
Deploying production-grade Kubernetes cluster
Vojdan Kjorveziroski∗, Panche Ribarski†

Faculty of Computer Science and Engineering, Ss. Cyril and Methodius University in Skopje
Email: ∗vojdan.kjorveziroski@finki.ukim.mk, †panche.ribarski@finki.ukim.mk

Abstract—Deploying a production-grade Kubernetes cluster is
a challenging feat, mainly because of all the different services
that need to be integrated with each other. We examined
Kubespray, which is an open-source project whose purpose is
to automate the deployment of stable clusters, as well as ease the
future administration and lifecycle management along the way.
Additional components can be installed during the deployment
process that enrich and improve the cluster capabilities. We
used Kubespray and together with other open-sources projects
we created production-grade Kubernetes cluster ready for real
deployment scenarios.

Index Terms—Kubernetes, K8S, Docker, Kubespray, Helm,
ELK, monitoring, automation, containers, orchestration

I. INTRODUCTION

Nowadays there is an increasing trend in the computer
engineering world to adopt the cloud as a native place for the
execution of many workloads, ranging from high performance
computations to hosting lightweight demo student projects
made as part of some course assignment. There are many
reasons that support this notion of using someone else’s infras-
tructure for your work. One of them is the increased reliability,
since the end user is no longer in charge of managing the
hardware and affordability, because the primary method of
billing is pay-as-you-go, meaning that users are obliged to
pay only for the resources that they have used as many cloud
providers even have the option of billing per minute or even
per second for certain services. Other reason, scalability, in
terms of available resources is no longer a problem, additional
storage or memory is just a few clicks away. However, many
companies and even individuals are either not satisfied with
the current offerings from the major cloud providers, have
industry or policy bound restrictions that prevent them from
using public clouds, think that they can implement a more
cost-effective solution by using their own hardware or simply
want to have more control over the whole process and learn
something new along the way. In all these cases, the usual
options of implementing the infrastructure for hosting multiple
applications or services is to either deploy individual virtual
machines and assign them to different teams or departments or
go with the container route, where each application will reside
in its own dedicated environment. No matter what option
is chosen, some abstraction layer in terms of software will
have to be deployed that will need to manage the underlying
hardware and allow for easy and convenient provisioning and
deprovisioning of either virtual machines or containers. These
days containers are the preferred choice for many workloads,
mainly because they are lightweight and easily disposable, yet

at the same time provide sufficient isolation. Manual deploy-
ment of containers quickly becomes a burdensome process,
so a container orchestration system is almost always needed.
Kubernetes[1][2] has distinguished itself as a leader in this
space, mainly because of its extensibility, large community
and large feature set. However, all of these benefits result in
a complex installation process, large amounts of prerequisites
and dependencies, and elaborate lifecycle management. The
common solution to the aforementioned problems is to have a
well-tested automated solution which can offer a reproducible
and stable deployment each time it is invoked. There are
multiple such solutions when it comes to the installation of
Kubernetes, one being Kubespray[3], an open-source project
that is centered around Ansible[4][5] playbooks and roles that
provisions production grade clusters with minimal end-user
interaction. The purpose of this paper is to explain the benefits
of using Kubespray while exploring the customizability that it
offers and options for the future lifecycle management of the
deployed clusters. First, a general overview of the Kubernetes
platform is given, and then the Kubespray project is explained
in details, along with possible additions to the cluster that
improve its functionality, either deployed by Kubespray itself
during the initial setup, or manually at a later point in time.

II. AUTOMATED DEPLOYMENT OF PRODUCTION GRADE
CLUSTERS

Kubernetes is a container orchestration platform that can
operate on top of many container runtimes, most popular
of which are Docker[6][7] and Rkt. A deployment of an
application is done using multiple manifests that represent
YAML based text files, where using a predetermined syntax
and options the desired environment for the application is de-
scribed. These manifests are then submitted to the Kubernetes
API server and are eventually translated to low level actions
such as bringing up a container or issuing a storage request
to a remote system. The API server is extensible, so cluster
administrators can define custom resource types that include
their own logic and interact with systems that are not natively
supported.

