
978-1-6654-7273-9/22/$31.00 ©2022 IEEE

Evaluating WebAssembly for Orchestrated
Deployment of Serverless Functions

Vojdan Kjorveziroski
Faculty of Computer Science and

Engineering, Ss. Cyril and Methodius
University

Skopje, North Macedonia
vojdan.kjorveziroski@finki.ukim.mk

Sonja Filiposka
Faculty of Computer Science and

Engineering, Ss. Cyril and Methodius
University

Skopje, North Macedonia
sonja.filiposka@finki.ukim.mk

Anastas Mishev
Faculty of Computer Science and

Engineering, Ss. Cyril and Methodius
University

Skopje, North Macedonia
anastas.mishev@finki.ukim.mk

Abstract—Serverless computing has made a significant
impact in the cloud computing landscape, and has even been
extended beyond the cloud, up to the edge of the network.
Existing serverless platforms which use containers and micro
virtual machines as function runtimes incur a significant startup
latency, hindering the performance and scalability of the
executed functions. One potential solution to this problem is the
use of WebAssembly. In this paper we discuss recent
developments which allow WebAssembly to be used for server-
side applications, as well as serverless functions, and evaluate
potential orchestration options with the end goal of integrating
WebAssembly with existing cloud and edge infrastructure. We
conclude that while WebAssembly is a solution to the cold start
problem, further work is needed in this area. To realize the end-
goal of seamless and user-friendly serverless platforms that can
be deployed across the edge-cloud continuum and can
dynamically adapt to compute and latency requirements,
WebAssembly should not be seen as the exclusive technology,
and instead multiple runtime environments should be supported
in addition to WebAssembly.

Keywords—WebAssembly, serverless computing, function as a
service, cloud computing, edge computing, internet of things

I. INTRODUCTION
The advent of cloud computing has completely changed

the computing landscape for everyone involved, from
academia to large business corporations to end users. The
ability to on-demand request compute resources and
granularly pay only for the duration for which they are
provisioned has simplified the development of new
applications and services. The introduction of various
infrastructure as a service (IaaS), platform as a service (PaaS),
and software as a service (SaaS) products [1] has allowed both
developers and system administrators alike to think in more
abstract terms and to forgo the installation and management of
physical infrastructure to dedicated cloud providers.

The next popular addition to the long line of as a service
offerings by cloud providers is serverless computing [2], with
its two main components, function as a service (FaaS) and
backend as a service (BaaS). Using these two new concepts,
developers need to only write the code containing the core
business logic in as slimmed down version as possible, usually
a single function, which will then be executed in ephemeral
and lightweight execution environments. Persistence and
integration with external systems is enabled by additional
services, such as database as a service or message broker as a
service, both representatives of BaaS.

Serverless computing, with its advantages over traditional
serverful computing such as potentially unconstrained
scalability, faster paced development, and flexible pricing [3],
billing only the time for which the function is executed, has
become commonplace in many areas, including web
development. However, the event driven nature of serverless

computing has a potential to impact other emerging topics as
well, namely internet of things (IoT), introducing a new set of
challenges. To accommodate the billions of new devices
expected to be deployed in the coming years, and to be able to
respond adequately to time-critical events, the compute
infrastructure needs to be moved to the edge of the network,
closer to the end devices [4]. The main goal of edge computing
is to reduce latency by offloading time sensitive computation
to nearby compute infrastructure.

The most common runtime environments for execution of
serverless functions today, regardless of whether in the cloud
or at the edge, are containers and micro virtual machines
(VMs). One of the main challenges faced by serverless
computing at present is how to reduce the initial startup time
before the runtime environment is ready to serve the incoming
request. This startup time is commonly referred to as cold start
[5]. Despite the fact that both containers and micro virtual
machines are more lightweight than full-fledged virtual
machines usually offered by cloud providers, their cold start
is still in the order of hundreds of milliseconds if not couple
of seconds, making them unsuitable for dealing with time-
critical data [6]. Many commercial and open-source platforms
have devised ways in which to either eliminate or reduce the
cold start times of serverless functions, for example by
keeping a pre-warmed pool of function instances ready to
accept incoming requests [7]. However, this negates one of the
main benefits of serverless computing, namely the option to
dynamically scale to zero replicas, forgoing the flexible
pricing in the process. Another common strategy is to reuse
the same execution environment for multiple requests, which
does eliminate the cold start latency for subsequent
executions, but sacrifices per-request runtime isolation, thus
reducing the security of the platform and its users.

