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Discrete-time non-Markovian SEIS model on
complex networks

Igor Tomovski, Lasko Basnarkov, and Alajdin Abazi

Abstract—We study a discrete-time variant of the non-
Markovian SEIS (Susceptible-Exposed-Infectious-Susceptible)
model, occurring on complex networks. The model assumes
for an arbitrary form of the Discrete Temporal Probability
Functions (DTPFs), that govern the transitions from Exposed to
Infectious state (incubation period) and Exposed/Infectious back
to Susceptible state (recovery period); this enables the model
to address a wide range of real-world spreading phenomena.
Theoretical analysis, based on methods from systems theory,
leads to an expression that defines the epidemic threshold, for
the analyzed model, as a critical relation between the DTPF’s,
infection rate and the network topology (the largest eigenvalue of
the networks adjacency matrix), in a form that extends the result
for the Markovian case. Validity of the suggested model, and
the obtained theoretical result are confirmed by the numerical
analyzes. We argue that the approach used in the paper, may be
further extended to describe a wide variety of model variants and
sub-models, occurring both on natural, as well as technological
(engineering) networks.

Index Terms—Complex networks, Stochastic processes,
Discrete-time systems, Nonlinear network analysis, Discrete
transforms, Stability analysis.

I. INTRODUCTION

THE stochastic spreading processes, occurring on complex
networks, raised serious interest among scientists that

work in the field of complex systems, in the past two decades.
This interest followed the rapid development of the trans-
portation networks, telecommunication networks, computer
networks, social networks etc, accompanied by the emergence
of new types of stochastic spreading processes, either in a
form of adverse byproducts (computer malware, inappropriate
content spreading, etc) or engineered solutions, occurring
on these networks. Extensive research in this field resulted
in multitude of research papers that treated the issue from
phenomenological and theoretical viewpoint, as well as from
process control and engineering aspects.

Theoretical work on the subject focused on several research
subareas. One of the main challenges was to adequately model
the transfer of the spread material from an infectious to a
susceptible neighbor in a heterogeneous media. In [1] Moore
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and Newman considered the site and bond percolation ap-
proach. Pastor-Sattoras and Vespignani in [2], [3] analyzed the
dynamical evolution of state probabilities of nodes classified
by their node degree. A huge leap forward was made with
introduction of models that analyzed dynamical evolution
of state probabilities of each network node, by considering
statistical independence of joint events. Various models based
on this approximation were developed both in discrete [4]–[6]
and in continuous time [7], [8]. Cator and Van Mieghem in
[9] worked towards improving the accuracy of these models,
by considering dynamical evolution of the second-order joint
events. In another subtopic, spreading models were devel-
oped to address processes occurring on special classes of
network structures, including multi-layer networks [10] and
time-varying networks [11], as well as processes characterized
by specific transition dynamics, for example heterogeneous
spreading rates [12], or specific form of recovery from failure
[13]: recovery occurs τ steps after the failure, if the failure is
internally, or τ ′ steps if the failure is externally driven (caused
by a sufficient number of failed neighboring nodes).

In parallel, an extensive research effort was directed towards
development of techniques to either control, or to utilize
stochastic spreading processes as basis for different engi-
neering solutions [14]–[16]. From protective aspect, different
topology-manipulative algorithms and vaccination strategies
were considered, for example in [17], [18], as well as algo-
rithms that utilize selective content blocking approach in So-
cial networks [19]. From the engineering viewpoint, stochastic
spreading has been analyzed in order to maximize the influ-
ence spreading on complex networks [15], to maximize the
effects of viral marketing [20], even as a tool to assess network
topology [21].

The traditional outlook in the development and analysis of
epidemic models, considers spreading phenomena as Markov
processes, i.e. processes in which the state of each node, at
given instance, is determined only by the state of the system
at the moment immediately preceding it. The transition from
one status into another, within a single time frame, occurs with
a constant, time-independent probability; this notion places
classical spreading models into even narrower class of Markov
processes – Poisson processes. It is only in the last few years,
that this attitude started to change towards the non-Markovian
perspective in modeling spreading phenomena. This approach
takes into account that, in reality, the status of a node, at
given instance, depends on the status of the system at moments
beyond the immediate preceding moment and that node status
transition occurs following a temporal probability function,
referenced by a trigger event (usually exposure to the agent).
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The interest in this new approach to the problem, originally
emerged in order to address the spreading of new forms of
smart computer viruses, as well as information spreading on
new types of social platforms. Occurrence of several large-
scale epidemics, including the SARS, the MERS, the Avian
influenza and finally the COVID-19 pandemics, affirmed the
attitude that – proper understanding of real-world spreading
processes requires diverting the approach in their analysis from
Markovian to the non-Markovian realm. This is due to the
fact that almost all status transitions in the epidemic diseases,
primarily those related to incubation period and recovery, may
by no means be treated as time-invariant Poisson processes, as
may be seen from the corresponding collected medical data;
for example, in the case of COVID-19 please refer to [22]–
[24].

As a result, a number of publications, that suggest different
forms of non-Markovian spreading models and analyze their
effectiveness and applicability were published in the last
decade. In one of the seminal works on the subject, Boguñá
et al. [25] suggested Gillespie algorithm as most adequate
tool in numerical investigation of non-Markovian spreading
processes. Nowzari et al. in [26] introduced the non-Markovian
SI*V* model, as a general framework for development of a
whole range of epidemic sub-models. In a series of several
papers [27]–[29], authors focused on the SIS model with
Weilbullian and Gamma [28] distributed infection times and
Markovian curing. Using the NIMFA model, adjusted for non-
Markovian processes, the authors obtain the threshold relation
in the form τc = 1/ ln(1 + λ1), with τc being the effective
infection rate and λ1 the leading eigenvalue of the networks
adjacency matrix [28], [29]. A generalized framework that
emulates stationary solution of a non-Markovian SIS model
in Markovian realm is introduced in [30]. In [31], authors
utilize non-Markovian and fractional calculus approach to
study random link activation and deletion with heavy tailed
Mittag-Leffler distribution for the inter-event times. Kiss et
al. [32] and Sherborne et al. [33] work towards development
of pairwise models of non-Markovian spreading, in order to
reduce the errors that arise when different forms of mean-
field approximation are implemented in modeling of spreading
processes occurring on heterogeneous networks. Authors in
[34] investigate the circumstances under which an equiva-
lence between Markovian and non-Markovian dynamics exists.
A common characteristics of the models inquired in these
papers is that they are formulated in continuous time, with
status transitions that follow functionally defined probability
distributions. In another line of works, the Hawkes process,
as a non-Markovian extension of the Poisson process [35],
is utilized to study effects that endogenous and exogenous
excitement have on epidemic spreading. In Zino et al. [36],
authors suggest a mechanism in which self-excitement leads
to new link formation in adaptive networks, and derive an
epidemic threshold for a SIS type of a process. Kim et al.
in [35] and Unwin et al. in [37] used similar methodology,
extended with exogenous excitation, for capturing non-Poisson
arrival of new cases in population-level models.

