% 32.4%
DBP 28.6% 41.9% 78.1% 90.5% 9.5%

TABLE II
CUMULATIVE ERROR IN PERCENTAGE
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The following Fig. 3 presents the differences between the
actual and the estimated ABP waves for two different model
inputs. The blue line represents the true values and the orange
represents the predicted ones. It is evident that the forms are
very similar, though the max (SBP) and min (DBP) values
are not very close. Nevertheless, the morphological analysis
of the ABP signal can help in producing different features for
building a better dataset.

Fig. 3. True and predicted ABP waveform, a) entry 1 and b) entry 2

V. CONCLUSION

In this research, through our suggested model, we attempted
to estimate Arterial Blood Pressure (ABP) waveforms from
Photoplethysmogram (PPG) signals. With this approach, we
can estimate the ABP waveform, which can be used to estimate
cardiovascular anomalies from the waveform patterns of the
PPG signal, in contrast to studies that only attempted to
predict discrete BP parameters, such as SBP, DBP, MAP. ABP
waveforms, which are generally collected invasively, can now
be estimated from externally acquired PPG signals. Contrary
to some studies, which used ECG signals alongside PPG to
estimate ABP, we decided to process only the PPG signals,
whilst reaching promising performance in the estimation pro-
cess. As a future work, we will focus on improving model
performances, trying different networks and models, as well
as enriching the dataset with new data.
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