A possible solution to the problem of cold start faced by
serverless computing might not be the optimization of existing
runtime environments which were initially meant to be
executed in powerful datacenters in the cloud, but the
introduction of a new technology tailored to more resource
restricted devices. WebAssembly (WASM) [8] is a new
runtime environment whose primary focus is to simplify and
transform client-side web programming. Nevertheless, recent
developments in this area have made WebAssembly a feasible
choice for developing server-side applications, and as a result
serverless functions as well. WebAssembly has the potential
of drastically reducing the cold start times, while still offering
competitive performance to other runtime environments, as
well as cross-platform portability.

The goal of this paper is to explore the recent
developments in the WebAssembly ecosystem and how they
relate to the topic of serverless computing, both in the cloud
and at the edge. The main contributions of this work are: 1)
overview of the state-of-the-art research related to moving
WebAssembly out of the browser and using it for server-side

applications, including serverless computing and function as a
service; 2) Report on current efforts to integrate
WebAssembly with existing and popular container runtimes,
exploiting their modularity and allowing interoperability
between containers and WebAssembly modules; 3)
Evaluation of two WebAssembly frameworks capable of
orchestrating WASM modules in the cloud and at the edge.

The rest of this paper is organized as follows: in section II
we discuss necessary background information related to
WebAssembly and report on related work dealing with the
performance of WebAssembly and its transition as a runtime
for serverless functions. We then continue with section III
where we present how recent advancements in the
WebAssembly landscape can act as enablers for the next
generation of serverless platforms, focusing on integration
with existing container runtimes and WebAssembly
orchestrators. We conclude the paper with section IV,
outlining remaining challenges and future plans.

II. BACKGROUND AND RELATED WORK

A. The Rise of WebAssembly
WebAssembly is a World Wide Web Consortium (W3C)

standard first released in 2017 with the aim of improving the
client-side performance of web applications. It offers a stack
based virtual machine and can be used as a compilation target
for many popular programming languages today including C,
C++, Rust, and Go. It is expected that even more languages
will be supported in the future, as the tooling matures.
Interpreted languages can also be ported to a WebAssembly
environment, by compiling the language interpreter itself as a
WebAssembly module [9].

In theory it should be possible to compile existing source
code from a supported language directly to WebAssembly, but
in practice this might require additional effort, especially for
more complex code bases. As a result of the strong isolation
requirements for executing remotely downloaded and
untrusted code in the browser, combined with the novelty of
the WebAssembly ecosystem, a number of features which are
taken for granted in modern high level programming
languages have only recently been introduced, or are still in
development, such as network sockets, file-system access, and
threading [10]. Nevertheless, with the introduction of the
WebAssembly Systems Interface (WASI) it is possible for
WebAssembly runtimes to interact with the underlying
operating system using POSIX style capabilities, and thus
gradually add support for the currently missing features.
WASI has also enabled WebAssembly to move away from the
browser and to be used for standalone server-side applications
and serverless functions.

As with any new technology undergoing an intensive
standardization process, a number of WebAssembly runtimes
currently exist today, all of which implement the base
specification, but also introduce additional specialized
features which have not been standardized yet, extending its
capabilities even-further, and exploring new use-cases [11]–
[13]. Some of these features also relate to improvements
directly associated with serverless functions and web
assembly module orchestration. Section III focuses on these
developments in more detail, while the next subsection
describes the state-of-the-art literature in terms of developing
new and evaluating existing WebAssembly runtimes.