In this article, we introduce a novel discrete-time non-
Markovian variant of an existing model, that, with adequate

adjustments, tends to be ”camera-ready” to accept an arbitrary
form (either functionally defined, or collected from a process
observation) of discrete temporal probability functions that
describe the process transitions from Exposed to Infectious
and Exposed/Infectious to Susceptible status. In that sense,
the model addresses a wide range of spreading phenomena,
including spreading of various infectious diseases, spreading
of different forms of malware in computer networks, spreading
of gossip and ideas in social networks etc. The analysis
of the spreading process is based on a strictly dynamical
system theory approach. Appropriate tools, including parts of
Lyapunov’s stability theory and z-transform, are used in order
to derive the main result of this work – the epidemic threshold
for the analyzed model.

The paper is organized as follows. In the Section 2 we
introduce the model, while in the next Section 3 a thorough
analysis of the stability of the epidemic origin is presented and
the epidemic threshold is determined. Section 4 presents the
numerical experiments and their analysis. The paper finishes
with the conclusion in Section 5.

II. THE MODEL

In this paper, we present a discrete-time non-Markovian
SEIS (Susceptible- Exposed - Infectious- Susceptible) status
model of epidemic spreading on complex networks. The
SEIS model is well known in its classical (Markovian) form,
for example in [38]–[41]. Recently, several research papers,
considered the non-Markovian SEIS forms, or non-Markovian
SIS models with similar dynamics, in continuous time [27]–
[30], [34]. In this work, the concept is extended and further
explored for spreading processes that, due to the character of
the process dynamics, may be described and/or considered in
discrete-time.

The discrete time modeling of stochastic spreading pro-
cesses is characterized by several differences in comparison
to continuous cases. Apparent from the obvious use of differ-
ence equations, instead of integro-differential forms, the main
distinction lies in the description of the transfer of the spread
content from an Infectious neighbor to a Susceptible node. In
continuous time models, it is fairly assumed that, within an
infinitesimal time frame, this process may only occur alongside
a single contact line. In discrete time-models, except in special
circumstances, the transfer, within a single time frame, may
simultaneously occur from several Infectious neighbors (see
Appendix A for details). Next, the tools used in the theoretical
analysis, in particular for the non-Markovian models, differ:
utilization of z-transform replaces the Laplace transform, ad-
equate formulation and application of system stability criteria
etc. In practice, discrete-time models, and especially discrete-
time non-Markovian models, address processes in which, due
to practical reasons, the data (DTPFs) is collected in distinctive
regular time intervals, that might not necessarily represent
a proper sampling of the underlying continuous processes.
A good example is collection of data related to infectious
diseases, where distributions of time to recovery, incubation
period, time to hospitalization etc. are collected on per-day
bases [23], [24].
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Prior to stating the model scenario, in order to stress the
differences with the existing SEIS model variants encountered
in the literature, as well as to clarify certain issues that might
be ambiguous in the following text, a few notions would be
addressed in regard to the terminology used in the paper:

• The node would be referred to as Exposed, providing it
has contracted and caries the spreading agent, regardless
of whether the node has acquired the capacity to spread
the agent to the neighboring nodes or not.

• The node would be referred to as Infectious at an instance
t, provided it is Exposed and is able to spread the virus
further to its neighbors. In this sense, the Infectious status
is a sub-state of the Exposed status, i.e. its manifesting
state.

• The terms instance, time instance, time step, interval,
and time cycle refer to moments in discrete time, in
accordance with the time scale of the model, i.e. the
models dynamical features. Depending on the rate with
which status transitions occur, they may refer to days,
hours or any other adequate (in respect to time sampling)
time reference.

• Disease cycle of a node – T is the maximal time period
needed for a node to complete a full cycle starting from
Susceptible, through Exposed, possibly Infectious, and
back to Susceptible status.

• Trigger event is a node-related process event, in respect
to which all other subsequent events, within the disease
cycle of the node, are time-referenced. In this model, and
generally in stochastic spreading processes, the exposure
of the Susceptible node to the agent, i.e. the S → E
transition, plays that role.

• Discrete temporal probability function (DTPF) is a map-
ping P (τ) that defines probability of the node status,
or probability of the node-status transition at time τ
following the trigger event. Depending on the type of the
process that it describes, the DTPF may be a probability
mass function (pmf), cumulative distribution function
(cdf), or a random mapping. We generally assume that it
is constructed from collected statistical data from the real-
world phenomena, or a function that mimic (approximate)
such data.

The model presented in this paper is based on the following
scenario (detailed flow diagram is presented in Fig. 1): a
Susceptible node may become Exposed to the spreading agent,
when in contact with an Infectious neighbor. The probability of
the exposure at one moment t, providing certain transmission
contact (duration and quality of the contact) between nodes
occurs, is denoted by β (the infection rate). When exposed,
the node, in the general case, does not instantly acquire the
capacity to transmit the spread agent to its neighbours (does
not become Infectious). Let b(τ) be a DTPF – the probability
that the Exposed node will become Infectious at time τ
following the exposure, while B(τ) a related DTPF – the
probability that the Exposed node is Infectious at moment
τ from the exposure. We would refer to b(τ) and B(τ) as
daily manifesting probability and manifesting probability at
time τ , respectively. In respect to manifesting probabilities, in

Fig. 1. Flow diagram for the analyzed non-Markovian SEIS model. Sus-
ceptible node contracts the spread agent following a contact with Infectious
neighbor with probability β and becomes Exposed - trigger. Exposed, but
non-Infectious node, becomes Infectious at time τ from the trigger event
with probability b(τ). Exposed node (Infectious or non-Infectious) recovers
and becomes Susceptible at time τ from the trigger event with probability
γ(τ).

this article we distinguish between two forms of manifestation:

• Cumulative in nature: B(τ) =
∑τ
k=0 b(k), with∑T−1

k=0 b(k) ≤ 1 (the ”<” sign indicates that mani-
festation does not necessarily occur during the disease
cycle). This type of manifestation is typical for infectious
diseases, i.e. once the node becomes infectious, it remains
infectious until recovery. In this case b(τ) is a pmf.