Since the deployment of a Kubernetes cluster involves
many dependencies and is a complicated feat, multiple open
source projects exist whose purpose is to make the process
easier. One such example is Kubespray, a solution based on
Ansible playbooks and roles that automate every aspect of the
Kubernetes cluster deployment. The end-user is only required
to install the dependencies that include a couple of Python
libraries and Ansible itself in order to deploy a cluster.



A. Cluster requirements

Kubernetes clusters are comprised of two types of nodes,
masters and workers. Master nodes are hosting the Kubernetes
API server and are responsible for managing the cluster. In
order to achieve high availability, multiple master nodes can
be deployed and an uninterrupted cluster operation will be
ensured as long as a majority of monitors can be formed.
Workers can be added or removed from the cluster at any
point in time, depending on the resource requirements. The
worker nodes are directly controlled by the master nodes. As
a persistent backend the etcd key-value store is used and all
the cluster information including the deployed manifests are
stored there. Similar to the Kubernetes API server, etcd can
also operate in a high-avialability mode, if more than half of
the nodes are available. Since etcd also has official Docker
images available, the cluster operator can choose to either
run it in a standalone fashion, installed as any other software
package or inside a Docker container.

Publishing of web applications is done using an Ingress
controller[8] which effectively acts as a reverse proxy to any
container that exposes an HTTP port. The configuration of the
ingress controller, such as what endpoints to use, whether SSL
is enabled, what redirects to use; is done using annotations,
simple key value pairs in the YAML file that describes the
Ingress resource. Since Kubernetes is such an extensible
platform, there are multiple Ingress controllers to choose from,
for example NGINX[9] or Traefik[10]. The NGINX ingress
controller is natively supported by Kubespray. If an application
that does not use the HTTP protocol needs to be exposed to
the outside world, then there are multiple options, some of
which are binding it to a specific worker node and accessing
it through it exclusively or, a more attractive and versatile
option is to deploy a load balancer[11] addon which can
automatically assign either public or private IP addresses from
a given subnet. One such addon is MetalLB[12], which from
recently is also supported by Kubespray and can automatically
be provisioned. Whenever a LoadBalancer resource is defined
within the Kubernetes API, a private IP address from a
predefined range is assigned to the service. Furthermode,
BGP is also supported by MetalLB, in environments where
assignment of public IP addresses is needed.

Networking is a major topic when it comes to Kubernetes
cluster deployments, since there are so many options and
extensions available. An important thing to note is that the
chosen network plugin is responsible for the isolation of
the different containers running in the cluster. Kubernetes
natively supports a NetworkPolicy[13] resource type that can
be specified like all other resources, using a YAML file. With
this, granular network rules for an application can be specified,
such as what ports are opened and from what other containers
or namespaces they can be accessed. More details regarding
networking plugins and deployment options are given in the
Additional tools section.

B. Initial setup

Once the project has been downloaded from the source
code repository, an inventory file needs to be created in which
the IP addresses of all the nodes that will take part in the
clusters will be entered. Kubespray exploits the concept of
groups that Ansible provides, where multiple hosts can be put
together in a group so that they can be referenced using a
common name, in order to designate the various roles that
the nodes will have inside the cluster, such as whether they
will be master nodes, worker nodes, etcd nodes, or have some
other role. Once the inventory has been defined, the cluster
deployment can be customized by editing the default values
of the various predefined parameters. Using simple switches
and statements, the Kubernetes version can be specified, along
with the desired networking plugin, container runtime, ingress
controller, and storage addons. Finally, with the execution of
the Ansible playbook, Kubespray will perform any prerequisite
checks on the nodes and install all of the missing requirements
before deploying the cluster. After the script has finished with
its execution, the administrator should be able to login into the
master nodes and have a fully functional Kubernetes cluster.

