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Abstract. The reliability of a two-terminal flow network with a discrete set of possible capacities for its 
arcs is usually computed in terms of minimal path or minimal cut vectors. This paper analyzes the 
connection between minimal path vectors and flow functions, which supports the development of an 
efficient algorithm that solves the problem of finding the set of all such vectors.  
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1. Introduction 

Many real-life industrial systems, such as telecommunication, electric power generation and 
transmission, transportation and manufacturing systems may be viewed as networks whose 
arcs have discrete set of possible capacities. Such systems can be regarded as multi-state sys-
tems with multi-state components, where the arcs are the system’s components, whereas the 
demand levels of the system are all possible netflow values. Analyzing the reliability of such 
systems has become attractive to many researchers in recent decades. The reliability of a 
multi-state system can be computed in terms of minimal path vectors to demand level d, 
called d-MinPaths (d-MPs) (Lin, 2001; Ramirez-Marquez and Coit, 2003; Mihova and 
Maksimova, 2011), or minimal cut vectors to demand level d, called d-MinCuts (d-MCs) 
(Ramirez-Marquez et al., 2003; Jane et al., 1993). Both strategies extract candidates that are 
not minimal cut vectors by mutually comparing all pairs of vectors and removing the smaller 
one, if such exists. The problem of computing reliability of a multi-state system is NP-hard, 
but solvable (Wilson et al., 2005; Provan and Balls, 1983), and commonly the inclusion-
exclusion approach is used for this purpose (Provan and Balls, 1983). 

Thus, the problem of searching for all d-MCs or d-MPs is one of the most important pro-
blems in multi-state network reliability, and several algorithms have been proposed as a so-
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lution to this problem. Jane et al. (Jane et al., 1993) propose a methodology that solves the 
problem of generating all multi-state MCs for the multi-state two-terminal network, obtain-
ning a set of candidates, while Ramirez-Marquez et al. (Ramirez-Marquez et al., 2003) opti-
mize this procedure in such a way that their set of candidates has significantly lower cardi-
nality. 

In (Lin et al., 1995), Lin et al. give an algorithm that finds a set of candidates for d-MPs 
and extracts all d-MPs by comparing all pairs of candidates and eliminating vectors that are 
not minimal. An approach for elimination of nonminimal candidates without comparison is 
given by Forghani-elahabad et al. (Forghani-elahabad et al., 2013). Given a d-MP candidate, 
they form m smaller vectors (where m is the number of nonzero coordinates) in such a way 
that each of these vectors differs from the d-MP candidate in unit vector. If all appropriate 
graphs have maximum flow equal to d, then that vector is not a d-MP. The method for com-
puting all d-MPs proposed in (Mihova and Maksimova, 2011) uses additional calculations 
that help in avoiding to obtain vectors which are not minimal.  

In this paper we analyze some properties of d-MPs that will show the connection bet-
ween d-MPs and flow functions to level d on a given two-terminal network. This helps to 
develop a strategy for checking whether some candidate is a d-MP with time complexity 
O (| E |), which is significantly better than O (|V |2| E |3/2), the complexity of the strategy given 
in (Forghani-elahabad et al., 2013). Moreover, using further analysis we give the relation-
ship between two d-MPs and we propose another algorithm that directly finds all d-MPs. At 
the end, we explain the advantage of this approach, especially in the case when d is a maxi-
mum flow. 

2. Basic Assumptions 

A two-terminal flow network is a directed graph G (V, E ) with two special vertices, a source s 
and a sink t (s  t), in which each edge (𝑢, 𝑣)  E has a nonnegative capacity c (𝑢, 𝑣) ≥ 0. 
The function c is called capacity function. Shortly, we will denote such a capacity network 
by G (V, E, c). 

A flow in G (V, E, c) is a function f : E  R+    {0} that satisfies the following two 
constraints: 

1. Capacity constraint: 0 ≤ f  (𝑢, 𝑣) ≤ c (𝑢, 𝑣), for each (𝑢, 𝑣)  E, i.e., the flow of an 
edge cannot exceed its capacity. 

2. Flow conservation:  

𝑓(𝑉, 𝑣) − 𝑓(𝑣,𝑉) = �𝑓(𝑢, 𝑣)
𝑢∈𝑉

− � 𝑓(𝑣,𝑤)
𝑤∈𝑉

= �
   0,           {𝑠, 𝑡}  
   |𝑓|, 𝑣 = 𝑠 
−|𝑓|, 𝑣 = 𝑡 

    , 

 
where | f  | is the value of the flow.  

