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Abstract—Serverless computing has made a significant 
impact in the cloud computing landscape, and has even been 
extended beyond the cloud, up to the edge of the network. 
Existing serverless platforms which use containers and micro 
virtual machines as function runtimes incur a significant startup 
latency, hindering the performance and scalability of the 
executed functions. One potential solution to this problem is the 
use of WebAssembly. In this paper we discuss recent 
developments which allow WebAssembly to be used for server-
side applications, as well as serverless functions, and evaluate 
potential orchestration options with the end goal of integrating 
WebAssembly with existing cloud and edge infrastructure. We 
conclude that while WebAssembly is a solution to the cold start 
problem, further work is needed in this area. To realize the end-
goal of seamless and user-friendly serverless platforms that can 
be deployed across the edge-cloud continuum and can 
dynamically adapt to compute and latency requirements, 
WebAssembly should not be seen as the exclusive technology, 
and instead multiple runtime environments should be supported 
in addition to WebAssembly. 
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I. INTRODUCTION 
The advent of cloud computing has completely changed 

the computing landscape for everyone involved, from 
academia to large business corporations to end users. The 
ability to on-demand request compute resources and 
granularly pay only for the duration for which they are 
provisioned has simplified the development of new 
applications and services. The introduction of various 
infrastructure as a service (IaaS), platform as a service (PaaS), 
and software as a service (SaaS) products [1] has allowed both 
developers and system administrators alike to think in more 
abstract terms and to forgo the installation and management of 
physical infrastructure to dedicated cloud providers.  

The next popular addition to the long line of as a service 
offerings by cloud providers is serverless computing [2], with 
its two main components, function as a service (FaaS) and 
backend as a service (BaaS). Using these two new concepts, 
developers need to only write the code containing the core 
business logic in as slimmed down version as possible, usually 
a single function, which will then be executed in ephemeral 
and lightweight execution environments. Persistence and 
integration with external systems is enabled by additional 
services, such as database as a service or message broker as a 
service, both representatives of BaaS. 

Serverless computing, with its advantages over traditional 
serverful computing such as potentially unconstrained 
scalability, faster paced development, and flexible pricing [3], 
billing only the time for which the function is executed, has 
become commonplace in many areas, including web 
development. However, the event driven nature of serverless 

computing has a potential to impact other emerging topics as 
well, namely internet of things (IoT), introducing a new set of 
challenges. To accommodate the billions of new devices 
expected to be deployed in the coming years, and to be able to 
respond adequately to time-critical events, the compute 
infrastructure needs to be moved to the edge of the network, 
closer to the end devices [4]. The main goal of edge computing 
is to reduce latency by offloading time sensitive computation 
to nearby compute infrastructure.  

The most common runtime environments for execution of 
serverless functions today, regardless of whether in the cloud 
or at the edge, are containers and micro virtual machines 
(VMs). One of the main challenges faced by serverless 
computing at present is how to reduce the initial startup time 
before the runtime environment is ready to serve the incoming 
request. This startup time is commonly referred to as cold start 
[5]. Despite the fact that both containers and micro virtual 
machines are more lightweight than full-fledged virtual 
machines usually offered by cloud providers, their cold start 
is still in the order of hundreds of milliseconds if not couple 
of seconds, making them unsuitable for dealing with time-
critical data [6]. Many commercial and open-source platforms 
have devised ways in which to either eliminate or reduce the 
cold start times of serverless functions, for example by 
keeping a pre-warmed pool of function instances ready to 
accept incoming requests [7]. However, this negates one of the 
main benefits of serverless computing, namely the option to 
dynamically scale to zero replicas, forgoing the flexible 
pricing in the process. Another common strategy is to reuse 
the same execution environment for multiple requests, which 
does eliminate the cold start latency for subsequent 
executions, but sacrifices per-request runtime isolation, thus 
reducing the security of the platform and its users. 

A possible solution to the problem of cold start faced by 
serverless computing might not be the optimization of existing 
runtime environments which were initially meant to be 
executed in powerful datacenters in the cloud, but the 
introduction of a new technology tailored to more resource 
restricted devices. WebAssembly (WASM) [8] is a new 
runtime environment whose primary focus is to simplify and 
transform client-side web programming. Nevertheless, recent 
developments in this area have made WebAssembly a feasible 
choice for developing server-side applications, and as a result 
serverless functions as well. WebAssembly has the potential 
of drastically reducing the cold start times, while still offering 
competitive performance to other runtime environments, as 
well as cross-platform portability.  