B. Related Work
As the number of supported features by WebAssembly

runtimes increases, so does the research interest in this topic.
Recognizing the potential for WebAssembly to be used for
server-side applications, Long et al. [14] have conducted a
study into the performance differences between Docker
containers and WebAssembly modules. They have compared
the cold start times of WebAssembly modules on three
different runtimes (V8, Lucet, SSVM) to those of Docker
containers. Their results show that WebAssembly modules
running on the tested runtimes have at least 10 times faster
startup compared to the same code shipped in a Docker
container, as well as faster execution time and faster file
input/output operations (I/O). WebAssembly runtimes
especially optimized for use with server-side workloads such
as Lucet and SSVM show even better results. Continuing the
trend of WebAssembly performance evaluation, Hockley et
al. [15] benchmark WebAssembly workloads against native
execution. In this case, the presented results show that
WebAssembly modules incur a 5 to 10 times performance
penalty compared to native execution. Other works comparing
WebAssembly performance to native execution have also
been published, and while they also report worse performance
when using WebAssembly, the slowdowns are significantly
lower, up to 2 times [16], [17]. It should be noted that
slowdowns compared to native execution are of course
expected because of the additional layers of abstraction
introduced by the WebAssembly runtimes.

Serverless computing has also been identified as a possible
area where server-side WebAssembly with the help of WASI
could be used. Murphy et al. [18] suggest ways in which
WebAssembly modules support could be added to existing
and well-established serverless platforms such as OpenWhisk
or AWS Lambda. By invoking the WebAssembly runtime
from native Node.js code, large modifications to the
underlying serverless platform are avoided. Hall et al. [19]
also demonstrate the feasibility of WebAssembly for
serverless computing, this time at the edge of the network.

WASM, together with its cross-platform compatibility,
portability, and efficient performance, has been identified by
Mäkitalo et al. [20] as a mean for lightweight containerization
of code for use in IoT scenarios in the future. They argue that
with the provided cross-platform portability, WebAssembly
should allow seamless migration of workloads from device to
device, as needed.

In conclusion, current research has identified several
distinct areas where WebAssembly could be used to solve
existing issues or enable new use-cases. To the best of our
knowledge, the currently published work focuses exclusively
on either developing or evaluating standalone WebAssembly
runtimes, without reflecting on the possible integration
options with existing technologies. As with any new and
emerging trend, a careful balance must be stricken not to
overuse the new technology in scenarios which are not a
perfect fit. Our vision is that while WebAssembly is certainly
part of the solution which would allow efficient and easy-to-
use serverless platforms to exist and would undoubtedly
contribute to the overcoming of the current limitations of
existing serverless platforms, it is not the sole component. A
number of different technologies will need to be integrated
together to realize the end-goal of designing a performant
infrastructure which can target both the cloud and the edge,
thus establishing an edge-cloud continuum. The motivation

behind this paper is to fill this gap and to provide an overview
of recent developments in the area of WebAssembly which
would allow it to be used in an orchestrated manner at a large
scale, as well as integrated with existing and well-known
container and micro VM runtimes.

III. WEB ASSEMBLY AS AN ENABLER FOR NEXT GENERATION
SERVERLESS PLATFORMS

WebAssembly has a number of advantages that make it a
suitable fit for use in serverless computing scenarios,
including support from popular programming languages.
Existing WASM runtimes can run on a wide variety of
computing architectures ranging from cloud based x86 servers
to ARM single-board computers (SBC) deployed at the edge,
allowing function portability. Different WASM runtimes are
tailored to different scenarios, favoring cross-compatibility,
speed, or new features still not part of the official
specification, further extending the possibilities of this new
ecosystem.

A. Integrating Container and WebAssembly Runtimes
Containers have become the most popular runtime

environment for FaaS today, used by both commercial and
open source serverless platforms. Since their initial
popularization with the release of Docker, a number of both
high-level and low-level container runtimes have emerged,
modularizing the original architecture and introducing a
layered approach which enables easier extension in the future.
This modularized architecture allows multiple different lower-
level runtimes to be used by a single higher-level one using
shims. The same approach can also be used to integrate one of
the most popular high-level container orchestrators today,
containerd, with third-party WASM runtimes.