In other words, the total flow in a node 𝑣, 𝑓(𝑉, 𝑣), must equal the total flow out the node 
𝑣, 𝑓(𝑣,𝑉), for all vertices 𝑣  V \ {s, t}; the flow leaving s and the flow entering t is equal to 
the value of the flow. 
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It is assumed that if there is no edge (𝑢, 𝑣), i.e. (𝑢, 𝑣)  E, then f (𝑢, 𝑣) = 0. 
A flow is a maximum flow if it has the largest possible value among all flows from s to t 

in a given capacity network (Erickson, J., 2009). 
A pseudoflow is a function f : E  R+  {0} defined on arcs that satisfy only the capacity 

constraints; it need not satisfy flow conservations (Ahuja and Orlin, 1993). Note that each 
flow function is also a pseudoflow function.  

Let us assume that the set of edges in the flow network is ordered, i.e., E = {e1, e2, …, e|E|}. 
Considering the edges as components, the network represents a multi-component system. It 
can be assumed that each component, the edge ei, can operate in some demand level 𝑥𝑖    
c (ei). The vector 𝑥⃗ is called state vector. In the multi-state reliability theory (Wilson et al., 
2005), the vector 𝑥⃗ is called path vector to level d if and only if the system in state 𝑥⃗ works 
with level equal or greater than d. 

Below we introduce a few definitions that give a connection between systems and two-
terminal networks.  

DEFINITION 1. Let G (V, E, c) be a two-terminal flow capacity network. For a pseudoflow 
𝑙𝑐, we define state vector 𝑥𝑙𝑐�����⃗  induced by 𝑙𝑐 by 
 

𝑥𝑖 = 𝑙𝑐 (ei). 
 

For each state vector 𝑥⃗, with 𝑥𝑖    c (ei), we define pseudoflow function 𝑙𝑥 induced by 𝑥⃗, by 
 

𝑙𝑥 (𝑒𝑖) = 𝑥𝑖. 
 
The state vector 𝑥⃗ is called a flow vector, whenever 𝑙𝑥 is a flow function. 
Aggarwal et al. (Aggarwal et al., 1982) defines two-terminal reliability as the probability 

that the network can adequately deliver a demanded flow from the source to the sink. In 
other words, the system is in a working state if and only if it is possible to successfully 
transmit the required flow from the source to the sink node. The next definition explains this 
more precisely. 

DEFINITION 2. Let G (V, E, c) be a two-terminal flow network and 𝑥𝑙𝑐�����⃗  is a state vector 
induced by the pseudoflow  𝑙𝑐. We will say that 𝑥𝑙𝑐�����⃗  is a path vector to level d, d-P, if and 
only if a flow d may be delivered in the two-terminal network G (V, E, 𝑙𝑐). The state vector 𝑥⃗ 
is a minimal path vector to level d, d-MP, if and only if the two-terminal flow network 
G (V, E, 𝑙𝑥) has a maximum flow d, and for each 𝑥′���⃗ ≤  𝑥⃗, the two-terminal flow network 
G (V, E, 𝑙𝑥′����⃗ ) has a maximum flow less than d.  

Next we give some known facts from the two-terminal network theory (Cormen et al., 
2009). Suppose that we have a two-terminal flow network G (V, E, c). Let f  be a flow in G, 
and consider a pair of vertices 𝑢, 𝑣  V. We define the residual capacity cf   (𝑢, 𝑣) by  

 

𝑐𝑓(𝑢, 𝑣) = �
𝑐  (𝑢, 𝑣) − 𝑓(𝑢, 𝑣), (𝑢, 𝑣) ∈ 𝐸 
𝑓(𝑢, 𝑣),                             (𝑣,𝑢)   ∈ 𝐸 
0,                                       𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

   . 
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For the flow network G (V, E) and a flow f, the residual network of G induced by f is 
Gf  (V, Ef) where 

 
Ef = {(𝑢, 𝑣)  E: cf (𝑢, 𝑣) > 0}. 

 
Note that each flow network G (V, E) can be regarded as a residual network induced by a 

function f, where f (𝑢, 𝑣) = 0 for all (𝑢, 𝑣).  
Given a flow network G (V, E) and a flow f, the augmenting path is defined as a simple 

path 𝒫 from s to t in the residual network Gf. Similarly, we will define an augmenting cycle 
as a simple cycle 𝒞 from some node 𝑣 to 𝑣 in the residual network Gf. For each augmenting 
cycle 𝒞 in residual network Gf, we define augmented vector of level d’ for a cycle 𝒞, 𝑦⃗𝒞,𝑑′, by 
 

𝑦𝑖𝒞,𝑑′ = �
   𝑑′,      if 𝑒𝑖 = (𝑢, 𝑣) ∈ 𝐸 and (𝑢, 𝑣) is on 𝒞  
−𝑑′,     if 𝑒𝑖 = (𝑢, 𝑣) ∈ 𝐸 and (𝑣,𝑢) is on 𝒞  
  0,      otherwice                                               

  

 
for some 𝑑′ ≤ min {𝑐𝑓(𝑒𝑖)|𝑒𝑖 ∈ 𝒞}. 