C. Lifecycle management

Kubespray would not be so enticing if it did not support
some sort of lifecycle management, ensuring that the cluster
functions properly after it has been deployed. The following
non-distrubtive operations are possible with Kubespray: addi-
tion and removal of worker, master and route reflector nodes,
API server certificate renewal and rotation, cluster upgrade and
cluster tear-down. The most beneficial of these is the automatic
cluster upgrade, where not only is the Kubernetes version
upgraded, but also all of the prerequisites and addons, such
as the etcd store, the container runtime and the networking
plugins. Furthermore, the addition and removal of worker
nodes is simple, fast, and it does not require user intervention,
meaning that it can be automated with some monitoring
system, where new nodes would be deployed once the cluster
load reaches a certain level.

III. ADDITIONAL TOOLS

In the Cluster Requirements section, we briefly mentioned
some of the Kubernetes addons that are supported by Kube-
spray. In the following paragraphs we provide a more thorough
explanation of some of them.

A. Kubernetes package management

The definition of several YAML manifest files for a de-
ployment of a single service can quickly become tiresome,
since most of the time the required changes are very small
in comparison to the complete files. Helm[14] is a package
manager for Kubernetes that tries to solve this problem. It
uses the concept of charts, where a chart represents a service
that needs to be deployed, such as a content management
system (CMS) application. Using a templating language, a
set of default parameters are inserted in the manifest files
and the user can choose to override only the desired values.



Helm requires a dedicated component, Tiller, to be installed
in the cluster itself, and Kubespray fully supports its complete
deployment.

B. Storage

There are many options for integrating the Kubernetes
cluster with standalone storage systems. Kubernetes has a
resource called a persistent volume claim[15], where such a
claim can be created by an application and the default storage
provisioner that is deployed in the cluster is required to fulfill
the request. The way in which the request will be serviced is up
to the plugin, whether a new block device needs to be set up,
a shared file system mounted or a new bucket on some object
storage created. For test clusters an NFS provisioner[16] might
be sufficient, where all the volume claims will be serviced
by mounting a specific directory from a given NFS server.
However, this is not scalable since the performance of NFS
is not optimal for such deployments. A popular option is to
integrate the Kubernetes cluster with Ceph[17][18], a storage
system that offers both block and object storage and a shared
file system. Since Ceph is also a distributed application that
pools disks present on different hosts, the end-user needs to
decide how the Ceph cluster will be managed. One option
is to have a separate Ceph cluster, preferably on bare metal
machines, and integrate it with the Kubernetes cluster with
volume provisioning plugins. These plugins watch for any new
volume claims and execute the necessary commands on the
Ceph cluster in order to deploy a new block device or mount
the shared file system. Another option is to use Rook[19],
a Kubernetes native storage solution that deploys a Ceph
cluster inside Kubernetes. The initial deployment and future
management of the storage cluster is done through YAML files
that are then submitted to the Kubernetes API server. One of
the main benefits of Rook is that the operation of the storage
system is completely abstracted from the end-user, so no
knowledge of Ceph is required. However, this can also be seen
as a drawback; Kubernetes upgrades now become much more
complicated, since bringing down Kubernetes nodes might
bring the whole storage cluster down, so careful planning and
testing is needed. On the other hand, while administering a
standalone Ceph cluster requires much more resources both
in terms of people and hardware, it is a more robust solution
and provides a nice separation of concerns, where multiple
complex systems are not intertwined with each other.

C. Networking

There are two main types of networking plugins available
for Kubernetes and they are layer 2 or layer 3. An example
of a layer 2 plugin is Flannel[20], which creates a single
flat network shared by all future containers. Another option
is to use separate networks and with the help of a routing
algorithm bridge these together. A plugin that works in this
way is Calico[21] and it uses BGP for routing between the
different subnets in the overlay network. The benefits of using
Flannel or any other L2 plugin is that it is easier to configure
and simpler to administer, but it is not as scalable as using an

L3 solution. On the other hand, Calico supports the concept of
BGP route reflectors, which can be used in very large clusters.
In this mode, instead of forming a BGP full mesh topology,
a separate node outside the cluster is configured to run as a
standalone BGP route reflector and all the cluster nodes peer
only with it. For redundancy, multiple route reflectors can
be deployed. Both of these plugins as well as a few others
are supported by Kubepsray and the user has an option of
manually choosing between them.