• Random in nature: B(τ) = b(τ), with no restriction
imposed on b(τ), except 0 ≤ b(τ) ≤ 1. This type of
manifestation is more characteristic for technological and
social networks. The manifesting pattern of exposure to
the agent (information, computer virus) differs at each
instance.

When the agent is eradicated from the node (recovery), the
node transitions back to status Susceptible. The probability
that the node will recover from the infection and become
Susceptible again, τ time steps after the exposure, is denoted
by γ(τ), with

∑T−1
τ=0 γ(τ) = 1 (the DTPF γ(τ) is pmf). For the

parameters γ(τ) the term daily recovering probabilities will be
used in the further text. Similarly, we consider the parameter
Γ(τ) =

∑τ
k=0 γ(k), and refer to it as cumulative recovery

probability at time τ . Its complement Γ(τ) = 1−Γ(τ) would
be extensively used both in the model definition, as well as
in the analysis. Finally, we assume that once a Susceptible
node is exposed to the agent, it may not be re-exposed until
it recovers.

A. Mathematical model

Consider a graph G = G(V,E,w), with V representing
the set of vertices (nodes), such that |V | = N , E the set of
edges, |E| = L, and w : E → [0, 1] a mapping function,
that associates a weight to each directed edge [42]. The
interconnection among nodes in the network, is described with
the adjacency matrix A = [aij ], such that 0 ≤ aij ≤ 1 if
a link from the node j towards node i exists (direction of
influence), and aij = 0 otherwise. The network (the graph)
is, in the general case, asymmetrical and is assumed to be
strongly connected.

The network G, as defined here, models the epidemiolog-
ical contacts between individuals involved in the spreading
process. Associated weights give assessment of these contacts
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in relation to their epidemiological significance like time aver-
ages of duration of particular contact, proximity of individuals,
use of protective equipment, use of anti-virus programs etc.

One important issue that has to be addressed with cau-
tion, prior to formally stating the mathematical model, is
the problem of the initial conditions. Consider pIni to be a
probability that node i comes in contact with an external
Infectious vector (wild animal(s), contaminated food or water,
malware or malicious software source, information source etc)
at time t = 0. The role of the external contacts, besides
modeling the origin of the process, is to provide an initial
process trigger: this could not be achieved by simply assigning
Exposure/Infectiousness probabilities to nodes at t = 0, as
done in the classical case. One should note that, in reality,
subsequent exposures that originate from external sources,
might occur for t > 0, as well. However, this seriously
increases the complexity of both modeling and the analysis,
to an extent that, by far, exceeds the scope of this paper, and
would, therefore, be further omitted.

Let pSi (t), pEi (t), pIi (t) ∈ [0, 1] represent the probabilities
that node i is Susceptible, Exposed and/or Infectious at time t,
with pSi (t) + pEi (t) = 1 defining the probability conservation
condition. In order to formulate the dynamical behavior of
status probabilities for each node, as a function of time, the
assumption of statistical independence of joint node-status
events will be utilized, i.e. p(sSi (t), sIj (t)) = pSi (t)pIj (t),
with sSi (t), sIi (t) being random variables that represent the
status of the node i as Susceptible and Infectious, at time
t, respectively. Though this approximation introduces certain
degree of error, its use is considered a golden standard in
modeling spreading processes occurring in complex networks
and is extensively applied in different studies [4], [5], [8], [43],
[44]. By employing this approximation, and acting similarly as
in [4], [5], the probability that the Susceptible node i, would
be infected by its neighbors, at time t, is defined with the
expression:

πi(t) = 1−
(
1− pIni δ(t)

) N∏
j=1

(
1− βaijpIj (t)

)
,

where δ(t) is the the Kronecker’s function, that is used for
setting the initial seed of infection, while the product accounts
for the probabilities of missing the infection at given moment
while in contact with infectious neighbor. On the basis of the
previous discussion, and considering that Γ(T − 1) = 0, the
analyzed system may be described with the following set of
equations:

pSi (t+ 1) = 1− pEi (t+ 1)

pEi (t+ 1) =

T−2∑
τ=0

(
1− pEi (t− τ)

)
πi(t− τ)Γ(τ) (1)

pIi (t+ 1) =

T−2∑
τ=0

(
1− pEi (t− τ)

)
πi(t− τ)Γ(τ)B(τ).

Notice that the second and the third equation of the dynamical
system (1) fully describe the dynamical behavior of the model,
with the first equation stating the conservation of probability
constraint. For that reason, the first equation, unless otherwise

stated, would be omitted when referring to the system (1) in
the further text.

III. THEORETICAL ANALYSIS

The most important theoretical issue in the analysis of
the spreading processes, is the derivation of the epidemic
threshold. For re-occurring processes as the SEIS model, it
is a relation between system parameters, characteristics of
the network, status changing probabilities etc, that determines
whether an initial spreading out-brake would turn into persis-
tent epidemic, or will die out as time lapses.

In order to obtain the epidemic threshold for the analyzed
SEIS model, in this Section a thorough stability analysis of
the dynamical system (1) is conducted. Investigation of the
conditions under which the origin of the system, i.e. pEi (t) =
pIi (t) = 0, pSi (t) = 1, for all i, is globally stable, gives rise
to critical relations among process parameters, that determine
whether an initial infection will vanish or infinitely persist.

Remark 1. Stability analysis of a dynamical system inves-
tigates the long-term behavior of the system, i.e. the system
asymptotic dynamics when t→∞. From relation (1), one may
conclude that the initial conditions terms

(
1− pIni (t)δ(t)

)
directly contribute to the system dynamics only within the first
T − 1 time steps, and have no direct effect on the asymptotic
behavior. In that sense, in the forthcoming analysis, it would
be assumed that dynamical behavior is analyzed starting from
some moment t ≥ T , omitting the

(
1− pIni (t)δ(t)

)
terms;

however, values generated by the first T −1 time steps, would
be included in the analysis as initial conditions.

The conditions when the spreading cannot rise to an epi-
demic in the mathematical models are related to the stability
of the epidemic origin, or the disease-free state. We address
this issue by studying its linear and nonlinear stability in the
following two theorems.

Theorem 1. Local asymptotic stability of the origin
Consider the dynamical system (1), and let PE(t) =

[pEi (t)]N×1 and PI(t) = [pIi (t)]N×1, for i = 1, N . If the
graph G is strongly connected, the vector [PE(t)TPI(t)T]T =
[0T
N×10

T
N×1]T, i.e. the epidemic origin, is a locally stable fixed

point of the dynamical system (1), provided all roots z = ri,j ,
i = 1, .., N , j = 0, .., T − 2, of the polynomial set:

Pi(z) = zT−1 − βλi(A)

T−2∑
τ=0

Γ(τ)B(τ)zT−2−τ = 0,(2)

where λi(A), i = 1, .., N are the eigenvalues of the adjacency
matrix A, lie within the unit circle, i.e. |ri,j | < 1.

