
XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

On-Demand Network Management with NMaaS:
Network Management as a Service
Vojdan Kjorveziroski

Faculty of Computer Science and Engineering
Ss. Cyril and Methodius University Skopje

Skopje, North Macedonia
vojdan.kjorveziroski@finki.ukim.mk

Łukasz Łopatowski
Poznan Supercomputing and Networking Center

Poznan, Poland
llopat@man.poznan.pl

Pavle V. Vuletic
Department of Computer Science & Information Technology

University of Belgrade
Belgrade, Serbia

pavle.vuletic@etf.bg.ac.rs

Frédéric Loui
RENATER

Paris, France
frederic.loui@renater.fr

Abstract—The need for network management is universal,
no matter the size of the network. Unfortunately, monitoring is
often burdensome for infrastructure teams, because despite
catering to their production services, additional supporting
systems need to be maintained, continuously updated, and
configured. As a result of the ever-growing complexity of new
network management solutions, the time required for testing a
new tool is increasing, thus disincentivizing exploration of new
alternatives. Network Management as a Service (NMaaS) is a
software suite which allows teams to centrally manage multiple
remote infrastructures through effortless, fast deployment and
configuration of network management applications as well as
supporting tools. Using the GitOps approach, all application
configuration is versioned and automatically synced to running
instances, allowing easy migration from existing installations, as
well as roll-back of recent configuration changes. In this
demonstration we outline the NMaaS architecture, discuss
possible use-cases, and showcase the application deployment
process together with the steps required for extending the
existing application catalog.

Keywords—network management, containers, Kubernetes,
GitOps, orchestration

I. INTRODUCTION
All production computer systems, no matter their size,

require persistent monitoring and maintenance. The benefits
of a comprehensive network management infrastructure are
wide-ranging and such setups should offer both proactive and
reactive problem detection. Using a proactive monitoring
approach [1], potential issues can be detected even before they
have an impact on normal operations, thus maintaining the
availability of the system. On the other hand, reactive
monitoring aims to minimize the incurred downtime once a
failure occurs, by detecting anomalies as fast as possible, after
they happen. Even though proactive monitoring is the desired
approach, not all failures can be anticipated, and reactive
problem detection coupled with on-time alerting is just as
important.

Nowadays a number of full-fledged monitoring suites
exist [2], both commercial and open source, supporting the
two strategies discussed above [3]. However, no matter their
license or the associated price tag, they all have one thing in
common – the need for ongoing maintenance, and regular
updates. As with any other software component, monitoring
systems also require version upgrades, vulnerability
monitoring, configuration changes, and data backup,
reminiscent of any production service. Furthermore, the sheer
number of available options and their different architectures,
makes the selection process for the right tool difficult.
Administrators need to provision additional infrastructure

such as virtual machines and test devices for each potential
solution in which they might be interested, before even being
able to install it and determine whether it fulfills their
requirements. It is not uncommon for infrastructure teams to
not have the required computing resources or manpower to
undertake such operations [4], thus disincentivizing the testing
of new solutions which might offer a wider feature set
compared to the existing ones.

To alleviate these problems, we have developed NMaaS
(Network Management as a Service), a software suite which
allows easy deployment of applications on the infrastructure
where it is installed. Even though the NM in NMaaS stands
for Network Management, it is not limited only to such
applications, and instead it can be used to deploy any
containerized software, no matter its purpose. Utilizing the
Kubernetes container orchestrator and adopting a standardized
application packaging format, NMaaS allows easy
deployment, automatic upgrades, and seamless configuration
updates of deployed applications using the GitOps [5]
approach. Easily deployable, NMaaS can be installed on any
current computing infrastructure and integrated with existing
storage and networking systems, providing users with an
extensible software catalog. The primary target group of
NMaaS are organizations which have many distributed
locations, lacking dedicated engineering teams, allowing their
limited manpower to be focused on adding value to their core
services, instead of infrastructure management and
monitoring.

