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Abstract—In this study, data was extracted from the Physionet
MIMIC-III clinical database, which contained diverse medical
records of patients who were admitted to the critical care units
of Beth Israel Deaconess Medical Center between 2001 and
2012. Our research focused on PPG signals and SpO2 values,
which were subjected to preprocessing and filtering in Python.
The processed PPG data, together with the corresponding SpO2
values, were categorized based on the interval of SpO2 signal
measurement, i.e., either one second or one minute. Subsequently,
the filtered data was stored on a private ownCloud server, where
it will be employed to enhance the database and facilitate the
development of deep learning models for SpO2 prediction from
one-channel PPG signals. At present, 340 GB of filtered data has
been stored, which corresponds to approximately 2100 patients.

Index Terms—photoplethysmography, oxygen saturation,
database preprocessing, MIMIC III, Physionet

I. INTRODUCTION

A photoplethysmogram (PPG) signal is a waveform gen-

erated through the use of a simple technique that employs

infrared light to detect changes in blood volume in the

microvascular bed of tissue. Stated differently, PPG signals

are capable of sensing the rate of blood flow resulting from

the heart’s pumping action [1]. When assessing the graph

representation of the PPG signal, each peak corresponds to a

heartbeat; hence, if the graph displays 60 peaks, the heart rate

is deemed to be 60 beats per minute. This technique provides

crucial information pertaining to the cardiovascular system,

facilitating the diagnosis, monitoring, and screening of a wide

range of ailments, including heart attack, stroke, and heart

failure [2].

The measurement of oxygen saturation (SpO2) involves the

use of a pulse oximeter, which provides an indication of the

percentage of oxygen present in the blood. Oxygen saturation

represents the fraction of oxygen-saturated hemoglobin in

relation to the total hemoglobin present in an individual’s

blood. The normal range of SpO2 levels in humans is between

97 and 100 percent. Should the SpO2 measurement fall below

95 percent, immediate medical attention is recommended. The

SpO2 signals can be utilized to identify various lung diseases

by measuring the amount of oxygen present in the blood.

Moreover, during anesthesia and surgery, SpO2 monitoring is

crucial in ensuring that the patient is receiving an adequate

supply of oxygen [3], [4].

The calculation of SpO2 involves determining the ratio

of the AC to DC components of the measured PPG signal.

These components provide information on the heart rate during

systole and diastole, as well as the respiratory rate during a

specified time period, typically 60 seconds. By establishing

this correlation over a specific duration, the SpO2 value can

be estimated. This technique is widely used in the medi-

cal field for monitoring patients’ oxygen levels, especially

in critical care settings. To calibrate the measured photo-

plethysmographic signals for each type of commercial pulse-

oximeter sensor, an empirical approach is employed, which

involves in vitro measurement of SpO2 in extracted arterial

blood through co-oximetry [5]. By utilizing Artificial Neural

Networks (ANN) or Machine Learning models, it is possible

to rapidly and accurately predict SpO2 from a single-channel

PPG signal, thus overcoming the limitations imposed by the

traditional R-value based calibration method utilized in signal

processing methods [6].

Several research papers conduct preprocessing on the PPG

signals obtained from the MIMIC-III Waveform Database for

different purposes. As an instance, the authors in [7] retrieve

blood pressure values from the PPG signals, which they

preprocessed and filtered using Matlab. In [8], the authors

used scalograms generated out of transmissive PPG signals

collected from MIMIC-III database to diagnose diabetes. Lom-

bardi at al. presented strategy for database preparation for

training a sepsis detection system based on the utilization of

only plethysmographic data from the MIMIC-III database [9].

This research paper aims to enhance the existing database

presented in [10], which is used for building deep learning

models to determine SpO2 values from one-channel PPG

signals. To achieve this, we preprocess the PPG signals from

the MIMIC-III Waveform Database in Python and create a

filtered PPG signal database along with corresponding SpO2

values. The resultant database will serve as a valuable resource

for researchers seeking to improve the accuracy of SpO2

The 20th International Conference on Informatics and Information Technologies - CIIT 2023

38



prediction using one-channel PPG signals.

The subsequent sections of this paper are organized as

follows: The Materials and Methods section presents a com-

prehensive description of the utilized database, elaborating on

the complete process of data extraction, filtering, and storage

on the server. In the Results section, various instances of pre-

processed PPG data are demonstrated, along with an indication

of the reasons for signal rejection such as flat lines, flat peaks,

or NaN values. Lastly, the Conclusion section summarizes

the paper’s objectives and provides a brief overview of its

contents.

II. MATERIALS AND METHODS

A. MIMIC-III database

The MIMIC-III Waveform Database is an extensive cen-

tralized repository that contains crucial information regard-

ing patients admitted to critical care units. The database

comprises of 67,830 record sets pertaining to approximately

30,000 patients admitted to intensive care units. These record

sets include physiologic waveforms and time series of vital

signals, which were gathered from bedside patient monitors.