Proof: From the system of equations (1), it is straight-
forward obvious that, by taking PE(t) = 0 and PI(t) = 0,
for t < T , providing no external trigger exists (pIn = 0), one
obtains PE(T ) = 0 and PI(T ) = 0. Similarly, for any t > T ,
by taking PE(t− τ) = 0 and PI(t− τ) = 0, τ = 0, .., T − 1,
one obtains PE(t+ 1) = 0 and PI(t+ 1) = 0. Consequently,
the vector [PE(t)T PI(t)T]T = [0T

N×1 0T
N×1]T is a fixed

point of the dynamical system (1).
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In order to prove the dynamical stability of the fixed point,
we will consider the evolution of the perturbations δpEi (t)
and δpIi (t) in the vicinity of the origin. Acting similarly as
in [5, Lemma 1], by linearizing the equations (1) in the
neighborhood of the point [0T

N×1 0T
N×1]T, for t > T , one

obtains:

δpEi (t+ 1) =

T−2∑
τ=0

N∑
j=1

βaijΓ(τ)δpIj (t− τ) (3)

δpIi (t+ 1) =

T−2∑
τ=0

N∑
j=1

βaijΓ(τ)B(τ)δpIj (t− τ).

For the dynamical behavior of the perturbed system, for t ≤
T − 1, please refer to the Appendix B.

From the system of equations (3), it is apparent that the
second group of N equations, that describe the dynamical
evolution of the Infectious status of each node in the vicinity of
the epidemic origin, alone, is self sufficient, and the dynamical
stability of the system as a whole relies on the stability of this
equation sub-set, only; vanishing of the infectious probabilities
implies vanishing of the exposed ones, as well.

Let δPI(t) = [δpIi (t)]
T be the perturbed infection proba-

bility vector. By time-shifting the system T −1 steps forward,
in accordance with the Remark 1, the second subset of system
of equations (3) can now be re-written in a vector form as
follows:

δPI(t+ T ) = β

T−2∑
τ=0

Γ(τ)B(τ)AδPI(t+ T − 1− τ). (4)

The dynamical system described with the vector equation
(4) is a discrete linear system of order N×(T−1), represented
by N linear equations with latency T − 1.

By performing unilateral z-transform on both sides of the
equation (4) one obtains:

Q(z)zT −
T−1∑
τ=0

δPI(τ)zT−τ = βA

T−2∑
τ=0

Γ(τ)B(τ)Q(z)zT−1−τ

−βA
T−2∑
τ=0

Γ(τ)B(τ)

T−2−τ∑
k=0

δPI(k)zT−1−τ−k,

(5)

where Q(z) =
∑∞
t=0 z

−tδPI(t) is the z-transform of the
perturbed infection probability vector δPI(t). The last rela-
tionship can be rearranged as:(

zT − βA
T−2∑
τ=0

Γ(τ)B(τ)zT−1−τ

)
Q(z) = G(z),

where for shortening the notation we have introduced the
vector function that encapsulates the initial perturbations:

G(z) =

T−1∑
τ=0

δPI(τ)zT−τ

− βA

T−2∑
τ=0

Γ(τ)B(τ)

T−2−τ∑
k=0

δPI(k)zT−1−τ−k.

Now, Q(z) can be expressed as:

Q(z) =

(
zT I− βA

T−2∑
τ=0

Γ(τ)B(τ)zT−1−τ

)−1
G(z)

=
A′(z)G(z)

det
(
zT I− βA

∑T−2
τ=0 Γ(τ)B(τ)zT−1−τ

) ,
where A′(z) is a N×N matrix consisting of minors of the ma-
trix zT I− βA

∑T−2
τ=0 Γ(τ)B(τ)zT−1−τ , and which elements

are polynomials of order (N − 1) × T . After dividing both
numerator and denominator term with zN , and by employing
f(z) = β

∑T−2
τ=0 Γ(τ)B(τ)zT−2−τ , the determinant in the the

denominator may be represented as:

det(zT−1I−Af(z)) = [f(z)]N det

(
zT−1

f(z)
I−A

)
.

Considering that the characteristic polynomial of the matrix
A is defined as det(λI−A) =

∏
i(λ− λi(A)), with λi(A)

being the eigenvalues of the matrixA, the following expression
holds:

det(zT−1I−Af(z)) = [f(z)]N
∏
i

(
zT−1

f(z)
− λi(A)

)
=

∏
i

(
zT−1 − λi(A)f(z)

)
.

Consequently:

Q(z) =
A′(z)G(z)∏T−2

i=0 (zT−1 − λi(A)f(z))
=

H(z)

P (z)
, (6)

where H(z) is an N×1 vector, which elements are polynomi-
als of order N×(T−1) and P (z) =

∏N
i=1 Pi(z) is polynomial

of order N × (T − 1) that is product of the polynomials:

Pi(z) = zT−1 − λi(A)β

T−2∑
τ=0

Γ(τ)B(τ)zT−2−τ .

From the equation (6), one may conclude that the stability
of the dynamical system (1), in the vicinity of the epidemic
origin, is determined by the roots of the polynomials Pi(z),
i.e. if all roots of the polynomials Pi(z), ri,j , lie within the
unit circle, |ri,j | < 1, than the dynamical system is stable in
the point of epidemic origin.

Theorem 2. Global asymptotic stability of the origin
Consider the dynamical system (1), and let PE(t) = [pEi (t)]

and PI(t) = [pIi (t)], for i = 1, .., N . Providing all assump-
tions of Theorem 1 hold, the point of the epidemic origin is
a global, on [0, 1]2N , asymptotically stable fixed point of the
dynamical system (1).