To ease the creation of shims for popular WASM
runtimes, the Runwasi Rust library has been published as
open-source software by Deislabs [21]. The majority of
WASM runtimes have first class support for the Rust
language, which simplifies the usage of the Runwasi library,
making it feasible to create a shim for a currently unsupported
runtime. Once all containerd shims have been compiled and
specified in its configuration, it is possible to instantiate
workloads with the desired WASM runtime by simply
specifying it on the command line interface of containerd.

Another approach taken by some container runtimes is to
avoid shims and instead bundle support for WASM directly,
during compilation time. Such an example is crun [22].
During compilation, the user can pass additional feature flags
which would enable support for the chosen WASM runtime
from the list of currently supported ones: Wasmtime [11],
Wasmer [12], or WasmEdge [13]. The decision whether to
instantiate a given workload either using the native container
runtime or the WASM runtime is based on the usage of
specific labels.

One major question that arises when integrating WASM
runtime shims with container runtimes is how to overcome the
problem of artifact distribution. Container images use the
Open Container Initiative (OCI) image specification, while
WASM modules are distributed as .wasm binaries by default.
An elegant solution to this problem is to simply reuse the OCI
image specification for distributing the .wasm binaries using
a container image with only one layer that contains a single
file – the .wasm binary. With this approach, there is no
difference between a WASM workload and a standard

container, at least from the perspective of image fetching and
unpacking. Once the OCI image is downloaded, the specified
WebAssembly runtime which is connected either using a
shim, or directly integrated with the OCI runtime, can
instantiate the workload. An added benefit is the fact that
existing OCI image registries can be reused for distribution of
WebAssembly modules, avoiding the need for setting up
specialized distribution mediums.

It should be noted that integrating WASM with container
runtimes in this manner ensures the execution performance of
the WebAssembly modules, since they are in fact executed
using the chosen WebAssembly runtime directly on the host
operating system, and not bundled into an OCI container.
Furthermore, the cold start latencies are severely reduced,
while providing per runtime isolation for WASM workloads.

B. WebAssembly Frameworks, Tooling, and Orchestration
Before WebAssembly could be widely adopted as a target

runtime for serverless functions, a number of open issues
remain which are active research topics today. Many
conventional serverless platforms have published dedicated
libraries for popular programming languages, which do
simplify the development of new functions, but also lead to
vendor lock-in. The majority of these libraries bundle either
an HTTP server which can be used to receive the original
request which triggers the function or provide means to
interact with an external message broker to realize the same
functionality. This invocation pattern is overly complicated
for WebAssembly, since support for network sockets is still
in development for WASI (even though there are runtimes
which already support them, such as WasmEdge).
Furthermore, statically bundling such complex libraries in
each module adds unnecessary computational and storage
overhead which also impacts cold start latencies.

Another open issue which has also been identified [14] is
the lack of orchestration tools for WebAssembly modules. A
WebAssembly capable orchestrator is required to be able to
deploy WASM modules at scale, across different hardware
and even across different locations, spanning both cloud and
edge infrastructures.

Finally, even though compilers for a number of popular
programming languages do support WASM as a compilation
target, debugging is still a largely manual process, and there
is a need to improve this aspect of the developers’ experience.

In the two subsections that follow we analyze how two
WebAssembly frameworks, WasmCloud [23] and Spin [24],
have dealt with these open problems.

1) WasmCloud – WasmCloud is a WebAssembly
framework and platform which makes use of actors and
capability providers. This approach allows it to solve the
problem of bundling complex libraries with each .wasm
binary. WasmCloud actors are the smallest deployable unit
and they handle messages delived to them by the host runtime
via capability providers. Actors can also invoke exposed
functions of capability providers which have been explicitly
assigned to them. Capability providers on the other hand
represent code which is not part of the core business logic,
such as an HTTP server, or a message broker. While actors
are compiled to WebAssembly, this is not required for
capability providers. WasmCloud supports orchestration of
the deployed actors across multiple hosts and management
through either a command line interface (CLI) tool or a web

portal. Both actors and capability providers are bundled and
distributed via OCI images. Actors can currently be written
in either Rust or Go, and hot-reloaded during development,
thus easing debugging.