D. Monitoring and logging

Monitoring of the Kubenetes cluster and the individual
services that are deployed as containers within it is an im-
portant task and there are many different solutions that can
be implemented. One of the most popular options regarding
performance metrics is to use Prometheus[22], a dedicated
software which crawls different endpoints that expose system
metrics. These metrics can then either be persisted in a
separate time series database or cached by Prometheus itself.
The visualization of the gathered values can be done using
a separate web application application, one example being
the widely popular Grafana[23]. When it comes to logging,
the usual choice not only when working with Kubernetes,
but also in other areas is to use the Elasticsearch, Logstash
and Kibana (ELK)[24] stack. An important thing to note is
that cluster administrators should not only be interested in
the logs from the cluster nodes themselves, but also from the
containers that are run within the cluster. In order to achieve
this, there are multiple Kubernetes addons that are able to send
the log output of the containers either directly to Elasticsearch
or to Logstash for further processing. One such example is
Fluentd[25]. Once the logs have been persisted, graphical
visualizations and dashboards can be created using Kibana,
which is a web application that connects to Elasticsearch and
provides browsing and visualization options for the gathered
logs.

IV. DEPLOYMENT OF PRODUCTION-GRADE CLUSTER WITH
KUBESPRAY ON THE NEBULA PLATFORM

We tested Kubespray in an attempt to bring up a production-
grade Kubernetes cluster on virtual machines residing on the
OpenNebula cloud computing platform. In this section we
describe the deployment process, along with the choices that
we have made and additional applications that were installed
in order to ensure the reliability and availability of the cluster.

A. Hardware

We have chosen a rather minimal initial setup that will
offer the option for non-disruptive upgrades to the cluster and
tolerate a single node failure, with the possibility to add new
nodes as needed. The storage has been completely decoupled
from Kubernetes and an external Ceph cluster is utilized. This
setup allows both the computational power to be increased
by adding new worker nodes, or to improve the resiliency
by deploying additional masters, without the need for any
major architectural changes. The separation of storage from the



Purpose CPU Memory Storage
Kubernetes Master #1 4 4GB 40GB
Kubernetes Master #2 4 4GB 40GB
Kubernetes Master #3 4 4GB 40GB
Kubernetes Worker #1 8 8GB 60GB
Kubernetes Worker #2 8 8GB 60GB
Ceph #1 2 4GB 40GB
Ceph #2 2 4GB 40GB
Ceph #3 2 4GB 40GB
Ceph #4 4 4GB 40GB + 1TB
Ceph #5 4 4GB 40GB + 1TB
Ceph #6 4 4GB 40GB + 1TB

cluster allows easy maintenance of both the cluster itself and
the underlying virtual machines. Additionally, a catastrophic
failure in the Kubernetes cluster will not affect the data, all
that will be needed to restore normal operation is to recreate
the necessary Kubernetes resources and remap the persistent
volumes to the RBD volumes on Ceph. If Rook had been
used, then this would have been much more complicated, and
a Kubernetes failure would have probably meant corrupton of
the data as well.

The specification for the virtual machines are:

B. Storage cluster deployment

The storage cluster has been deployed with the officially
supported Ansible playbooks from the Ceph community. The
process is very similar to Kubespray, where the cluster ”skele-
ton”, the roles for each virtual machine, are given in the
inventory files and any further tweaks regarding the operation
of the cluster is done by modifying the default Ansible
variables. We have provisioned six Ceph nodes, where the first
three (1-3) serve as both monitor and manager nodes in order
to ensure the high-availability of the cluster and the others as
object storage device (OSD) hosts, where, currently, each of
them hosts a single OSD, with the option of adding additional
ones at a later point in time. Additional monitors or managers
can also be added whenever needed.