Proof: From the relation (1), considering that pEi (t) ≥ 0,
and by using the Weierstrass product inequality

∏
i(1−αi) ≤

1 −
∑
i αi, that holds for real numbers 0 ≤ αi ≤ 1, one can

obtain the following bounds:

pEi (t+ 1) ≤
T−2∑
τ=0

N∑
j=1

βaijp
I
j (t− τ)Γ(τ) (7)

pIi (t+ 1) ≤
T−2∑
τ=0

N∑
j=1

βaijp
I
j (t− τ)Γ(τ)B(τ).
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Consider the following (auxiliary) dynamical system:

p′Ei (t+ 1) =

T−2∑
τ=0

N∑
j=1

βaijp
′I
j (t− τ)Γ(τ) (8)

p′Ii (t+ 1) =

T−2∑
τ=0

N∑
j=1

βaijp
′I
j (t− τ)Γ(τ)B(τ),

or in a vector form:

P′E(t+ 1) =

T−2∑
τ=0

βAΓ(τ)P′I(t− τ) =

= f1

((
P′I(t− τ)

)T−2
τ=0

)
(9)

P′I(t+ 1) =

T−2∑
τ=0

βAΓ(τ)B(τ)P′I(t− τ) =

= f2

((
P′I(t− τ)

)T−2
τ=0

)
,

where we have denoted the sums as functions and(
P′I(t− τ)

)T−2
τ=0

= {P′I(t),P′I(t − 1), . . .P′I(t − T + 2)}
is a shorthand notation for a sequence of successive vectors
P′I(t). The system of equations (1) can be re-written in a
vector form as:

PE(t+ 1) = g1

((
PE(t− τ)

)T−2
τ=0

,
(
PI(t− τ)

)T−2
τ=0

)
(10)

PI(t+ 1) = g2

((
PE(t− τ)

)T−2
τ=0

,
(
PI(t− τ)

)T−2
τ=0

)
Likewise, the bounds (7) can be succinctly written with vectors
as:

PE(t+ 1) ≤ f1

((
PI(t− τ)

)T−2
τ=0

)
(11)

PI(t+ 1) ≤ f2

((
PI(t− τ)

)T−2
τ=0

)
.

One should observe first that the Lemma 1, and
consequently the proposition (24) of Lemma 2, given
in the Appendix C holds for the functions f1 and
f2. Furthermore, for t ≥ T , for any given se-
quences

(
PI(t− τ)

)T−2
τ=0

and
(
PE(t− τ)

)T−2
τ=0

from (10)

and (11) one has g2

((
PE(t− τ)

)T−2
τ=0

,
(
PI(t− τ)

)T−2
τ=0

)
≤

f2

((
PI(t− τ)

)T−2
τ=0

)
. Then, in accordance with Lemma 2,

for any set of initial conditions
(
P′

I
(τ)
)T−2
τ=0

=
(
PI(τ)

)T−2
τ=0

,

with corresponding
(
PE(τ)

)T−2
τ=0

, the following relation holds:

0 ≤ PI(t) ≤ P′
I
(t). (12)

Observe that the governing dynamics of the vector P′
I
(t) in

(9) is of identical form as the vector PI(t) in (4), when the
time-shift is disregarded. Using similar arguments as those
following eq. (4) in the proof of Theorem 1, one may obtain
that, providing all assumptions in the statement of the Theorem
2 hold, P′I(t)→ 0, when t→ 0. Consequently, from (12):

0 ≤ lim
t→∞

PI(t) ≤ lim
t→∞

P′
I
(t) = 0, i.e. lim

t→∞
pIi (t) = 0,

yielding, from (1) limt→∞ pEi (t) = 0, as well. The proof is
completed.

The relationship between the model parameters which deter-
mine the epidemic threshold is given in the following theorem.

Theorem 3. The dynamical system (1) is asymptotically
stable, providing the graph G is strongly connected and the
following condition holds:

βλ1(A) <
1∑T−2

τ=0 Γ(τ)B(τ)
. (13)

Proof: If G is strongly connected, the matrix A is
non-negative and irreducible. From the Theorem of Perron
- Frobenius for non-negative irreducible matrices, [45], [46],
matrix A has a distinctive and positive eigenvalue λ1(A), such
that all other eigenvalues of A, satisfy |λi(A)| ≤ λ1(A). We
will consider separately the polynomial P1(z) associated with
the leading eigenvalue λ1(A) of the adjacency matrix A and
those corresponding to the remaining ones.

Case 1: Consider the polynomial P1(z), as defined with the
relation (2), for λi(A) = λ1(A) - the largest eigenvalue of
A. Since P1(z) is monic, there exists a Frobenius companion
matrix F1:

F1 =


0 0 · · · 0 βλ1(A)Γ(T − 2)B(T − 2)

1 0 · · · 0 βλ1(A)Γ(T − 3)B(T − 3)
...

...
. . .

...
0 0 · · · 1 βλ1(A)Γ(0)B(0)

 ,

such that the eigenvalues of the matrix F1 are roots of P1(z),
λj(F1) = r1,j [47]–[49].

Since λ1(A) > 0, F1 is non-negative. Let 0 ≤ s ≤ T − 2
be a positive number, such that Γ(s)B(s) > 0 and for any
k, s < k ≤ T − 2, Γ(k)B(k) = 0. Then, the polynomial
P1(z) has T − 2− s roots r1,j = 0, j = s+ 1, .., T − 2. The
residual polynomial of P1(z), P ′1(z):

P ′1(z) = zs+1 − βλ1(A)

s∑
τ=0

Γ(τ)B(τ)zs−τ = 0,

is characterized by another Frobenius companion matrix F′1
of order (s + 1) × (s + 1), that is non-negative and irre-
ducible. From the Theorem of Perron - Frobenius for non-
negative irreducible matrices [45], [46], the matrix F′1 (and
the polynomial P ′1(z)) is characterized by one distinctive
real and positive eigenvalue (root) λ1(F′1) = r1,1, such
that all other eigenvalues (roots of the polynomial), satisfy:
|λj(F′1)| = |r1,j | ≤ r1,1 = λ1(F′1).

To summarize, providing at least one Γ(τ)B(τ) 6= 0 exists
(otherwise the model is non-existent), the polynomial P1(z)
has one distinctive real and positive root r1,1. By taking z = 1
in P1(z), one obtains the following relationship:

βλ1(A) =
1∑T−2

τ=0 Γ(τ)B(τ)
= δeff .

If:

βλ1(A) < δeff , (14)

from the Wielandt’s Theorem [50], [51] follows that, the
largest eignevalue of the matrix F1 (root of the polynomial
P1(z)) satisfies: λ1(F1) = r1,1 < 1.
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Case 2: Let us now consider the remaining polynomials
Pi(z), where λi(A) ∈ C and λi(A) 6= λ1(A).

If λi(A) = 0, then all roots of Pi(z), ri,j = 0. If
λi(A) 6= 0, to each polynomial Pi(z), a Frobenius companion
matrix Fi = [f ikl] might be assigned, such that f ik,T−2 =
(λi(A)/λ1(A)) f1k,T−2, and f ik,l = f1k,l , l = 0, .., T − 3 .