The goal of this paper is to explore the recent 
developments in the WebAssembly ecosystem and how they 
relate to the topic of serverless computing, both in the cloud 
and at the edge. The main contributions of this work are: 1) 
overview of the state-of-the-art research related to moving 
WebAssembly out of the browser and using it for server-side 



applications, including serverless computing and function as a 
service; 2) Report on current efforts to integrate 
WebAssembly with existing and popular container runtimes, 
exploiting their modularity and allowing interoperability 
between containers and WebAssembly modules; 3) 
Evaluation of two WebAssembly frameworks capable of 
orchestrating WASM modules in the cloud and at the edge. 

The rest of this paper is organized as follows: in section II 
we discuss necessary background information related to 
WebAssembly and report on related work dealing with the 
performance of WebAssembly and its transition as a runtime 
for serverless functions. We then continue with section III 
where we present how recent advancements in the 
WebAssembly landscape can act as enablers for the next 
generation of serverless platforms, focusing on integration 
with existing container runtimes and WebAssembly 
orchestrators. We conclude the paper with section IV, 
outlining remaining challenges and future plans. 

II. BACKGROUND AND RELATED WORK 

A. The Rise of WebAssembly 
WebAssembly is a World Wide Web Consortium (W3C) 

standard first released in 2017 with the aim of improving the 
client-side performance of web applications. It offers a stack 
based virtual machine and can be used as a compilation target 
for many popular programming languages today including C, 
C++, Rust, and Go. It is expected that even more languages 
will be supported in the future, as the tooling matures. 
Interpreted languages can also be ported to a WebAssembly 
environment, by compiling the language interpreter itself as a 
WebAssembly module [9].  

In theory it should be possible to compile existing source 
code from a supported language directly to WebAssembly, but 
in practice this might require additional effort, especially for 
more complex code bases. As a result of the strong isolation 
requirements for executing remotely downloaded and 
untrusted code in the browser, combined with the novelty of 
the WebAssembly ecosystem, a number of features which are 
taken for granted in modern high level programming 
languages have only recently been introduced, or are still in 
development, such as network sockets, file-system access, and 
threading [10]. Nevertheless, with the introduction of the 
WebAssembly Systems Interface (WASI) it is possible for 
WebAssembly runtimes to interact with the underlying 
operating system using POSIX style capabilities, and thus 
gradually add support for the currently missing features. 
WASI has also enabled WebAssembly to move away from the 
browser and to be used for standalone server-side applications 
and serverless functions. 

As with any new technology undergoing an intensive 
standardization process, a number of WebAssembly runtimes 
currently exist today, all of which implement the base 
specification, but also introduce additional specialized 
features which have not been standardized yet, extending its 
capabilities even-further, and exploring new use-cases [11]–
[13]. Some of these features also relate to improvements 
directly associated with serverless functions and web 
assembly module orchestration. Section III focuses on these 
developments in more detail, while the next subsection 
describes the state-of-the-art literature in terms of developing 
new and evaluating existing WebAssembly runtimes. 

B. Related Work 
As the number of supported features by WebAssembly 

runtimes increases, so does the research interest in this topic. 
Recognizing the potential for WebAssembly to be used for 
server-side applications, Long et al. [14] have conducted a 
study into the performance differences between Docker 
containers and WebAssembly modules. They have compared 
the cold start times of WebAssembly modules on three 
different runtimes (V8, Lucet, SSVM) to those of Docker 
containers. Their results show that WebAssembly modules 
running on the tested runtimes have at least 10 times faster 
startup compared to the same code shipped in a Docker 
container, as well as faster execution time and faster file 
input/output operations (I/O). WebAssembly runtimes 
especially optimized for use with server-side workloads such 
as Lucet and SSVM show even better results. Continuing the 
trend of WebAssembly performance evaluation, Hockley et 
al. [15] benchmark WebAssembly workloads against native 
execution. In this case, the presented results show that 
WebAssembly modules incur a 5 to 10 times performance 
penalty compared to native execution. Other works comparing 
WebAssembly performance to native execution have also 
been published, and while they also report worse performance 
when using WebAssembly, the slowdowns are significantly 
lower, up to 2 times [16], [17]. It should be noted that 
slowdowns compared to native execution are of course 
expected because of the additional layers of abstraction 
introduced by the WebAssembly runtimes. 

Serverless computing has also been identified as a possible 
area where server-side WebAssembly with the help of WASI 
could be used. Murphy et al. [18] suggest ways in which 
WebAssembly modules support could be added to existing 
and well-established serverless platforms such as OpenWhisk 
or AWS Lambda. By invoking the WebAssembly runtime 
from native Node.js code, large modifications to the 
underlying serverless platform are avoided. Hall et al. [19] 
also demonstrate the feasibility of WebAssembly for 
serverless computing, this time at the edge of the network. 