C. Kubernetes cluster deployment

For the initial deployment, five Kubernetes nodes were
deployed, where three of them are masters that also function
as etcd servers and the rest are worker nodes. No route
reflector was used, since the initial number of nodes is low,
but it remains an option for future expansion. At least two
additional nodes will be required in order to ensure the high-
availability of the route reflector. The Kubernetes addons that
were installed by Kubespray are: NGINX ingress as the cluster
ingress controller, CoreDNS as the in-cluster DNS server,
Calico as the networking plugin, Helm and Tiller with TLS
support, Kubernetes dashboard for web access to the cluster
resources. The communication between the nodes and the
Ceph cluster is done through a private VLAN dedicated to the
project. Official support for the MetalLB load balancer was
added to Kubespray after the cluster was deployed, so manual
installation was needed. Regarding the RADOS block device
(RBD) provisioner that allows the mapping of Kubernetes
volumes to RBD images, there is an active pull request[26]
that is yet to be merged into the main branch of Kubespray at

the time of this writing. Once it is approved and merged, that
process could be automated as well.

D. Additional tools and addons

In order to be production ready, we needed a way to monitor
the cluster resources, receive alerts for any anomalies, and
centralize the logging for all the different services that are
installed. To achieve this, we deployed Prometheus-Operator
in order to monitor the cluster and receive alerts, and the EFK
stack (Elasticsearch, Fluentd, Kibana) to centralize the logs.

Prometheus operator[27] is a project that offers Kubernetes
native monitoring. Once deployed, it installs Prometheus,
Alertmanager[28], and Grafana inside the cluster. Prometheus
is responsible for scraping the metrics of the various Ku-
bernetes components, such as the API server, the scheduler
and the controller, as well as any additional services that are
deployed inside the cluster and expose Prometheus metrics.
The metrics are by default persisted inside Prometheus, with
the option of using an external database as well. Alertmanager
comes preconfigured with some default alerts that are sent
when cluster resources are low, or when critical Kubernetes
components are unavailable. Grafana comes preloaded with
few default dashboards, where various graphs are available that
showcase the current cluster state. The cluster administrator
can get detailed information on all possible levels, from indi-
vidual pods, to cluster nodes, to the cluster itself. One benefit
of Prometheus operator over an independent deployment is
that it installs custom resource definitions[29] (CRDs) inside
the cluster, and these can be used for defining YAML files
that describe what additional services need to be monitored,
the same way that native Kubernetes resources are defined, for
example Deployments.

Log management is made possible with the EFK stack,
where Fluentd is deployed as a DaemonSet on all of the
available Kubernetes nodes. Fluentd tails all of the container
logs as well as the host logs, preprocess them, enriches them
with Kubernetes specific data, such as the namespace to
which the given container belongs, or the node where it runs
and then sends these to Elasticsearch for long term storage
and indexing. Kibana is a web application that connects to
Elasticsearch and can monitor the logs in real-time and even
visualize them using different graph types. Since no retention
policy can be configured in Elasticsearch, an additional tool
needs to be used, in this case Elasticsearch Curator[30] which
has the option of deleting indices on predefined conditions, one
being time. Each day, a new index is created in Elasticsearch
that will contain the logs for that day. Deleting the index
removes the logs for that period and frees up the used storage
space. Elasticseach Curator works as a Kubernetes Cronjob
that can be executed at a desired interval.

V. CONCLUSION

Kubespray is already a major player in the Kubernetes world
and is even one of the officially recommended ways to deploy
Kubernetes. The large user base, along with a rich feature
set, active development and support for lifecycle management



make it one of the best choices for new deployments. Not
all of the Kubernetes extensions mentioned in this paper are
natively supported by Kubespray, but the easy customizability
of the Ansible playbooks and roles means that end users can
extend them with minimal effort.

REFERENCES

[1] M. Lukša, Kubernetes in Action. Manning Publications Company, 2018.
[2] “Kubernetes - production-grade container orchestration,” https://

kubernetes.io/docs/home/, accessed: 2019-04-13.
[3] “Kubespray - deploy a production ready kubernetes cluster,” https:

//kubespray.io/, accessed: 2019-04-13.
[4] L. Hochstein and R. Moser, Ansible: Up and Running: Automating

Configuration Management and Deployment the Easy Way. ” O’Reilly
Media, Inc.”, 2017.