Following the same arguments, as in Case 1, a residual
polynomial P ′i (z) exists and is accompanied by a Frobenius
companion matrix F′i = [f ′ik,l] of order (s + 1) × (s + 1).
Since |f ′ik,s| = |(λi(A)/λ1(A))|f ′1k,s ≤ f ′1k,s, with all other
f ′ik,l = f ′1k,l, from the Wielandt’s theorem [50], all eigenvalues
of F′i (roots of P ′i (z)), λj(F′i) = ri,j , satisfy: |λj(F′i)| =
|ri,j | ≤ r1,1 = λ1(A). Providing relation (14) holds, all roots
|ri,j | < 1.

From the discussion, and in accordance with Theorem 1 and
Theorem 2, providing relation (14) holds, the epidemic origin
is both locally and globally stable fixed point of the dynamical
system (1). The proof is completed.

From the last theorem one can conclude that the epidemic
threshold is obtained from the following relationship:

βλ1(A) =
1∑T−2

τ=0 Γ(τ)B(τ)
, (15)

which extends the known result for Markovian model
βλ1(A) = δ.

IV. NUMERICAL SIMULATIONS AND ANALYZES

In order to test the validity of the model and the result
for the epidemic threshold, in this section we present part of
the results obtained from the numerical simulations, conducted
on a number of synthetic (computer generated) networks. Two
types of simulations were performed: simulation of the prob-
abilistic dynamical system, i.e. the set of equations (1), and
stochastic simulations. Stochastic simulations are conducted
using the literal model narrative: once a susceptible node is
exposed to the virus, a timer is started (τ = 0) and a moment
of recovery τrec is selected by a random generator with
cumulative distribution Γ(τ). In cases in which a cumulative-
like behavior of the manifesting state is considered, a moment
of manifestation, τinf , is selected by a random generator with
a cumulative probability B(τ); otherwise, at each instance in
time, between the time of the exposure and the moment of
recovery, the Exposed node may become Infectious, depending
on the outcome generated by a Bernoulli random generator,
with probability B(τ). For each of the investigated scenarios,
simulations are repeated, under similar circumstances, in order
to obtain 100 stochastic time series, that are subsequently
averaged.

In the analysis presented bellow, results from the simula-
tions conducted on two of the utilized networks are presented:
• Barabási–Albert [52] directed and weighted graph with
N = 1000 nodes, total of L = 3992 uni-directional
links , and the largest eigenvalue of the graph’s adjacency
matrix λ1(A) = 5.2922. The reference BA(1000,3992,
rand(0:1)) or BA1000 for short, will be used for this
network thought the paper. The network is derived from
a symmetrical BA(1000,1996) graph, with N = 1000
nodes, generated with parameters m0 = 3, m = 2;

TABLE I
DTPFS OF THE FOUR CASES STAT 1, STAT 2, STAT 3 AND STAT 4

Stat 1 Stat 2 Stat 3 Stat 4
τ B(τ) γ(τ) B(τ) γ(τ) B(τ) γ(τ) B(τ) γ(τ)
0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 1 0.022
2 0.10 0 0.10 0 0.10 0 1 0.043
3 0.25 0 0.25 0 0.25 0.1 1 0.062
4 0.50 0 0.50 0 0.50 0.15 0 0.078
5 0.75 0 0.75 0.1 0.75 0.25 0 0.091
6 0.90 0 0.90 0.15 0.90 0.40 0 0.100
7 1 0 1 0.25 1 0.10 1 0.104
8 1 0.10 1 0.40 1 0.104
9 1 0.15 1 0.10 1 0.100
10 1 0.25 0 0.091
11 1 0.40 0 0.078
12 1 0.10 0 0.062
13 1 0.043
14 1 0.022

• Watts–Strogatz [53] directed and weighted graph with
N = 1000 nodes, total of L = 6000 uni-directional
links , and the largest eigenvalue of the graphs adjacency
matrix λ1(A) = 3.26997. This network would be further
referenced as WS(1000,6000, rand(0:1)), or WS1000
for short. The network is derived from a symmetrical
WS(1000,3000) graph, with N = 1000 nodes, generated
with parameters r = 3, p = 0.2;

In order to test the functionality of the model, validity of
the threshold and to derive additional conclusions that would
become apparent from the simulations, four different DTPFs
were used. To the first three DTPFs (stat 1, stat 2 and stat 3)
we would refer to as quasi-medical DTPFs (qm for short). The
qm DTPFs are constructed by arbitrary choice of parameters
γ(τ) (Γ(τ)) and B(τ), in a fashion to resemble statistical
data related to epidemic diseases, i.e. B(τ) has a character
of a cumulative probability and b(τ) of a density function (for
reference consider Fig. 3 in [22]). The fourth DTPF (stat 4) has
a non-cumulative character of B(τ), and is more characteristic
for spreading processes occurring on technological and social
networks. The four DTPF’s are presented in Table I.

One may notice that the qm DTPFs, labeled as stat 1,
stat 2 and stat 3, are almost identical, except for the time
shift in the daily recovering probabilities. The aim of such
construct is to clarify to what extent the overlapping between
the manifestation and the recovery period affects the epidemic
threshold. Although this notion is somewhat apparent from the
expression (15), considering the cumulative nature of B(τ) in
these sets, we intended to test it in practice.

The stat 4 DTPF is random in nature. Infectious status
periods are interrupted by periods of dormicity. Though this
behavior is seen in some viruses, HPV for example, it is
more common for the computer viruses [27]–[29]. Recov-
ering probabilities are generated by the function γ(τ) =
π/(2T ) sin(τπ/T ).

Critical values for the parameter β = βc, that define the
epidemic threshold for stat 1, stat 2, stat 3 and stat 4 DTPFs
and the utilized graphs, are given in Table II. The results from
the numerical analysis on both BA1000 and WS1000 networks
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TABLE II
CRITICAL VALUES OF βc

βc for BA1000 βc for WS1000
stat 1 0.0328621 0.0531849
stat 2 0.0674848 0.109219
stat 3 0.162195 0.262501
stat 4 0.0472393 0.0764533
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Fig. 2. Numerical simulations conducted on the BA1000 and WS1000
networks, and the qm DTPFs. Top row: Time evolution for the SEIS process
occurring on the BA1000 graph, for β = 0.4 (a) and WS1000 graph, for
β = 0.45 (b). ps-probabilistic system, ss - stochastic simulation. Bottom row:
Number of Infectious nodes as function of β for the BA1000 (c) and WS1000
graph (d), obtained by sweeping the dynamical behavior of the model in the
range β ∈ [0, 1].

for the qm DTPFs are presented in Fig. 2. Corresponding
analysis for the stat 4 DTPFs is presented in Fig. 3.