A cut (S, T ) of the flow network G (V, E ) is a partition of V into S and T = V  \ S such that 
s  S and t  T. The capacity of the cut (S, T ) is  

 
𝑐(𝑆,𝑇) = ��𝑐(𝑢, 𝑣)

𝑣∈𝑇𝑢∈𝑆
. 

 
A minimum cut of a network is a cut whose capacity is minimum over all cuts of the 

network, i.e., (S, T ) is a minimum cut if for all other cuts (S’, T’  ), c (S, T )  c (S’, T’  ). 

3. The Connection between d-MPs and Flow Functions to Level d  
in a Two-Terminal Network  

In this section we present an approach for checking if a given flow function corresponds to a 
d-MP. 

Given a flow function f, let Ef denote the set of all vertices with a positive flow, i.e. Ef = 
{e  E | f (e) > 0}. We will refer to the unweighted graph G (V, E f  ) as the graph induced by f.  

The next theorem states that a flow f corresponds to a minimal path vector if and only if 
Ef is acyclic. This is illustrated in Fig. 1. Namely, the flow in Fig. 1 a) is a flow function to 
level 3, but the state vector induced by it is not a 3-MP since the state vector induced by the 
flow of level 3 in Fig. 1 b) has induced a state vector lower then it. Note that the flow in 
Fig. 1 a) has additional flow through the cycle < v1, v3, v2, v1 >, while the flow in Fig. 1 b) has 
no cycle. 

 
Theorem 1. The state vector 𝑥⃗ is a d-MP for the two-terminal flow network G (V, E, c) iff the 
pseudoflow function 𝑙𝑥 is a flow function with |𝑙𝑥| = d, and the corresponding graph 
𝐺(𝑉,𝐸𝑙𝑥��⃗ ) induced by 𝑙𝑥 ,  has no cycles. 



On Maximal Level Minimal Path Vectors of a Two-Terminal Network 137

 
 

a)      b) 
 

Fig. 1. a) Flow function to level 3 with (1, 2, 1, 2, 1, 2, 1, 2, 1) 
      as a vector induced by it, which is not 3-MP; 

            b) Flow function to level 3 with (1, 2, 0, 1, 0, 2, 1, 2, 1) 
as a vector induced by it, which is 3-MP. 

 
Proof. Assume that 𝑥⃗ is a d-MP. First, we will prove that 𝑙𝑥 is a flow function with |𝑙𝑥| = d. 
Since 𝑥⃗ is a d-P, the maximum flow of G (V, E, 𝑙𝑥) is equal to d. Then there is a flow f to level 
d for G (V, E, 𝑙𝑥). Let 𝑦⃗𝑓 be the vector induced by f. It is clear that 𝑦⃗𝑓 is a d-P and 𝑦⃗𝑓 ≤ 𝑥⃗. 
Since there is no lower path vector to level d than 𝑥⃗, we have 𝑦⃗𝑓 = 𝑥⃗, which implies that 
𝑙𝑥 = 𝑓. This proves that 𝑙𝑥 is a flow function with |𝑙𝑥| = d. 

Next, let us suppose that 𝑙𝑥 is a flow function and suppose the network 𝐺(𝑉,𝐸𝑙𝑥��⃗ ) has a 
cycle. Then, 𝐺(𝑉,𝐸𝑙𝑥��⃗ ) has a simple cycle, and let 𝑒𝑖1,𝑒𝑖�, … , 𝑒𝑖𝑟 , are the edges from that 
cycle. By A = {i1, …, ir} we will denote the set of indices of the cycle’s edges.  

Let m = min{xj | j  A} and 𝑦⃗ is defined as 𝑦𝑗 = �𝑚, 𝑗 ∈ 𝐴 
0,   𝑗 ∉ 𝐴 .  

We will show that the state vector 𝑧 = 𝑥⃗ − 𝑦⃗ is also d-P, which, having in mind that 
0 ≤ 𝑥⃗ − 𝑦⃗ < 𝑥⃗, since c (ei) > 𝑥𝑖 – yi  > 0, contradicts with the assumption that 𝑥⃗ is d-MP.  

First we will show that the total flow for each vertex u remains the same. Clearly, if 𝑢 
does not belong to the cycle, the total flow in and the total flow out have no changes. If 𝑢 
belongs to the cycle, we have: 

 

�𝑙𝑧(𝑢, 𝑣)
𝑣∈𝑉

−�𝑙𝑧(𝑣,𝑢)
𝑣∈𝑉

= �𝑙𝑥(𝑢, 𝑣)
𝑣∈𝑉

− 𝑚 −�𝑙𝑥(𝑣,𝑢)
𝑣∈𝑉

+ 𝑚 

 

                                                 = �𝑙𝑥(𝑢, 𝑣)
𝑣∈𝑉

−�𝑙𝑥(𝑣,𝑢)
𝑣∈𝑉

 