WASM, together with its cross-platform compatibility, 
portability, and efficient performance, has been identified by 
Mäkitalo et al. [20] as a mean for lightweight containerization 
of code for use in IoT scenarios in the future. They argue that 
with the provided cross-platform portability, WebAssembly 
should allow seamless migration of workloads from device to 
device, as needed. 

In conclusion, current research has identified several 
distinct areas where WebAssembly could be used to solve 
existing issues or enable new use-cases. To the best of our 
knowledge, the currently published work focuses exclusively 
on either developing or evaluating standalone WebAssembly 
runtimes, without reflecting on the possible integration 
options with existing technologies. As with any new and 
emerging trend, a careful balance must be stricken not to 
overuse the new technology in scenarios which are not a 
perfect fit. Our vision is that while WebAssembly is certainly 
part of the solution which would allow efficient and easy-to-
use serverless platforms to exist and would undoubtedly 
contribute to the overcoming of the current limitations of 
existing serverless platforms, it is not the sole component. A 
number of different technologies will need to be integrated 
together to realize the end-goal of designing a performant 
infrastructure which can target both the cloud and the edge, 
thus establishing an edge-cloud continuum. The motivation 



behind this paper is to fill this gap and to provide an overview 
of recent developments in the area of WebAssembly which 
would allow it to be used in an orchestrated manner at a large 
scale, as well as integrated with existing and well-known 
container and micro VM runtimes. 

III. WEB ASSEMBLY AS AN ENABLER FOR NEXT GENERATION 
SERVERLESS PLATFORMS 

WebAssembly has a number of advantages that make it a 
suitable fit for use in serverless computing scenarios, 
including support from popular programming languages. 
Existing WASM runtimes can run on a wide variety of 
computing architectures ranging from cloud based x86 servers 
to ARM single-board computers (SBC) deployed at the edge, 
allowing function portability. Different WASM runtimes are 
tailored to different scenarios, favoring cross-compatibility, 
speed, or new features still not part of the official 
specification, further extending the possibilities of this new 
ecosystem. 

A. Integrating Container and WebAssembly Runtimes 
Containers have become the most popular runtime 

environment for FaaS today, used by both commercial and 
open source serverless platforms. Since their initial 
popularization with the release of Docker, a number of both 
high-level and low-level container runtimes have emerged, 
modularizing the original architecture and introducing a 
layered approach which enables easier extension in the future. 
This modularized architecture allows multiple different lower-
level runtimes to be used by a single higher-level one using 
shims. The same approach can also be used to integrate one of 
the most popular high-level container orchestrators today, 
containerd, with third-party WASM runtimes.  

To ease the creation of shims for popular WASM 
runtimes, the Runwasi Rust library has been published as 
open-source software by Deislabs [21]. The majority of 
WASM runtimes have first class support for the Rust 
language, which simplifies the usage of the Runwasi library, 
making it feasible to create a shim for a currently unsupported 
runtime. Once all containerd shims have been compiled and 
specified in its configuration, it is possible to instantiate 
workloads with the desired WASM runtime by simply 
specifying it on the command line interface of containerd.  

Another approach taken by some container runtimes is to 
avoid shims and instead bundle support for WASM directly, 
during compilation time. Such an example is crun [22]. 
During compilation, the user can pass additional feature flags 
which would enable support for the chosen WASM runtime 
from the list of currently supported ones: Wasmtime [11], 
Wasmer [12], or WasmEdge [13]. The decision whether to 
instantiate a given workload either using the native container 
runtime or the WASM runtime is based on the usage of 
specific labels. 

One major question that arises when integrating WASM 
runtime shims with container runtimes is how to overcome the 
problem of artifact distribution. Container images use the 
Open Container Initiative (OCI) image specification, while 
WASM modules are distributed as .wasm binaries by default. 
An elegant solution to this problem is to simply reuse the OCI 
image specification for distributing the .wasm binaries using 
a container image with only one layer that contains a single 
file – the .wasm binary. With this approach, there is no 
difference between a WASM workload and a standard 

container, at least from the perspective of image fetching and 
unpacking. Once the OCI image is downloaded, the specified 
WebAssembly runtime which is connected either using a 
shim, or directly integrated with the OCI runtime, can 
instantiate the workload. An added benefit is the fact that 
existing OCI image registries can be reused for distribution of 
WebAssembly modules, avoiding the need for setting up 
specialized distribution mediums.  

It should be noted that integrating WASM with container 
runtimes in this manner ensures the execution performance of 
the WebAssembly modules, since they are in fact executed 
using the chosen WebAssembly runtime directly on the host 
operating system, and not bundled into an OCI container. 
Furthermore, the cold start latencies are severely reduced, 
while providing per runtime isolation for WASM workloads.   