From the results presented in the Fig. 2 and Fig. 3 and in
Table II, the following conclusions may be drawn:
• There is a good overlap between the results obtained

from the stochastic and probabilistic simulations, that
confirms the validity of the SEIS model as defined with
the system of equations (1). Differences might be noticed
in low-level epidemics and are especially pronounced for
the WS1000 graph (Fig. 2(b) for stat 3, Fig. 3(b) for
β = 0.12). These type of discrepancies are expected
when the system is near the threshold and acts in a
non-stationary fashion: in these circumstances no mean-
field type of approximation may be used to adequately
model the process. This, to the same extent, also holds for
the Markov spreading processes. To illustrate this claim,
in Fig. 4 in the next section, we present the compar-
ison of the classical Markov SIS model and the non-
Markovian SEIS model with DTPF chosen to resemble
the classical SIS model. From Fig. 4, one may conclude
that the assumption of statistical independence of joint
events in modeling both Markov SIS and non-Markovian
SEIS, under identical circumstances (adequate choice of
parameters β, δ and DTPFs, see Section V for details),
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Fig. 3. Top row: Time evolution for the SEIS process occurring on the
BA1000 graph (a) and WS1000 graph (b), for different values of the parameter
β and the stat 4 DTPF. ps-probabilistic system, ss - stochastic simulation
(averaged). Bottom row: Number of Infectious nodes as function of β for
the BA1000 (c) and WS1000 graph (d), obtained by sweeping the dynamical
behavior of the model in the range β ∈ [0, 1].

in low-level epidemics (near the threshold), introduces
the identical degree of error between reality (stochastic
simulations) and corresponding models. This comes at no
surprise, since the approximation, in our model, is utilized
in the same fashion as in the Markov spreading models
(see eqs. (19) and (20) in the Appendix A).
As system moves away from the threshold, the accuracy
of the model improves and excellent overlap between
the system (1) and the reality (stochastic simulations) is
reached;

• There is a perfect overlap between the theoretical results
for the epidemic threshold, i.e. critical values of the
parameter βc as calculated from the relation (15) and
presented in Table II, and results obtained from numerical
simulations of the system (1), for example Fig. 2(c), Fig.
2(d), Fig. 3(c) and Fig. 3(d).

From the Fig. 2(a) and Fig. 2(b) it is apparent that, for
the processes in which B(τ) is cumulative in nature, the
degree of overlap between the manifestation and recovery
period significantly affects the epidemic threshold. With a
reduction in the degree of overlap (increase of the time lag
of the recovery stage in respect to manifestation stage), the
epidemic threshold (i.e. βc) decreases, and diseases, with these
characteristics, tend to have higher epidemic capacity and grow
into epidemics.

V. DISCUSSION AND CONCLUSIONS

As previously mentioned, the non-Markovian SEIS model
tends to give rise to a broad range of models specific to various
diseases and various scenarios related to the course of such
diseases. This might be achieved by manipulation of statistical
parameters that define the model, Γ(τ) and B(τ). This notion
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Fig. 4. Comparison of the Markov SIS model, with the non-Markovian SEIS
model with DTPF chosen to resemble a Markov SIS. (a) BA1000 graph; (b)
WS1000 graph

that the non-Markovian models may extend their usability to
a broad range of epidemic sub-models, was first introduced by
the Nowzari et al. in [26]. In what follows, we mention just
few scenarios that might be derived from the native model:
• Let B(τ) = 1, for all τ , and γ(T − 1) = 1. In this

case δeff = 1/(T − 2), and the epidemic threshold is
maximized. When T → ∞, one obtains the classical SI
model;

• Let B(τ) = 1, for all τ , and γ(τ) = δ(1 − δ)τ−1s(τ −
1), with 0 < δ ≤ 1 and where s(τ) is the Heaviside
function. When T → ∞, one obtains the classical SIS
model. Numerical simulation of this scenario is presented
in Fig. 4;

• The model may be utilized as a base for development
of other models that include factors that take into ac-
count long term immunity following original exposure,
permanent immunity, different sub-stages of a disease etc.
In such circumstances, the original system (1) should be
accompanied by sets of equations that will modulate the
manifesting and recovering probabilities as time lapses.
This, however, exceeds by far the scope of this paper and
would be addressed elsewhere.

In conclusion, we should note the non-Markovian models
have a great potential to more accurately describe spreading
processes in comparison with the classical forms, emphasizing
certain aspects of the processes, that otherwise would be
omitted. In that sense, the presented model may be considered
a valid candidate to become an important tool in the future
research of spreading phenomena, and in particular in the
analysis of contagious diseases epidemics. Furthermore, these
models provide the opportunity to be exploited as a base for
engineering and design of a wide variety of applications based
on stochastic spreading occurring on technological, primarily
computer networks and accompanying social platforms. This
may be achieved by utilizing different forms of the DTPFs
B(τ) and Γ(τ).

TABLE III
LIST OF LOGICAL VARIABLES AND OPERATIONS USED IN THE ANALYSIS.

Symbol Meaning
Si(t) Node i is Susceptible at time t (T/F)
Ei(t) Node i is Exposed at time t (T/F)
Ii(t) Node i is Infectious at time t (T/F)
Πi(t) Susceptible node i contract the agent at time t (T/F)
Aij(t) Link acting in the j → i direction is active at time t (T/F)
βij(t) Provided Aij(t) = T , agent is transferred in the j → i

direction at time t (T/F)
Gi(t; τ) Node that transitioned S → E at time t − τ recovers in

the next τ steps (T/F)
Bi(t; τ) Node that transitioned S → E at time t − τ manifest

infectiousness at time t (T/F)
∨Ni=0Ai ∨Ni=0Ai = A0 OR A1 OR...OR AN

∧Ni=0Ai ∨Ni=0Ai = A0 AND A1 AND..AND AN

⊕N
i=0Ai ⊕N

i=0Ai = A0 XOR A1 XOR..XOR AN

APPENDIX A
MODEL DERIVATION

Consider the notation introduced in Table III:

We consider that, for t ≥ T , the status of the node i as
Exposed (Infectious) at time t+ 1 is a result of an occurrence
of one of T − 1 exclusive events: node i that was Susceptible
contracted the spread agent at t−τ , and did not recover in the
following τ steps (and is manifesting infectiousness at time t):

Ei(t+ 1) = ⊕T−1τ=0 Si(t− τ) ∧Πi(t− τ) ∧Gi(t; τ) (16)