 
This implies that the flow conservation constraints are satisfied and |𝑙𝑧| = |𝑙𝑥| = 𝑑. So 𝑧 

is a d-P.  
In opposite, assume that the state vector 𝑥⃗ is such that 𝑙𝑥 is a flow function with |𝑙𝑥| = d 

and 𝐺(𝑉,𝐸𝑙𝑥��⃗ ) is acyclic. We will prove that for each state vector 𝑥′���⃗ < 𝑥⃗ , |𝑙𝑥′���⃗ | < d.  
Let us suppose that there is a path 𝑥′���⃗  to level d such that 𝑥′���⃗ < 𝑥⃗. Without any loss of 

generality, we can suppose that (!i) 𝑥𝑖′ < 𝑥𝑖. Let ei = (𝑤,𝑤1).  
We have that  
 

𝑥𝑖 = 𝑙𝑥(𝑤,𝑤1) > 𝑙𝑥′����⃗ (𝑤,𝑤1) = 𝑥𝑖′,  
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and for all other vertices u and 𝑣,  

 
𝑙𝑥(𝑢, 𝑣) = 𝑙𝑥′����⃗ (𝑢, 𝑣).  
 

Since 𝐺(𝑉,𝐸𝑙𝑥��⃗ ) is acyclic, we are able to sort its vertices topologically. The same topo-
logical sort may be applied to 𝐺(𝑉,𝐸𝑙𝑥��⃗ ′). Taking S to be the set of all vertices between s and 
w, inclusively, and T = V \ S, we will obtain a cut in 𝐺(𝑉,𝐸𝑙𝑥��⃗ ′) with flow 𝑑 − (𝑥𝑖 − 𝑥𝑖′) < 𝑑. 
This proves that 𝐺(𝑉,𝐸𝑙𝑥��⃗ ′) has maximal flow lower than d, which is in contradiction with our 
assumption that 𝑥′���⃗  is a d-P. 

Using this Theorem and Lin’s algorithm (Lin et al., 1995) for calculating d-MP candida-
tes, the family of all d-MPs can be generated by the following steps: 

Algorithm 1. 

Step 1. Using Lin’s Algorithm, find the set Q of all flow functions for which the induced 
vectors are candidates for d-MP. 

Step 2. For each candidate 𝑥⃗ check for cycle in 𝐺(𝑉,𝐸𝑙𝑥��⃗ ), and, if there is a cycle, remove 
it from Q. 

Checking for a cycle in a graph may be simply done using DFS (Kamil, 2003), so this 
takes time O  ( | E  | ). As a result, the time complexity of our algorithm is O  ( | E   | λ), where λ is 
an upper bound for the number of obtained candidates by Lin’s algorithm. This is a 
significantly lower complexity than the complexity of the algorithm given in (Forghani-
elahabad et al., 2013), O (|V    |2|E  |3/2). 

4. The Correlation between Two Minimal Path Vectors  

The Ford-Fulkerson algorithm gives us a way to compute only one flow function for maxi-
mal flow in a given two-terminal network, as well as its corresponding residual network, 
with time complexity O(|V  ||E |2). The same approach may be used for computation of a flow 
function to level d. Using Theorem 1 we are able to find one d-MP. Here we give the 
connection between the two flow functions which may contribute in developing another 
algorithm for computing all d-MPs. 

Theorem 2. Let 𝑓 be a flow with |   f    | = d in a two-terminal flow network G (V, E, c) with 
source s and sink t, and 𝒞 be an augmenting cycle in the residual graph Gf   (V, Ef). For 
𝑑′ ≤ min {𝑐𝑓(𝑒𝑖)|𝑒𝑖 ∈ 𝒞}, the function 𝑓1 defined as  
 

𝑓1(𝑢, 𝑣) = �
𝑓(𝑢, 𝑣) + 𝑑′,   (𝑢, 𝑣) ∈ 𝒞 ∩ 𝐸                      
𝑓(𝑢, 𝑣) − 𝑑′,   (𝑣,𝑢) ∈ 𝒞 and (𝑢, 𝑣) ∈ 𝐸 
𝑓(𝑢, 𝑣),             (𝑢, 𝑣) ∉ 𝒞 and (𝑣,𝑢) ∉ 𝒞 

  (4.1) 

 
is a flow in G (V, E, c) with |𝑓1| = |𝑓|. 
Proof. To prove that f1 is a flow function we need to show that capacity constraints and flow 
conservations are satisfied.  
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Capacity constraints.  
 

 If (𝑢, 𝑣) ∉ 𝒞 and (𝑣,𝑢) ∉ 𝒞,  
𝑓1(𝑢, 𝑣) = 𝑓(𝑢, 𝑣), so  
0 ≤ f1(𝑢, 𝑣) ≤ c (𝑢, 𝑣).  
 