2) Spin – Spin is a new WASM platform and framework
which is based on the Wasmtime runtime. It solves the
problem of bundling complex dependencies not part of the
business logic in one of two ways, depending on the source
programming language used. For programming languages
whose toolchains supports the WebAssembly Component
Model, user provided functions can be dynamically linked to
existing WASM modules, fulfilling the requirements for the
supported invocation mechanisms: HTTP and Redis triggers.
For all the other programming languages, an intermediary
component called Wagi can be utilized which works similarly
to common gateway interface (CGI) scripts. During an
invocation, the provided parameters by the user are
intercepted and are passed to the WASM module as standard
input (stdin) parameters. All of the returned data on standard
output (stdout) is part of the returned response which Wagi
sends back to the invoking user. Orchestration is possible
through the Fermyon Platform, which leverages the
Hashicorp Nomad orchestrator to distribute WASM modules
across different hosts part of the cluster. Instead of using OCI
images as the distribution medium for the .wasm binaries, a
new tool is introduced, Bindle, which allows every WASM
module to specify its dependencies, and for these
dependencies to be fetched without any user interaction.

IV. CONCLUSSION
WebAssembly has come a long way since its initial

release in 2017. The introduction of both the WASI and the
WASM component model make it an enticing technology for
developing server-side applications, including serverless
functions. We have outlined recent developments in this area
related to serverless functions based on WASM, as well as
presented two frameworks, WasmCloud and Spin, which
further extend the possibilities of WASM. Both solutions
have clear practical advantages in terms of serverless
computing, mitigating the cold-start problem while offering
per runtime isolation of the executed workloads.

To fully realize a cross-platform serverless solution that
can span both the cloud and the edge, while supporting
multiple runtime environments which adapt to the
performance requirements of the executed workloads,
integration with existing technologies is required. In our
vision for serverless computing, WASM should be an
important piece of a wider ecosystem, where the current
know-how and tooling related to containers and micro VMs
as runtimes for serverless function should not simply be
thrown away. Instead, serverless platforms should be flexible
to choose the appropriate runtime environment depending on
the use-case at hand and its latency requirements. Our future
work will be centered around the design and development of
such a platform, capable of orchestrating WASM workloads.

ACKNOWLEDGMENT
The work presented in this paper has received funding

from the Faculty of Computer Science and Engineering under
the “NSA” project.

REFERENCES
[1] Y. Duan, G. Fu, N. Zhou, X. Sun, N. C. Narendra, and B. Hu,

‘Everything as a Service (XaaS) on the Cloud: Origins, Current and
Future Trends’, in 2015 IEEE 8th International Conference on Cloud
Computing, Jun. 2015, pp. 621–628. doi: 10.1109/CLOUD.2015.88.

[2] V. Kjorveziroski, S. Filiposka, and V. Trajkovik, ‘IoT Serverless
Computing at the Edge: A Systematic Mapping Review’, Computers,
vol. 10, no. 10, Art. no. 10, Oct. 2021, doi:
10.3390/computers10100130.

[3] V. Kjorveziroski et al., ‘IoT Serverless Computing at the Edge: Open
Issues and Research Direction’, Transactions on Networks and
Communications, vol. 9, no. 4, Art. no. 4, Dec. 2021, doi:
10.14738/tnc.94.11231.

[4] L. Bittencourt et al., ‘The Internet of Things, Fog and Cloud
continuum: Integration and challenges’, Internet of Things, vol. 3–4,
pp. 134–155, Oct. 2018, doi: 10.1016/j.iot.2018.09.005.

[5] M. S. Aslanpour et al., ‘Serverless Edge Computing: Vision and
Challenges’, in 2021 Australasian Computer Science Week
Multiconference, New York, NY, USA, Feb. 2021, pp. 1–10. doi:
10.1145/3437378.3444367.

[6] V. Kjorveziroski and S. Filiposka, ‘Kubernetes distributions for the
edge: serverless performance evaluation’, J Supercomput, vol. 78, no.
11, pp. 13728–13755, Jul. 2022, doi: 10.1007/s11227-022-04430-6.