[5] “Ansible documentation,” https://docs.ansible.com/, accessed: 2019-04-
13.

[6] J. Turnbull, The Docker Book: Containerization is the new virtualization.
James Turnbull, 2014.

[7] “Docker provides a way to run applications securely isolated in a
container, packaged with all its dependencies and libraries,” https:
//docs.docker.com/, accessed: 2019-04-13.

[8] “Kubernetes ingress - kubernetes api object that manages external
access to the services in a cluster,” https://kubernetes.io/docs/concepts/
services-networking/ingress/, accessed: 2019-04-13.

[9] “Nginx ingress controller for kubernetes,” https://github.com/kubernetes/
ingress-nginx, accessed: 2019-04-13.

[10] “Traefik - kubernetes ingress controller,” https://docs.traefik.io/
user-guide/kubernetes/, accessed: 2019-04-13.

[11] “Kubernetes load balancer - kubernetes api object that inte-
grates with external load balancers,” https://kubernetes.io/docs/concepts/
services-networking/#loadbalancer, accessed: 2019-04-13.

[12] “Load balancer implementation for bare metal kubernetes clusters, using
standard routing protocols,” https://metallb.universe.tf/, accessed: 2019-
04-13.

[13] “Networkpolicy - kubernetes resource which specifies how groups of
pods are allowed to communicate with each other and other network
endpoints,” https://kubernetes.io/docs/concepts/services-networking/
network-policies/, accessed: 2019-04-13.

[14] “Helm - the package maanger for kubernetes,” https://helm.sh/, accessed:
2019-04-13.

[15] “Kubernetes resource which acts as an abstraction to other
storage systems,” https://kubernetes.io/docs/concepts/storage/
persistent-volumes/#persistentvolumeclaims, accessed: 2019-04-13.

[16] “Kubernetes nfs dynamic provisioner,” https://github.com/
kubernetes-incubator/external-storage/tree/master/nfs, accessed: 2019-
04-13.

[17] N. Fisk, Mastering Ceph. Packt Publishing Ltd, 2017.
[18] “Ceph uniquely delivers object, block, and file storage in one unified

system,” http://docs.ceph.com/docs/master/, accessed: 2019-04-13.
[19] “Rook - storage orchestration for kubernetes,” https://rook.io/, accessed:

2019-04-13.
[20] “Flannel - a network fabric for containers, designed for kubernetes,”

https://github.com/coreos/flannel, accessed: 2019-04-13.
[21] “Calico is an open source networking and network security solution for

containers, virtual machines, and native host-based workloads,” https:
//docs.projectcalico.org/v3.6/introduction/, accessed: 2019-04-13.

[22] J. Turnbull, Monitoring with Prometheus. Turnbull Press, 2018.
[23] “Grafana is an open platform for beautiful analytics and monitoring,”

https://grafana.com/, accessed: 2019-04-13.
[24] “Elasticsearch, logstash, kibana, open-source logging stack,” https://

www.elastic.co/elk-stack, accessed: 2019-04-13.
[25] “Fluentd - open source data collector,” https://www.fluentd.org/, ac-

cessed: 2019-04-13.
[26] “Add rbd provisioner addon support to kubespray,” https://github.

com/kubernetes-sigs/kubespray/pull/3668#issuecomment-480623695,
accessed: 2019-04-13.

[27] “The prometheus operator creates, configures, and manages prometheus
monitoring instances.” https://coreos.com/operators/prometheus/docs/
latest/, accessed: 2019-04-13.

[28] “Alertmanager handles alerts sent by client applications such as the
prometheus server,” https://prometheus.io/docs/alerting/alertmanager/,
accessed: 2019-04-13.

[29] “Custrom resource definitions - kubernetes documentation,”
https://kubernetes.io/docs/concepts/extend-kubernetes/api-extension/
custom-resources/#customresourcedefinitions, accessed: 2019-04-13.

[30] “Elasticsearch curator eases the management of elasticsearch indices,”
https://www.elastic.co/guide/en/elasticsearch/client/curator/current/
about.html, accessed: 2019-04-13.