 If (𝑢, 𝑣) ∈ 𝒞 ∩ 𝐸,  
𝑓1(𝑢, 𝑣) = 𝑓(𝑢, 𝑣) + 𝑑′ ≥ 𝑓(𝑢, 𝑣) ≥ 0 and 
𝑓1(𝑢, 𝑣) = 𝑓(𝑢, 𝑣) + 𝑑′ ≤ 𝑓(𝑢, 𝑣) + 𝑐𝑓(𝑢,𝑣) = 𝑓(𝑢, 𝑣) + 𝑐(𝑢, 𝑣) − 𝑓(𝑢, 𝑣)     
                                                                                = 𝑐(𝑢,𝑣) 

 If (𝑣,𝑢) ∈ 𝒞 and (𝑢, 𝑣) ∈ 𝐸,  
𝑓1(𝑢, 𝑣) =  𝑓(𝑢, 𝑣) − 𝑑′ ≤ 𝑓(𝑢, 𝑣) ≤ 𝑐(𝑢, 𝑣) and 
𝑓1(𝑢, 𝑣) = 𝑓(𝑢, 𝑣) − 𝑑′ ≥ 𝑓(𝑢, 𝑣) − 𝑐𝑓(𝑢,𝑣) = 𝑓(𝑢, 𝑣) − 𝑓(𝑢, 𝑣) ≥ 0 

 
Flow conservation. To show that the flow conservation conditions are satisfied, it is 
sufficient to prove that 
 

�𝑓1(𝑢, 𝑣)
𝑢∈𝑉

− � 𝑓1(𝑣,𝑤)
𝑤∈𝑉

= �𝑓(𝑢, 𝑣)
𝑢∈𝑉

− � 𝑓(𝑣,𝑤)
𝑤∈𝑉

. 

 
Clearly, the last equation holds for 𝑣  𝒞, since in that case f (𝑢, 𝑣) = f1 (𝑢, 𝑣) and  f   (𝑣,𝑤) 

= f1 (𝑣,𝑤), for all u and w.  
For u  𝒞, since 𝒞 is simple, u appears exactly once in 𝒞. Let 𝑢1 and 𝑤1 are nodes such 

that (𝑢1, 𝑣)  𝒞 and (𝑣, 𝑤1)  𝒞. There are four possibilities:  
 

 For (𝑢1, 𝑣)  E and (𝑣, 𝑤1)  E 
 

𝑓1(𝑉,𝑣) − 𝑓1(𝑣,𝑉) = 𝑓1 �
𝑉

{𝑢1} ,𝑣� + 𝑓1(𝑢1, 𝑣) − 𝑓1 �𝑣, 𝑉
{𝑤1}� − 𝑓1(𝑣,𝑤1) 

 

                                    = 𝑓 � 𝑉
{𝑢1} , 𝑣� + 𝑓(𝑢1,𝑣) + 𝑑′ − 𝑓 �𝑣, 𝑉

{𝑤1}� − (𝑓(𝑣,𝑤1) + 𝑑′) 

 
                                   = 𝑓(𝑉,𝑣) − 𝑓(𝑣,𝑉). 
 

 For (𝑢1, 𝑣)  𝐸 and (𝑤1, 𝑣)  𝐸 
 

𝑓1(𝑉, 𝑣) − 𝑓1(𝑣,𝑉) =  𝑓1 �
𝑉

{𝑢1,𝑤1} ,𝑣� + 𝑓1(𝑢1, 𝑣) + 𝑓1(𝑤1,𝑣) − 𝑓1(𝑣,𝑉) 

 

=  𝑓 � 𝑉
{𝑢1,𝑤1} ,𝑣� + 𝑓(𝑢1, 𝑣) + 𝑑 + 𝑓(𝑤1, 𝑣) − 𝑑′ − 𝑓(𝑣,𝑉) 

 
                                        = 𝑓(𝑉,𝑣) − 𝑓(𝑣,𝑉) 
 
 For (𝑣, 𝑢1)  𝐸 and (𝑣, 𝑤1)  𝐸 
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𝑓1(𝑉, 𝑣) − 𝑓1(𝑣,𝑉) =  𝑓1(𝑉, 𝑣) − 𝑓1 �𝑣, 𝑉
{𝑢1,𝑤1}� − 𝑓1(𝑣,𝑢1) − 𝑓1(𝑣,𝑤1)  

 

= 𝑓(𝑉,𝑣) − 𝑓 �𝑣, 𝑉
{𝑢1,𝑤1}� − (𝑓(𝑣, 𝑢1) − 𝑑′) − (𝑓(𝑣,𝑤1) + 𝑑′) 

 
                                = 𝑓(𝑉, 𝑣) − 𝑓(𝑣,𝑉) 
 

 For (𝑣, 𝑢1)  𝐸 and (𝑤1, 𝑣)  𝐸 
 

𝑓1(𝑉, 𝑣) − 𝑓1(𝑣,𝑉) =  𝑓1 �
𝑉

{𝑤1} , 𝑣� + 𝑓1(𝑤1, 𝑣) − 𝑓1 �𝑣, 𝑉
{𝑢1}� − 𝑓1(𝑣,𝑢1)  