The goal of this paper is to present the underlying NMaaS
architecture, the set of applications which are already
supported by the NMaaS application catalog, as well as
showcase the process of adding new applications. The rest of
this paper is organized as follows: in section II we discuss the
NMaaS architecture in detail, explaining the various
components and their purpose. We then proceed with section
III where we explore the use-cases supported by NMaaS and
the various configuration modes for deployed applications,
before moving to section IV where we discuss the demo
content to be showcased.

II. NMAAS ARCHITECTURE
NMaaS is comprised of 5 different components in total, 4

of which are necessary for its operation, no matter the
environment where it is installed. The NMaaS Shibboleth
Service Provider (SP) is optional and used only for
integration with third-party identity providers (IdP). Fig. 1
provides a visual representation of the NMaaS architecture,
including all third-party open-source components required

978-1-6654-0601-7/22/$31.00 ©2022 IEEE

for an NMaaS deployment. In the subsections that follow we
discuss each of these components, with the addition of the
Kubernetes container orchestrator, which plays a central role
in the architecture.

A. Kubernetes as a Container Orchestrator
NMaaS leverages the Kubernetes container orchestrator

for deployment of the applications present in the catalog on
the actual computing nodes. Kubernetes is the most popular
container orchestrator today [6] and is suitable for various
infrastructures such as: on-premises, cloud, or even on
resource constrained edge devices [7]. This approach allows
NMaaS to be easily scalable and infrastructure agnostic,
capable of integrating with existing storage systems which
are compliant with the container storage interface (CSI) [8],
as well as existing software defined networking plugins using
the container networking interface (CNI) [9]. All core
NMaaS components, together with the instantiated
applications from the catalog run within the same Kubernetes
cluster.

B. NMaaS Portal
The NMaaS Portal is the web frontend application which

allows end users to login, manage, and configure their
existing application instances as well as deploy new ones. It
interacts with the NMaaS Platform, the backend, using a
representational state transfer (REST) application
programming interface (API). It offers a multi-step
application instance deployment wizard which provides a
visual walkthrough for the users during the deployment
process, allowing them to specify context specific parameters
and optional configuration. Depending on the assigned user
role, it is also possible to leverage the new application wizard
available in the Portal in order to add a new application to the
catalog. Such an application can later be deployed by any
registered user of the given NMaaS instance.

C. NMaaS Platform
The NMaaS Platform represents the backend and is the

central component of the whole system. It uses a relational
database for state management and interacts with the
Kubernetes API via the NMaaS Helm Client for application
deployment, status monitoring, and management. The REST
API exposed by the Platform enables users to
programmatically access the system, bypassing the Portal,
allowing easy integration with external, third-party,
components. Depending on the way in which a given
instantiated application manages its configuration, the
Platform also interacts with the in-cluster GitLab instance for
user syncing and new Git repository provisioning. Each
application instance which supports the GitOps configuration

workflow has its own GitLab repository. Access to it can also
be shared among multiple users.

D. NMaaS Helm Client
The NMaaS Helm Client is the component responsible for

direct interaction with the underlying Kubernetes cluster.
NMaaS uses the concept of Helm charts for application
packaging and easy instantiation. Helm [10] is a widely used
Kubernetes application manager which allows easy
development, templating, and sharing of the necessary
Kubernetes manifest files for deploying a given application
to an existing cluster. The set of all Helm templates required
for instantiating a given application is called a Helm chart. In
this way, any software which already has a Helm chart
available, either provided by the developers themselves, or by
the large Helm open-source community, can be directly
added as a supported application to the NMaaS catalog
though the new application wizard via the Portal.

E. NMaaS Janitor
The NMaaS Janitor is responsible for various

maintenance tasks including deletion of left-over volumes
and manifests, as well as syncing configuration file changes
between the GitLab repositories and the user instantiated
applications running in the Kubernetes cluster. Whenever a
change is detected within the relevant Git repository for an
application, the Janitor updates the associated ConfigMap
[11] and Secret [12] objects within the Kubernetes cluster
with the contents of the newly pushed files. In this manner,
any configuration change made via Git is immediately synced
to the running container instance of the application within the
cluster.