The waveform signals consist of digitized signals, such as

ECG, ABP, respiration, and PPG, while the numerics typically

include vital signs such as heart and respiration rates, pulse,

SpO2, systolic and diastolic blood pressure, etc. The database

is the result of collaborative efforts by researchers at the

Massachusetts Institute of Technology (MIT), Beth Israel

Deaconess Medical Center (BIDMC), and Philips Healthcare,

and was published on April 7, 2020 as version 1.0. The

uncompressed size of this database is approximately 6.7 TB.

The MIMIC-III database provides a valuable resource for

researchers to develop algorithms and models for predicting

outcomes, such as mortality, in critically ill patients. It has

been widely used in the development of artificial intelligence

models, as well as in clinical research studies [11]–[13].

B. Extraction of PPG signals and SpO2

Each database entry comprises a physiologic waveform and

a corresponding numeric record, both of which are accom-

panied by header files that contain information about the

measured signals. The physiologic waveform record captures

up to eight signals that are simultaneously digitized at 125Hz.

In contrast, the numeric record contains at least ten time-series

of essential signals that are sampled either once per second or

once per minute. It is essential to highlight that not all signals

are monitored continuously throughout the entire duration of

the record.

The signals that are of interest in this research are the

PPG signals which if present can be found in the physiologic

waveform records, as well as the SpO2 vital signals which if

present can be found in the numeric records.

The length of the records is typically a few days in duration,

but some records are shorter, and others which are several

weeks long.

The extraction process begins by selecting only those

records which contain both PPG and SpO2 signals. Subse-

quently, the PPG signal is divided into segments, with the

number of segments equivalent to the length of the SpO2 time

series in the corresponding record. This approach ensures that

each PPG segment corresponds to one SpO2 value, with no

skipped values. Examples of a raw PPG signal and a PPG

segment with visible noise are presented in Fig. 1 and Fig. 2,

respectively.

Fig. 1. Example of a raw PPG signal.

Fig. 2. Example of a raw PPG segment with noise.

Given that the PPG signal is sampled at a frequency of

125Hz, while the SpO2 is measured either once per second

or once per minute, the length of each PPG segment should

be either 125 or 7500 (125*60) samples. PPG segments that

have lengths other than 125 or 7500 are excluded since they

imply gaps in the monitoring of the signals that cannot be

easily resolved.

On the other hand, if the length of the PPG segment is

either 125 or 7500 samples, it indicates that there were no

interruptions in the monitoring of the signals, and there is

a corresponding SpO2 value available for every second or

minute of PPG monitoring.

If the record passes this length check, its PPG signal is

normalized. Each PPG segment, along with its corresponding

SpO2 value, is passed through a series of filters that determine

whether the data should be saved or discarded.

C. PPG signal filtering

The extracted PPG segments and corresponding SpO2 val-

ues are subjected to multiple filters to assess their quality.

These filters are designed to determine if the data meets the

required standards. The selection of the preprocessing steps
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and filters follows the methodology proposed in [7], with

additional modifications to improve the results.

The initial filter evaluates whether the SpO2 value is NaN.

In case of a NaN value, the corresponding PPG segment and

SpO2 value are disregarded.

The subsequent filter applied is the ”flat lines” filter. It scans

the PPG segment using a 15-window size and computes the

proportion of flat lines present in the signal. For each PPG

value, it determines whether the entire window of values,

starting from that point, is either 0 or NaN. If so, it flags

it as a flat line starting from that value. Finally, it calculates

the percentage of PPG values that correspond to a flat line

and discards the segment and corresponding SpO2 value if it

exceeds 20%. This filter ensures that a maximum of 20% of

the PPG segment comprises flat lines.

After passing the ”flat lines” filter, the PPG segment under-

goes the ”flat peaks” filter, which follows a similar process.

The filter analyzes the PPG segment by using a 5-window

size and calculates the percentage of flat peaks in the signal.

However, unlike the ”flat lines” filter, it identifies flat peaks

when all PPG values in the window are the same but not equal

to 0 or NaN. The same threshold of 20% is utilized for this

filter.

Once the PPG segment has passed the preceding filters, it

proceeds to the final filter that detects and removes noise at

the start and end of the signal if present. Noise is characterized

by an absolute difference of more than 10 units between

consecutive PPG values.

D. Data storing format

The information is processed in batches of 25 records, and

for each recored, two files are generated to store the data.

One file holds the signals where SpO2 measurements are taken

every second, while the other file corresponds to signals where

SpO2 measurements are taken every minute. Additionally, a

dictionary object consisting of the record ID, PPG segment

represented as an array, and the corresponding SpO2 value

is created. Based on whether the SpO2 was measured every

second or every minute for that record, the dictionary object

is placed into one of two resulting arrays.