 

= 𝑓 � 𝑉
{ 𝑤1} , 𝑣� + 𝑓(𝑤1,𝑣) − 𝑑′ − 𝑓 �𝑣, 𝑉

{𝑢1}� − (𝑓(𝑣, 𝑢1) − 𝑑′) 

 
= 𝑓(𝑉, 𝑣) − 𝑓(𝑣,𝑉) 

 
The proof is completed with 

 
|𝑓1| = �𝑓1(𝑢, 𝑠)

𝑢∈𝑉
− � 𝑓1(𝑠,𝑤)

𝑤∈𝑉
= �𝑓(𝑢, 𝑠)

𝑢∈𝑉
− � 𝑓(𝑠,𝑤)

𝑤∈𝑉
= |𝑓|. 

 
Directly from the last Theorem we have the following corollary:  

COROLLARY 1. Let 𝑥⃗ be a state vector for a two-terminal flow network G (V, E, c) with 
source s and sink t such that the pseudoflow function 𝑙𝑥 induced by 𝑥⃗ is a flow function with 
|  𝑙𝑥 | = d, and let 𝑦⃗ be an augmenting vector to level d’ for a cycle 𝒞 in the residual network 
𝐺𝑙𝑥��⃗  (𝑉,𝐸𝑙𝑥��⃗ ). Then 𝑥⃗ + 𝑦⃗ is a state vector for G (V, E, c) such that the pseudoflow function 
𝑙𝑥+𝑦�⃗  induced by 𝑥⃗ + 𝑦⃗ is a flow function with |𝑙𝑥+𝑣�⃗ | = d. 

Lemma 1. Let f be a flow with | f | = 0 in the two-terminal network G (V, E, c) such that there 
is an edge (𝑢, 𝑣) for which 𝑓(𝑢, 𝑣) > 0. Then the graph G (V, Ef  ) induced by f contains a 
cycle. 
Proof. Directly follows from two facts. The first one is that the indegree of each node in the 
graph G (V, Ef) is strictly greater than 0 if and only if its outdegree is also strictly greater than 
0. The second one is that there is a path passing through (𝑢, 𝑣).  
Lemma 2. Let 𝑥⃗ be a state vector for a two-terminal flow network G (V, E, c) with source s 
and sink t such that 𝑙𝑥 is a flow function with |𝑙𝑥| = 0. Then there are augmenting vectors 
𝑦⃗𝑘 , 𝑘 = 1, … , 𝑟 to levels 𝑑′𝑘 for cycles 𝒞𝑘 in G (V, E, c), such that 𝑥⃗ = ∑ 𝑦⃗𝑘𝑟

𝑘=1 . 
Proof: Since 𝑙𝑥 is a flow function with |𝑙𝑥 ��⃗ | = 0, from Lemma 1 it follows that G (V, 𝐸𝑙𝑥��⃗ ) 
contains a cycle 𝒞1. Taking 𝑑′1 = min {𝑥𝑖| 𝑒𝑖 ∈ 𝒞1} we may construct an augmenting vector 
𝑦⃗1 to level 𝑑′1. The vector 𝑧1 = 𝑥⃗ − 𝑦⃗1 is a state vector for the two-terminal flow network 
G (V, E, c) with |𝑙𝑧1 | = 0, too, and moreover, the graph G (V, 𝐸𝑙𝑧�⃗ 1) has at least one positive ed-
ge less than G (V, 𝐸𝑙𝑥��⃗ ). If G (V, 𝐸𝑙𝑧�⃗ 1) has no edge (𝑢, 𝑣) such that 𝑙𝑧1(𝑢, 𝑣) > 0, we are fini-
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shed. In opposite, we continue with this procedure of constructing an augmenting vector 𝑦⃗𝑘 
to level 𝑑′𝑘 for G (V, 𝐸𝑙𝑧�⃗ 𝑘−1) and a vector 𝑧𝑘 = 𝑥⃗ − 𝑦⃗𝑘, until 𝑧𝑘 = 0�⃗ . The procedure will 
finish in at least | E | steps. Each cycle 𝒞𝑘 is a cycle in G (V, E, c) since the graph G (V, 𝐸𝑙𝑧�⃗ 𝑘−1) 
is a subgraph of G.  

The next theorem shows that given a state vector 𝑥⃗, every other flow vector can be 
obtained by adding cycles from G (V, 𝐸𝑙𝑥��⃗ ) to 𝑥⃗. 

