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Abstract
Let A be the class of functions f that are analytic in the unit disk I} and normalized
such that f{z) =z + @ +af +---. Let 0<i<1 and

U(i) = {f cA: |(féj)zf{z} 1

In this paper sharp upper bounds of the first three coefficients of the inverse function
f~! are given in the case when
f(z) !

2z S O-d-4)

<l zE I]}_
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Let .A denote the family of all analytic functions in the unit disk D:={z € C:
|z =1} satisfying the normalization f{0) = 0 = f7(0) — 1. Let & denote the subclass
of .4 which consists of univalent functions in I} and let L{(4), 0<4 < 1, denote the
set of all f € A satisfying the condition

Gﬁﬂ?ﬂﬂ—!

For i—1 we put L{(1) = I{. More about these classes can be found in [5-8, 10].
Im [7] it was claimed that all functions f from (1) satisfy

flz) I

2 (42 +ag°

Here “~" denotes the vsual subordination, ie., Fiz) < G(z), for f and G being
analytic functions in [, means that there exists a function e(z), also analytic in ||D,
such that e{(0) = 0 and |es(z)| <1 for all z £ D. Recently, in [3], the authors gave a
counterexample that the subordination (2) is not necessarily satisfied by all func-
tions from L4(4).
For the functions f from I{{4) satisfying subordination (2) we have
flz) !
- = TITY (3)
z (1 —ef2))(1 - im(2))

where w is a Schwarz function, i.e., it is analytic in D, w({0)=10 and
|w{z)| <1,z € D. Let's put

<i (zeD). (1)

(2)

ef7) =z +er +-oee

Later on we will use the fact due to Schur [9] that |c;|<1— |f:]’!1 {(which can be
found also in Carlson's work [1]).

Further, the imequality (1) for the function f from I{(4) can be rewritten in the
following, equivalent, form

kA & !

fo-<) -l eem
T '_ 2
[ﬂﬂ—;(ﬂ:}) IIEJLI o

From here, after some calculations we obtain

[(1+ Ae _j;_-? +12{1 + Aoz —ddeyem)z+---| <4

for all z € D, and next,
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w3 - ! ] ¥2
1+ e — e <4, 201+ D)es —darea| A= |1+ Do = A, (4)

for all z € D. The last inequality follows from the result of Carlson for the second
coefficient of Schwarz functions cited above.
If f€ .S and

f@=z+ad +a +---, (5)
then the inverse of f has an expansion
FHw) =w+Aw” + Asw + -+ (@)

near the origin (or precisely at least in jw| < 1). By using the identity f(f ' (w)) = w
and the representations for the functions fand ', we can obtain the next relations

Az = —ay,
Ay = —ay + 2a3, (7)
Aq_ = =y +54‘]'2ﬂ_1 —Eﬂg
The main results of this paper are the sharp upper bounds for the modulus of these
three initial coefficients of f~'.
Theorem 1 Let f € U(4), 0< i< 1, satisfy the subordination (2), and let f and f~
be given by (5) and (6), respectively. Then

Mz €144,
lAs| <1+ 34+ 4%,
[Ag] < {1+ D145+ 4%,

All these results are best possible.
Proof For f & L{(4), from the relation (3) we have (see [4, 7])

i =1 = A
Zan-a-]In _; =3

a=1 "

1
a’(z). (8)

If we put m(z) = c12 + €22 + - -, then from (8) by comparing the coefficients we
obtain
3 = [I + .;_]r:'h
as =1+ e + (1 + 144, (9)
ar=(1+ i +2(1 + i+ D)oo+ (1 + A+ 427+ 1)

Using (7) and (%) we also have
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Az = —(1+ A)er,
Ay = —(1 4 ez + (1 + 34 + 4%l (10)
As=—(1+Aes + (3+ 84+ 37 )ee2 — (1 + 4)(1 + 54+ e

Since |c1| <1 and |c2| <1 — |a1|”, from (10) we receive
Azl =1+4
and
lAs| < (1 4+ A)|ez| + (1 + 32+ B)er]

<(1+4)(1 = e )+ (0 +3i+8)|af
<(144) + 24+ e
<1431+

Also, from (10} we obtain

Ay = —% 21 + A)cs — 4dercy — 6(1 + Aey((1 + Az — Acd) +2(1 +.;}3c:;],

and from here, by applying (4),

-
s <5 |2{1+J_}..~3—4.=J:1c:;+ﬁ[|+A]1c]||{a+,1}c1—h3,|+zu+J_}3|r_-1|"]
17, 1 ;
<5 ;—?|{|+1)n—jc,~|2+&u -E-i]ir::”[l+}.]£‘1—ir‘]"|+2{1+ﬁ.}3|c1|3]
1 -‘ 1 2 s 3 3
=3 |A= 7061+ d)edfi+2(1 +4) e
1
=:=h
hln),

where 1=|(1+4)e; — ic}| and 0<1< A, since
(14 2)ez = dct| < (1 + Aeal + AP = (1 + (1 = |ar]) + de [T = &

As for the maximal value of the function h, we consider two cases:
Case 1: When l]{|c]]*‘-f3“+] the function h attains its maximum for =
3(1 + A)i]ey| and we have

hitg)<i+274(1 +1]| |r:'1| +2(1 +J} |.:'|| {4.i+22?1
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1

Case 2: Fﬂrﬁmiirﬂﬁl,ﬂmﬁmcﬁunhanains its maximum for f — 4 and we
have

h(t) <6(1 + Adle)| +2(1 + 2| P <2(1 + (1 + 54+ 25,
when 0 <r<.i. So,
A= (1 + (1 +51+2%).

From cases 1 and 2, since [I+.»1}{1+5.i.+i:]}1.3_+% when O0<i<l1, we
receive the estimate for [A].
For the proof of sharpness of the theorem, let us consider the function

w=1ilz) = (1— z}El —iz)’

=W =w=1+Aw +(1+3i+ W -1+ +52+ 0w —---,

(11)
which shows that our results are the best possible. O

Mote that for 2 = 1 in Theorem | we have the estimates for class I and in that
case the inverse of the Koebe function iz extremal, as for the class & (see, for
example Goodman's book, Vol 10, p. 205, [2]).

In the next theorem we study the Fekete-Szegd functional for the inverse
functions of the class I{{.4). Namely, we have

Theorem 2 For the inverse functions of functions from W{4), O0<A <1, satsfving
subordination (2), we have

A3 = pA3| <A+ |1 = pl(1 + AY,
where p is a complex number. The result is sharp for0 < p<1.
Proof From the relations (100) and {4) we obtain
Az — pAd| = | = (1 + ez + (1 + 32+ 2 )ef — u(1 + 2)°|
=| = ((1 +AJez — 4c}) + (1 — p)(1 + 4) ]|
<11+ A)ez — it + [1 = pl(1 + AFfes [
<A+ 1= pl(1+4)°%.

The sharpness of the estimate in the case when 0< p < 1 follows from the function
f! defined by (11). O
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