III. AVAILABLE TOOLS AND USE-CASES
The default NMaaS catalog available for any new

installation of the software comes prepopulated with 26
different applications, primarily centered around network
management, but encompassing other areas as well, such as
resource scheduling (Booked), inventory and IP address
management (NetBox) or even team collaboration (Synapse).

It should also be noted that the list of applications can be
customized by each installation independently, to better
address the needs of the institution where NMaaS is deployed.
NMaaS is being actively developed and additional
applications are continuously being added to the default
catalog. Additionally, NMaaS also tries to foster a community
around it, allowing anyone to submit and then redistribute
their application through it.

A. Installation Options
NMaaS can be installed by anyone with access to a

functioning Kubernetes cluster. All of the NMaaS
components can be freely downloaded and used, and we have
also prepared additional documentation material helping new
users deploy their NMaaS clusters [13]. A ready-to-use
development environment in the form of a virtual machine is
also available for users simply wanting to try NMaaS out on
their workstations, before proceeding with a full-fledged
deployment.

B. Remote Access
The main use-case of NMaaS is its deployment on a

centralized infrastructure which can later be used for
monitoring various other distributed locations. A real-world
example of such a scenario is a national research and

Fig. 1 NMaaS Architecture Diagram

education network (NREN) which is responsible for the
provisioning and well-functioning of network equipment in
various locations. However, one of the main questions that
need to be answered is that of remote access, from the NMaaS
infrastructure towards the network elements and vice versa.
Even though NMaaS can work with any existing network
technology, it supports the concept of client-access and site-
to-site VPNs. The site-to-site VPNs are used for establishing
secure end-to-end connection to the monitored remote
infrastructure, using either a hardware or software-based
VPN concentrator. This VPN connection is then used by the
deployed applications on NMaaS for monitoring the remote
network elements. On the other hand, using the client-access
VPNs, NMaaS users are able to access the frontends of their
deployed application instances, as well as further configure
them. It is up to the administrator to choose the desired
connection strategy, and NMaaS components are completely
agnostic in that regard.

C. Application Configuration
Taking into account the fact that NMaaS supports the

inclusion of diverse applications in its catalog, a wide-ranging
configuration strategy is required. The goal is to support as
many different applications and their configuration as
possible, without requiring changes to the underlying NMaaS
source code itself. To this effect, the following configuration
scenarios are supported: a) Configuration of the instantiated
application via the NMaaS Portal – the user is allowed to
specify various parameters during deployment time, and these
are then passed to additional initialization scripts running
within the application’s container; b) Configuration using the
GitOps approach – all configuration is hosted within a
dedicated Git repository and the Janitor component is
responsible for syncing any configuration changes to the
appropriate Kubernetes objects, and thus the containers where
the application itself is being run; c) SSH access to the
application container – some applications require elaborate
configuration steps which can only be performed using direct
console access. In such cases users can directly connect to the
container which acts as a runtime environment for their
application; d) Application dependent configuration workflow
– some applications have elaborate web-based configuration
interfaces which can be accessed by users, foregoing the need
for a different configuration strategy.

D. Tenant Isolation
NMaaS natively supports multi-tenancy. Using the

concept of an NMaaS domain, a given NMaaS deployment
can be used by multiple organizations, each having their own
isolated environment and even different sets of applications
in their respective catalogs. Each domain can have an
unlimited number of users with various roles, mirroring the
real-world hierarchy of the organization. Isolation is ensured
both at the application level and the network level, and each
tenant can access only their own network elements.

IV. DEMONSTRATION
In the proposed demo we plan to discuss NMaaS

deployment options, showcasing how the development
virtual machine can be used for quick evaluation of the
NMaaS software. We would then proceed with the new user
registration process on an existing NMaaS deployment,
explaining the different supported user roles within a given
NMaaS domain. We will also describe the procedure for

deploying new application instances using the deployment
wizard, and the required steps for configuring the instantiated
applications using the GitOps approach. By monitoring a
demo network environment, we will present how a network
operator can access the web user interface of the deployed
applications on NMaaS using a client-access VPN
connection. Finally, we will demonstrate the extensibility of
NMaaS by adding a previously unsupported application to the
NMaaS catalog using the new application wizard directly
from the Portal. We will conclude the demo by testing the
newly added application and deploying an instance.