Theorem 3. Let 𝑥⃗ and 𝑦⃗ be two state vectors for a flow network G (V, E, c) with source s and 
sink t, such that 𝑙𝑥 and 𝑙𝑦�⃗  are flow functions with |𝑙𝑥| = |𝑙𝑣�⃗ |= d. Then there are augmenting 
vectors 𝑦⃗𝑘 , 𝑘 = 1, … , 𝑟 of levels 𝑑′𝑘 for cycles 𝒞𝑘 in the residual network 𝐺𝑙𝑥��⃗ (𝑉,𝐸𝑙𝑥��⃗ ) such 
that 𝑦⃗ = 𝑥⃗ + ∑ 𝑦⃗𝑘𝑟

𝑘=1 . 
Proof. The function −𝑙𝑥 is a flow function in 𝐺𝑙𝑥��⃗ (𝑉,𝐸𝑙𝑥��⃗ ) from t to s with |𝑙𝑣�⃗ | = d, and its 
residual graph is G (V, E, c). Using this and the fact that 𝑙𝑣�⃗  is a flow function from s to t in 
G (V, E, c) with |𝑙𝑣�⃗ |= d, we have that the function 𝑙𝑣�⃗ −𝑥 defined as 𝑙𝑣�⃗ −𝑥(𝑢, 𝑣) = 𝑙𝑣�⃗ (𝑢, 𝑣) −
𝑙𝑥(𝑢, 𝑣) is a flow function in the residual graph 𝐺𝑙𝑥��⃗ (𝑉,𝐸𝑙𝑥��⃗ ) with |𝑙𝑣�⃗ −𝑥(𝑢, 𝑣)| = 0. The state 
vector for 𝐺𝑙𝑥��⃗ (𝑉,𝐸𝑙𝑥��⃗ ) induced by 𝑙𝑣�⃗ −𝑥(𝑢, 𝑣) is 𝑦⃗ − 𝑥⃗. Since |𝑙𝑣�⃗ −𝑥(𝑢, 𝑣)| = 0, there are 
augmenting vectors 𝑦⃗𝑘 , 𝑘 = 1, … , 𝑟 of levels 𝑑′𝑘 for cycles 𝒞𝑘 in 𝐺𝑙𝑥��⃗ (𝑉,𝐸𝑙𝑥��⃗ ), such that 
𝑦⃗ − 𝑥⃗ = ∑ 𝑦⃗𝑘𝑟

𝑘=1  (by Lemma 2).    
Theorem 1, Theorem 2 and Theorem 3 are sublimated in the next theorem. 

Theorem 4. Given a two-terminal flow network G (V, E, c) with source s and sink t, let 𝑥⃗ be a 
d-MP. Then 𝑦⃗ is a d-MP if and only if 𝐺(𝑉,𝐸𝑙𝑦��⃗ ) is an acyclic graph and there are 
augmenting vectors 𝑦⃗𝑘 , 𝑘 = 1, … , 𝑟 of levels 𝑑′𝑘 for cycles 𝒞𝑘 in the residual network 
𝐺𝑙𝑥��⃗ (𝑉,𝐸𝑙𝑥��⃗ ), such that 𝑦⃗ = 𝑥⃗ + ∑ 𝑦⃗𝑘𝑟

𝑘=1 .  

5. Algorithm for Calculating all Minimal Path Vectors Using One Specified Path 
Vector and Cycles in their Corresponding Residual Network 

Given a two-terminal flow network G (V, E, c) with source s and sink t, let us suppose that the 
i-th component may operate in one of the levels from the set {0, 1,  … , Mi}. Assuming that 
the maximal flow of the network is M, the set {0, 1, … , M} is the set of all possible flows. 
Using the results from the previous section, we give an approach that can help us design an 
algorithm for computing all d-MPs for a given level d  M. The pseudocode for the main 
algorithm is the following: 

Algorithm 2.  

Step 1. Using Ford-Fulkerson algorithm, find one flow function f  to level d. 
Step 2. While G (V, Ef) has a cycle, set f = f1 using (4.1). 
Step 3. Find all cycles in the f  ’s residual graph, and construct their augmenting vectors 𝑦⃗𝑘. 
Step 4. Check each 𝑥⃗ + ∑ 𝑦⃗𝑘𝑟

𝑘=1  for cycle and print it if there is no cycle.  
We can do some optimizations in order to minimize the repetition of d-MPs as well as to 

obtain vectors that are not d-MPs. Here, we do not discuss the strategy for enumeration of 
cycles. 
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This algorithm is useful for finding all d-MPs near the maximal one, since instead of 
adding d 1-MP vectors as in the algorithms proposed in (Mihova and Maksimova, 2011; 
Forghani-elahabad et al., 2013; Lin et al., 1995), here we obtain a candidate for d-MP only 
by one vector addition. The approach is especially useful for level M, since in this case the 
residual graph can be divided into a few connected components; each cycle must lie into 
exactly one of those components.  