[7] W. Ling, L. Ma, C. Tian, and Z. Hu, ‘Pigeon: A Dynamic and Efficient
Serverless and FaaS Framework for Private Cloud’, in 2019
International Conference on Computational Science and
Computational Intelligence (CSCI), Las Vegas, NV, USA, Dec. 2019,
pp. 1416–1421. doi: 10.1109/CSCI49370.2019.00265.

[8] A. Haas et al., ‘Bringing the web up to speed with WebAssembly’, in
Proceedings of the 38th ACM SIGPLAN Conference on Programming
Language Design and Implementation, Barcelona Spain, Jun. 2017,
pp. 185–200. doi: 10.1145/3062341.3062363.

[9] ‘WebAssembly Language Support Matrix’, Fermyon Technologies
(@FermyonTech). https://www.fermyon.com (accessed Aug. 29,
2022).

[10] ‘WebAssembly System Interface – Proposals’. WebAssembly.
Accessed: Aug. 29, 2022. [Online]. Available:
https://github.com/WebAssembly/WASI/blob/bac366c8aeb69cacfea6
c4c04a503191bf1cede1/Proposals.md

[11] ‘Wasmtime’. https://wasmtime.dev/ (accessed Aug. 29, 2022).
[12] ‘Wasmer - The Universal WebAssembly Runtime’. https://wasmer.io/

(accessed Aug. 29, 2022).
[13] ‘WasmEdge’. https://wasmedge.org/ (accessed Aug. 29, 2022).
[14] J. Long, H.-Y. Tai, S.-T. Hsieh, and M. J. Yuan, ‘A lightweight design

for serverless Function-as-a-Service’, IEEE Softw., vol. 38, no. 1, pp.
75–80, Jan. 2021, doi: 10.1109/MS.2020.3028991.

[15] D. Hockley and C. Williamson, ‘Benchmarking Runtime Scripting
Performance in Wasmer’, in Companion of the 2022 ACM/SPEC
International Conference on Performance Engineering, New York,
NY, USA, Jul. 2022, pp. 97–104. doi: 10.1145/3491204.3527477.

[16] A. Jangda, B. Powers, E. Berger, and A. Guha, ‘Not So Fast:
Analyzing the Performance of WebAssembly vs. Native Code’. May
31, 2019. doi: 10.5555/3358807.3358817.

[17] J. Ménétrey, M. Pasin, P. Felber, and V. Schiavoni, ‘WebAssembly as
a Common Layer for the Cloud-edge Continuum’, in Proceedings of
the 2nd Workshop on Flexible Resource and Application Management
on the Edge, Jul. 2022, pp. 3–8. doi: 10.1145/3526059.3533618.

[18] S. Murphy, L. Persaud, W. Martini, and B. Bosshard, ‘On the Use of
Web Assembly in a Serverless Context’, in Agile Processes in
Software Engineering and Extreme Programming – Workshops,
Cham, 2020, pp. 141–145. doi: 10.1007/978-3-030-58858-8_15.

[19] A. Hall and U. Ramachandran, ‘An execution model for serverless
functions at the edge’, in Proceedings of the International Conference
on Internet of Things Design and Implementation, New York, NY,
USA, Apr. 2019, pp. 225–236. doi: 10.1145/3302505.3310084.

[20] N. Mäkitalo et al., ‘WebAssembly Modules as Lightweight Containers
for Liquid IoT Applications’, in Web Engineering, Cham, 2021, pp.
328–336. doi: 10.1007/978-3-030-74296-6_25.

[21] ‘deislabs/runwasi’. Accessed: Aug. 29, 2022. [Online]. Available:
https://github.com/deislabs/runwasi

[22] ‘containers/crun’. Accessed: Aug. 29, 2022. [Online]. Available:
https://github.com/containers/crun

[23] ‘wasmCloud Documentation’. https://wasmcloud.dev/ (accessed Aug.
29, 2022).

[24] ‘Introducing Spin’, Spin Documentation. https://spin.fermyon.dev
(accessed Aug. 29, 2022).