ACKNOWLEDGMENT
This work was supported by the GN4 - phase 3 project

under GÉANT 2020 Framework Partnership Agreement
(FPA). The project is co-funded by the European Union’s
Horizon 2020 research and innovation programme under
Grant Agreement No. 856726 (GN4-3) and National Research
and Education Networks in Europe, members of the GN4-3
consortium. Any opinions, findings, conclusions or
recommendations expressed in this material are those of the
authors and do not necessarily reflect the views of the GN4 -
phase 3 consortium or the European Commission.

REFERENCES
[1] G. Nguyen, S. Dlugolinsky, V. Tran, and Á. López García, ‘Deep

Learning for Proactive Network Monitoring and Security Protection’,
IEEE Access, vol. 8, pp. 19696–19716, 2020, doi:
10.1109/ACCESS.2020.2968718.

[2] S. P. F. Persis and S. Bindiya, ‘A Survey on Open Source Tools - for
Server Monitoring using SNMP’, International Journal of
Engineering Research & Technology, vol. 3, no. 15, Apr. 2018.

[3] P.-W. Tsai, C.-W. Tsai, C.-W. Hsu, and C.-S. Yang, ‘Network
Monitoring in Software-Defined Networking: A Review’, IEEE
Systems Journal, vol. 12, no. 4, pp. 3958–3969, Dec. 2018, doi:
10.1109/JSYST.2018.2798060.

[4] ‘IT skills shortage opens chances for growth and diversity’,
SearchITOperations.
https://searchitoperations.techtarget.com/feature/IT-skills-shortage-
opens-chances-for-growth-and-diversity (accessed Jan. 21, 2022).

[5] T. A. Limoncelli, ‘GitOps: A Path to More Self-service IT: IaC + PR
= GitOps’, Queue, vol. 16, no. 3, pp. 13–26, Jun. 2018, doi:
10.1145/3236386.3237207.

[6] ‘2021 Kubernetes Adoption Survey’.
https://www.purestorage.com/content/dam/pdf/en/analyst-reports/ar-
portworx-pure-storage-2021-kubernetes-adoption-survey.pdf
(accessed Dec. 26, 2021).

[7] S. Böhm and G. Wirtz, ‘Profiling Lightweight Container Platforms:
MicroK8s and K3s in Comparison to Kubernetes’, presented at the
13th Central European Workshop on Services and their Composition,
Bamberg, Germany, Mar. 2021.

[8] ‘Container Storage Interface (CSI) for Kubernetes GA’, Kubernetes,
Jan. 15, 2019. https://kubernetes.io/blog/2019/01/15/container-
storage-interface-ga/ (accessed Dec. 26, 2021).

[9] R. Kumar and M. C. Trivedi, ‘Networking Analysis and Performance
Comparison of Kubernetes CNI Plugins’, in Advances in Computer,
Communication and Computational Sciences, Singapore, 2021, pp.
99–109. doi: 10.1007/978-981-15-4409-5_9.

[10] ‘Helm - The Package Manager for Kubernetes’. https://helm.sh/
(accessed Jan. 18, 2022).

[11] ‘Kubernetes ConfigMaps’, Kubernetes.
https://kubernetes.io/docs/concepts/configuration/configmap/
(accessed Jan. 18, 2022).

[12] ‘Kubernetes Secrets’, Kubernetes.
https://kubernetes.io/docs/concepts/configuration/secret/ (accessed
Jan. 18, 2022).

[13] V. Kjorveziroski and Ł. Łopatowski, ‘Local NMaaS Testing
Environment - NMaaS - GÉANT federated confluence’.
https://wiki.geant.org/display/NMAAS/Local+NMaaS+Testing+Envi
ronment (accessed Jan. 19, 2022).