The residual graph obtained using the Ford-Fulkerson algorithm for maximum flow M, 
can be divided into strongly connected components, as explained in (Picard and Maurice, 
1980; Bezakova and Friedlander, 2010). These components are used to obtain all minimum 
cuts. The edges lying on some minimum cut must be used with their full capacity. Moreover, 
each cycle must lie into exactly one of those components. This reduces the length, as well as 
the number of cycles. Furthermore, each M-MP vector can be obtained by joining the sub-
vectors corresponding to each of the strongly connected components, as well as the subvec-
tor of the edges connecting a pair of strongly connected components.  

Let G (V, E, c) be a two-terminal network with maximum flow M and 𝐺𝑙𝑥��⃗ (𝑉,𝐸𝑙𝑥��⃗ ) be the 
residual network for the M-MP 𝑥⃗. Assume that G (Vk, Ek) are subgraphs of G (V, E) such that 
Vk is the set of all nodes in the k-th connected component of 𝐺𝑙𝑥��⃗ (𝑉,𝐸𝑙𝑥��⃗ ), and Ek = {(𝑢, 𝑣) | 
𝑢, 𝑣  Vk}. Let E ’ = ⋂ {(𝑢, 𝑣) 𝑉𝑘}𝑘 , i.e. the set of all arcs that are not in a connected 
component. Then each 𝑒𝑖  E’ lies on some minimum cut and 𝑙𝑥(𝑒𝑖) = 𝑥𝑖. Moreover, for 
each other M-MP 𝑦⃗, 𝑙𝑣�⃗ (𝑒𝑖) = 𝑥𝑖. On the other hand, the flow in G (Vk, Ek) is equal to the 
flow out G (Vk, Ek), i.e. 𝑙𝑣�⃗  (𝑉\𝑉𝑘,𝑉) = 𝑙𝑣�⃗  (𝑉,𝑉\𝑉𝑘) = 𝑑𝑘. Now we may propose an algo-
rithm for M-MP.  

Algorithm 3. 
Step 1. Use Ford-Fulkerson algorithm to find a flow function f for maximum level M.  
Step 2. Find strongly connected components of the residual graph and set 𝑥𝑖 = 𝑓(𝑒𝑖) for 

all 𝑒𝑖𝐸′. 
Step 3. For each strongly connected component, use Algorithm 2 to compute the set of 

all subvectors Dk. 
Step 4. Find all M-MPs 𝑦⃗ for which 
 

𝑦𝑖 = �𝑓
(𝑒𝑖),     𝑒𝑖 ∈ 𝐸′                           

𝑙𝑥𝑘(𝑒𝑖),   𝑒𝑖 ∈ 𝑉𝑘 and 𝑥⃗𝑘 ∈ 𝐷𝑘    
 

The algorithm is illustrated in the following example. 

EXAMPLE 1. Given the network in Fig. 2 a), the residual network for a maximal level 3 for 
the flow vector (2, 1, 0, 2, 1, 0, 2, 1) is shown in Fig. 2 b). The graph is divided into two 
subgraphs. Since the components in the cut must be used with their full capacity, each mini-
mal 3-MP has the form (x1, x2, x3, 2, 1, x6, x7, x8). There is only one augmenting cycle in the 
first strongly connected component, consisting of edges e1, e2 and e3. This cycle is (–1, 1, 1). 

The second strongly connected component, consisting of edges e6, e7 and e8 also has one 
augmenting cycle: (1, –1, 1).  

The subvectors corresponding to the first strongly connected component for which the 
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                                                a)                                                                                               b) 
                   

Fig. 2.: a) A flow network. b) Residual network for the flow vector (2, 1, 0, 2, 1, 0, 2, 1). 

 
graph is acyclic are {(2, 1, 0), (1, 2, 1)}, {(2 – 1, 1 + 1, 0 + 1) = (1, 2, 1)}, while the 
subvectors corresponding to the second strictly connected component are {(0, 2, 1), 
(1, 1, 2)}. So all 3-MPs are all vectors obtained by joining the subvectors from this two sets 
together with the values of the components on the cut, i.e. {(2, 1, 0, 2, 1, 0, 2, 1), 
(1, 1, 2, 2, 1, 0, 2, 1), (2, 1, 0, 2, 1, 1, 1, 2), (1, 1, 2, 2, 1, 1, 1, 2)}. 

6. Conclusion 

Known algorithms for computing the set of all d-MPs commonly use network flows. In this 
paper we proved that a flow function corresponds to a d-MP if and only if the graph 
appropriate to that flow is acyclic. This property helped us to design an algorithm for 
calculating the set of all d-MPs, which is more efficient than the known algorithms for 
solving this problem. Moreover, by further analyses on the connection between two d-MPs, 
we proposed a strategy for calculating all d-MPs, given only one d-MP obtained using the 
Ford-Fulkerson algorithm. The proposed strategy is especially efficient for large levels. The 
strategy for enumeration of cycles addressed in Section 5 is one topic for our future work. 
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