B. WebAssembly Frameworks, Tooling, and Orchestration 
Before WebAssembly could be widely adopted as a target 

runtime for serverless functions, a number of open issues 
remain which are active research topics today. Many 
conventional serverless platforms have published dedicated 
libraries for popular programming languages, which do 
simplify the development of new functions, but also lead to 
vendor lock-in. The majority of these libraries bundle either 
an HTTP server which can be used to receive the original 
request which triggers the function or provide means to 
interact with an external message broker to realize the same 
functionality. This invocation pattern is overly complicated 
for WebAssembly, since support for network sockets is still 
in development for WASI (even though there are runtimes 
which already support them, such as WasmEdge). 
Furthermore, statically bundling such complex libraries in 
each module adds unnecessary computational and storage 
overhead which also impacts cold start latencies. 

Another open issue which has also been identified [14] is 
the lack of orchestration tools for WebAssembly modules. A 
WebAssembly capable orchestrator is required to be able to 
deploy WASM modules at scale, across different hardware 
and even across different locations, spanning both cloud and 
edge infrastructures.  

Finally, even though compilers for a number of popular 
programming languages do support WASM as a compilation 
target, debugging is still a largely manual process, and there 
is a need to improve this aspect of the developers’ experience. 

In the two subsections that follow we analyze how two 
WebAssembly frameworks, WasmCloud [23] and Spin [24], 
have dealt with these open problems.  

1) WasmCloud – WasmCloud is a WebAssembly 
framework and platform which makes use of actors and 
capability providers. This approach allows it to solve the 
problem of bundling complex libraries with each .wasm 
binary. WasmCloud actors are the smallest deployable unit 
and they handle messages delived to them by the host runtime 
via capability providers. Actors can also invoke exposed 
functions of capability providers which have been explicitly 
assigned to them. Capability providers on the other hand 
represent code which is not part of the core business logic, 
such as an HTTP server, or a message broker. While actors 
are compiled to WebAssembly, this is not required for 
capability providers. WasmCloud supports orchestration of 
the deployed actors across multiple hosts and management 
through either a command line interface (CLI) tool or a web 



portal. Both actors and capability providers are bundled and 
distributed via OCI images. Actors can currently be written 
in either Rust or Go, and hot-reloaded during development, 
thus easing debugging. 

2) Spin – Spin is a new WASM platform and framework 
which is based on the Wasmtime runtime. It solves the 
problem of bundling complex dependencies not part of the 
business logic in one of two ways, depending on the source 
programming language used. For programming languages 
whose toolchains supports the WebAssembly Component 
Model, user provided functions can be dynamically linked to 
existing WASM modules, fulfilling the requirements for the 
supported invocation mechanisms: HTTP and Redis triggers. 
For all the other programming languages, an intermediary 
component called Wagi can be utilized which works similarly 
to common gateway interface (CGI) scripts. During an 
invocation, the provided parameters by the user are 
intercepted and are passed to the WASM module as standard 
input (stdin) parameters. All of the returned data on standard 
output (stdout) is part of the returned response which Wagi 
sends back to the invoking user. Orchestration is possible 
through the Fermyon Platform, which leverages the 
Hashicorp Nomad orchestrator to distribute WASM modules 
across different hosts part of the cluster. Instead of using OCI 
images as the distribution medium for the .wasm binaries, a 
new tool is introduced, Bindle, which allows every WASM 
module to specify its dependencies, and for these 
dependencies to be fetched without any user interaction. 

IV. CONCLUSSION 
WebAssembly has come a long way since its initial 

release in 2017. The introduction of both the WASI and the 
WASM component model make it an enticing technology for 
developing server-side applications, including serverless 
functions. We have outlined recent developments in this area 
related to serverless functions based on WASM, as well as 
presented two frameworks, WasmCloud and Spin, which 
further extend the possibilities of WASM. Both solutions 
have clear practical advantages in terms of serverless 
computing, mitigating the cold-start problem while offering 
per runtime isolation of the executed workloads. 

To fully realize a cross-platform serverless solution that 
can span both the cloud and the edge, while supporting 
multiple runtime environments which adapt to the 
performance requirements of the executed workloads, 
integration with existing technologies is required. In our 
vision for serverless computing, WASM should be an 
important piece of a wider ecosystem, where the current 
know-how and tooling related to containers and micro VMs 
as runtimes for serverless function should not simply be 
thrown away. Instead, serverless platforms should be flexible 
to choose the appropriate runtime environment depending on 
the use-case at hand and its latency requirements. Our future 
work will be centered around the design and development of 
such a platform, capable of orchestrating WASM workloads. 
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