Once all the data has been extracted and filtered, it is crucial

to store it in a format that can be easily processed by a

computer. In this study, Pickle format has been selected for

its ability to serialize and deserialize almost any object using

the Python programming language. It is particularly useful for

storing and transferring large datasets in a compact, binary

format, which satisfies this study’s requirements. Furthermore,

compared to CSV files, Pickle format is considerably faster

and uses compression techniques that can reduce file sizes by

nearly half [14].

E. Data storage

The Python script responsible for processing and storing

the data was executed on Google Colab, which had limited

memory and storage resources. Consequently, some larger

records were processed locally. The preprocessed data has

been stored on an ownCloud server, and to accomplish this, the

ownCloud Python library was imported. This library enabled

the script to establish a connection with an ownCloud instance

and upload the file contents to the server.

The ownCloud software is installed on virtual machine in

our faculty data centre. We use the ownCloud Community

Edition, as we are small to medium organization and our

intended use is to run ownCloud with all basic functionalities

on-premises by our self. The server is a virtualized resource

with 16 cores, 16GB memory and has 1TB dedicated storage.

III. RESULTS

So far, 8000 records have been preprocessed in 320 batches

with 25 records each. Overall, this amounts to approximately

340 GB of accumulated data, which has been segregated

into two folders. Each of these folders contains 320 files,

corresponding to the 320 processed batches, and these files

are created based on frequency of SpO2 readings. The orga-

nization of files in this structured manner facilitates efficient

management of the data, making it more accessible for future

use.

In the case when SpO2 is measured every second, the file

sizes start from 9 KB to 3 GB, while in the case where SpO2

is measured every minute from 16.3 MB to 2 GB.

The figures below depict examples of accepted and rejected

PPG segments and the results obtained from the filters applied.

The plots were generated using the wfdb plot items function.

Figure 3 illustrates a PPG segment that has successfully

passed through all filters, including the NaN filter, ”flat lines”

filter, and ”flat peaks” filter.

Fig. 3. Example of valid PPG segment that has passed all filters.

PPG segments that contain more than 20 percent NaN values

or exhibit flat lines or flat peaks are deemed unsuitable and

are consequently rejected. The figures below illustrate various

causes of rejection of PPG segments. It is worth noting that

these segments are not stored in the database to prevent any

possible negative impact on the quality of data analysis.

Figure 4 displays an example of a rejected PPG segment

due to the presence of NaN values.

Similarly, Fig. 5 illustrates a rejected PPG segment that

contains flat lines.

Figure 6 depicts a rejected PPG segment that exhibits flat

peaks.

Finally, Fig. 7 shows an example of a rejected PPG segment

due to flat lines and flat peaks.
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Fig. 4. Example of a rejected PPG segment due to NaN values.

Fig. 5. Example of a rejected PPG segment due to flat lines.

Fig. 6. Example of a rejected PPG segment due to flat peaks.

Fig. 7. Example of a rejected PPG segment due to flat lines and flat peaks.

Figure 8 and Fig. 9 demonstrate a PPG segment with noise

before and after the noise-removing filter has been applied,

respectively.

Currently, the database contains 320 files saved in separate

directories for SpO2 measurements taken every second, and

an additional 320 files for measurements taken every minute.

Upon completing the preprocessing of the entire database,

we anticipate generating 2400 more files for each SpO2

measurement, resulting in a total of 5400 files written to the

server.

Fig. 8. Example of a PPG segment with noise before applying the noise
removing filter.

Fig. 9. The same PPG segment from Fig. 3. after applying the noise removing
filter

IV. CONCLUSION

In this paper, we preprocess the PPG data from MIMIC-

III Waveform Database, collected by bedside patient monitors

in intensive care units, and create a database of PPG signals

accompanied by the appropriate SpO2 numeric measurements.

For every record gathered in the database, after assuring

that both SpO2 and PPG signals are present, PPG segments

are divided into subsegments based on the SpO2 sampling

frequency.

Firstly, the PPG signals are normalized and different filters

are applied to identify flat lines and flat peaks, with a 20

percent threshold level. As a result of these steps, about 30

percent of the preprocessed records have been saved in the

database. Currently, there is approximately 340 GB of saved

data. This data is of big interest for building deep and machine

learning models for prediction on the value of SpO2 from the

PPG signals.

It is essential to note that the preprocessing of such medical

noisy signals is a resource-intensive process that needs to be

done carefully to ensure that the resulting data is of high

quality and reliable. NaN values, which refer to missing data,

can significantly affect the accuracy of the analysis. Similarly,

flat lines and flat peaks can distort the shape of the waveform,

leading to incorrect results and conclusions.
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