Ii(t+ 1) = ⊕T−1τ=0 Si(t− τ) ∧Πi(t− τ) ∧Gi(t; τ) ∧Bi(t; τ)

with

Πi(t) = ∨Nj=1(βij(t) ∧Aij(t) ∧ Ij(t)) (17)

By taking expectations on both sides of the equation (16),
and considering β = E[βij(t)], aij = E[Aij(t)], Γ(τ) =
E[G(t; τ)], B(τ) = E[B(t; τ)], one obtains:

pEi (t+ 1) =

T−1∑
τ=0

E[Si(t− τ) ∧Πi(t− τ)]Γ(τ) (18)

pIi (t+ 1) =

T−1∑
τ=0

E[Si(t− τ) ∧Πi(t− τ)]Γ(τ)B(τ)

For convenience, in the following text we will replace the ∧
symbol with simple (logical) multiplication. Consider:

E[Si(t)Πi(t)] = E[∨Nj=1(βij(t)Aij(t)Si(t)Ij(t)] (19)

=

N∑
j=1

βaijE[Si(t)Ij(t))]

−
N∑

j1 6=j2=1

β2aij1aij2E[Si(t)Ij1(t)Ij2(t)]

+

N∑
j16=j26=j3=1

β3aij1aij2aij3E[Si(t)Ij1(t)Ij2(t)Ij3(t)]−

...+ (−1)diβdiaij1aij2aijdiE[Si(t)Ij1(t)Ij2(t)..Ijdi(t)]

By employing the assumption of statistical independence of
joint events, E[C1, C2, ...Ck] = E[C1]...E[Ck], considering
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E[Si(t)] = pSi (t), E[Ei(t)] = pEi (t) and E[Ii(t)] = pIi (t),
one obtains the well known result:

E[Si(t)Πi(t)] = pSi πi(t) = (1− pEi (t))πi(t) (20)

πi(t) = 1−
N∏
j=1

(
1− βaijpIj (t)

)
Notice that for sufficiently small β in (19), higher order
terms may be neglected, and, by additionally applying the
assumption of statistical independence of joint events, one
obtains:

E[Si(t)Πi(t)] = pSi (t)

N∑
j=1

βaijp
I
j (t) (21)

This form, with adequate adjustments, has been widely used
for Markovian [8], as well as non-Markovian [28], [29], [34]
spreading models in continuous time, where it is assumed that
within infinitesimal time period, a Susceptible node may be
infected only by one of its neighbors (no multiple infectious
events may occur).

APPENDIX B
DYNAMICAL BEHAVIOR OF THE PERTURBED SYSTEM (1)

FROM t = 0 TO t = T − 1

For t ≤ T − 1, the perturbed system (1) takes form:

δpEi (t+ 1) =

t∑
τ=0

Γ(τ)

×

 N∑
j=1

βaijδp
I
j (t− τ) + δpIni δ(t− τ)


δpIi (t+ 1) =

t∑
τ=0

Γ(τ)B(τ) (22)

×

 N∑
j=1

βaijδp
I
j (t− τ) + δpIni δ(t− τ)

 ,

where δ(t) is the Kronecker’s function. We assume that the
dynamical evolution of the system (22) is initiated by a small
external (in respected to the network) impulses, denoted with
the probabilities δpIni . The initial conditions are given with
δpEi (0) = δpIi (0) = 0, for all i. System is evolved for
T − 1 cycles, and sets of initial conditions for the system
(3) are obtained:{δpEi (t), δpIi (t)}, t = 1, .., T − 1. Dynamical
evolution from t > T proceeds with system (3).

APPENDIX C
LEMMAS 1 AND 2

Though trivial, we will prove here two Lemmas that are
used in the proof of Theorem 2.

Lemma 1. Let:

P(t+ 1) =

T−1∑
τ=0

aτAP(t− τ), (23)

is a mapping P(t) ∈ (R+)N , A an N×N non-negative matrix
and aτ ∈ R ≥ 0. Let (P′(t− τ))

T−1
τ=0 and (P′′(t− τ))

T−1
τ=0 be

two sets of initial conditions for the system (23), such that
P′(t− τ) ≤ P′′(t− τ), τ = 0, .., T − 1. Then:

P′(t+ 1) ≤ P′′(t+ 1).

Proof: Let P′(t− τ) = P′′(t− τ)− δ(t− τ), with δ(t−
τ) ≥ 0, τ = 0, .., T − 1. Then for each τ one has:

AP′(t− τ) = AP′′(t− τ)−Aδ(t− τ) ≤ AP′′(t− τ),

since the product Aδ(t − τ) is non-negative. Then, due to
aτ ≥ 0 one has:

T−1∑
τ=0

aτAP′(t− τ) ≤
T−1∑
τ=0

aτAP′′(t− τ)

which is equivalent to the assertion of the lemma. Thus the
lemma is proved.

Lemma 2. Let f be a vector function such that

f
(

(xτ )
T−2
τ=0

)
≥ f

(
(yτ )

T−2
τ=0

)
, (24)

for each xτ ≥ yτ ;xτ ,yτ ∈ (R+)N . Let g be another vector
function for which:

f
(

(xτ )
T−2
τ=0

)
≥ g

(
(zτ )

T−2
τ=0 , (xτ )

T−2
τ=0

)
, (25)

for each xτ , zτ ∈ [0, 1]N . Let (R(τ))
∞
τ=0 be an arbitrary

sequence of vectors R(τ) ∈ [0, 1]N . Let P(t) and Q(t) be
sequences obtained by successive application of the functions
f and g as:

P(t+ 1) = f
(

(P(t− τ))
T−2
τ=0

)
, (26)

Q(t+ 1) = g
(

(R(t− τ))
T−2
τ=0 , (Q(t− τ))

T−2
τ=0

)
,

Than for identical initial conditions of the sequences
(P(τ))

T−2
τ=0 = (Q(τ))

T−2
τ=0 one has P(t) ≥ Q(t), for any

t ≥ T − 1.

Proof: It is obvious that due to relationship between the
functions f and g (25), one has P(T − 1) ≥ Q(T − 1). Now
let us assume that for certain t ≥ T − 1 and all k; t ≥ k, one
has P(k) ≥ Q(k). Then, from (24) and (25):

P(t+ 1) = f
(

(P(t− τ))
T−2
τ=0

)
≥ f

(
(Q(t− τ))

T−2
τ=0

)
≥ g

(
(R(t− τ))

T−2
τ=0 , (Q(t− τ))

T−2
τ=0

)
= Q(t+ 1)

Therefore, by induction, one can conclude that P(t) ≥ Q(t)
holds for all t ≥ T − 1.
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