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Abstract
Based on the elastic theory assumptions and averaging theories, an infinite element boundary which is frequency inde-

pendent is derived for saturated soil media. The infinite element development is based on mapping functions and viscous

layers for damping propagating waves of both solid and water phases. The newly developed infinite element is able to

simulate the boundaries of fully saturated soil medium considering both soil displacement and fluid pressures. The main

point is that the fluid pressure gradient at infinity is taken to equal to zero thus enabling the realistic consideration of the

fluid pressures in numerical simulations. In numerical modelling, the general finite element software ANSYS using its User

Programmable Features is used. Related comparisons are done with references. In simulation of propagating waves, the

numerical approach is verified considering different models. The verification models include wave propagation through a

saturated soil column. The implementation of the newly developed infinite element is done by simulation of an earth fill

dam boundaries while the dam body is simulated as a three-phase medium. The obtained results from simulations show

promising results and are thoroughly discussed.
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1 Introduction

Seismic soil–structure interaction analysis of massive

engineering structures such as dams, power plants, high

rise buildings is a very complex issue, which has gained an

increasing importance for the last decades. The interaction

effects considerably influence the seismic performance of

these structures. Lessons from recent strong earthquakes

(Christchurch 2010–2011, Great Tohoku 2011, Sichuan

2008, 2013, etc.) undoubtedly show that soil–foundation–

structure interaction and local site effects can significantly

increase total damage if they are neglected or not treated

appropriately. The present study focuses on numerical

simulation of underlying saturated soil media which are

unbounded and extend to infinity. In many engineering

applications, the numerical treatment of unbounded

domains is of considerable interest especially when fully

saturated conditions are the point of interest.

The first attempts to numerically treat infinite domains

involved applying the finite element method directly by

simply truncating the outer region. Although this method

worked well for static cases, in dynamic analysis, the

results diverged enormously due to the reflected waves on

the artificially introduced boundaries. Artificial boundaries

simulating energy radiation towards infinity were proposed

by many researchers. In the work of Kausel [11], a layered

half space was considered by introducing viscous stress

boundaries. Liao [12] developed a system for non-reflect-

ing boundary conditions. Manolis [14] used a boundary

element method in time domain enabling usage in transient

elastodynamics.

One alternative for the simulation of the boundary

conditions is the infinite element (IE) attempting to simu-

late the behaviour of the unbounded domain. The devel-

opment of infinite elements dates back to a more recent

period. The concept is very similar to that of finite elements

& Kemal Edip

kemal@iziis.ukim.edu.mk

1 Institute of Earthquake Engineering and Engineering

Seismology (IZIIS), University ‘‘Ss. Cyril and Methodius’’,

Skopje, North Macedonia

2 University of ‘‘Natural Resources and Life Sciences’’,

Vienna, Austria

123

Acta Geotechnica
https://doi.org/10.1007/s11440-020-01139-9(0123456789().,-volV)(0123456789().,- volV)

http://orcid.org/0000-0003-3394-510X
http://crossmark.crossref.org/dialog/?doi=10.1007/s11440-020-01139-9&amp;domain=pdf
https://doi.org/10.1007/s11440-020-01139-9


(FE) including the concept of infinity to the element

domain. The use of infinite elements together with the

well-known finite elements is a promising choice for the

investigation of such unbounded domains. An infinite ele-

ment is an element that represents the behaviour of

unbounded domains. One of the first publications intro-

ducing mapping infinite elements was that of Zienkiewicz

and Bettess [22].

There are mainly two types of infinite elements. The first

type uses the decay function together with a shape function,

which approaches zero at infinity. In the case of the second

one, the geometry is mapped from a finite to an infinite

domain. The mapping infinite elements have an advantage in

the sense that application of standard Gauss integration for-

mulas is possible. Bettess [6] showed that mapped infinite

elements work very well for static analysis of elastic media.

The application of infinite elements in wave propagation

requires more attention to be paid to outwardly propagating

waves. The application of infinite elements is extensive and

can be used in many fields of engineering. Application of

infinite elements in mass transport is explained in the work of

Zhao [21]. In the work of Askar [3], ground freezing prob-

lems are considered using the infinite elements. A compre-

hensive overview for the acoustic case is given by Astley [4].

Medina and Penzien [15] proposed a different type of infinite

element considering both P-wave and S-wave propagation

although shape functions appeared to be extremely compli-

cated for application. In the work of Haeggblad et al. [9],

static infinite elements are combined with an absorbing layer,

leading to good results. In the work of Edip et al. [7], infinite

elements are upgraded by absorbing properties at each node

and validation is done accordingly. On the other hand, the

fluid field is assumed at side nodes of the infinite element

allowing the nodes at the right side to simulate the infinity as

given in Fig. 1. The shape and mapping functions are selected

accordingly in order to allow linear distribution of the fluid

field inside the infinite elements. The correctness of fluid field

simulation using the infinite elements depends directly on

number of integration points. The optimum performance of

the infinite elements considering both nodal displacements

and fluid fields is obtained by using four to five integration

points in the direction of extending to infinity. In this work,

the infinite element is further developed such that the number

of nodes is increased and the mapping functions are arranged

accordingly.

The basic idea of the newly developed infinite element

is to consider the assumption that the displacement field

approaches zero at infinity, absorbing the outward propa-

gating waves. The application of this type of an infinite

element in soil–structure interaction problems is preferable

due to the formulation, which is similar to that of finite

elements. Thus, the exterior domain is partitioned into a

finite number of infinite elements, which are directly con-

nected with the finite element mesh of the interior domain.

2 Soil modelling and infinite elements
in saturated soil media

In saturated porous media, the behaviour of acoustic waves

basically depends on the frequency of the excitation, the

hydraulic permeability, and the mechanical properties of

the constituent materials [1, 16]. As given in the work of

Heider [10], in general, three apparent modes of bulk

waves can be observed in biphasic solid–fluid aggregates:

1. The compressionalwaves are fastwith amotionof the solid

and fluid constituents. Compressibility of the constituents

governs the propagation of this type of waves.

2. The compressional waves are slow with motion of

solid and fluid. This highly damped type of waves

cannot propagate in the domain under low-frequency

excitations.

3. The transverse shear waves are transmitted only in the

solid skeleton and are mainly governed by the shear

stiffness of the solid phase.

In simulating boundaries in saturated soil elements,

numerous approaches have been proposed in the literature

to efficiently treat unbounded spatial domains. In the cur-

rent contribution, the simulation of wave propagation into

infinity is realized in the time domain. The near field is

discretized with finite elements, whereas the spatial dis-

cretisation of the far field is accomplished using the infinite

elements. This makes certain the representation of the far-

field stiffness in implementing rigid boundaries surround-

ing the far field. A version of a mapped infinite element has

already been successfully applied by Simoni and Schrefler

[20] to simulate the isothermal and non-isothermal con-

solidation of unbounded biphasic porous media. In partic-

ular, Schrefler and Simoni [19] have performed a coupledFig. 1 Coupling of finite and infinite elements
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analysis under quasi-static conditions, where infinite ele-

ments with different decay functions are applied to the

solid displacement, the pore pressure and the temperature

fields. Moreover, the numerical results have been cali-

brated by comparison with respective analytical reference

solutions. However, in dynamical applications, some

additional considerations must be taken into account. In

fact, when body waves approach the interface between the

FE and the IE domains, they tend to reflect back to the near

field due to the fact that quasi-static infinite elements

cannot capture the dynamic wave pattern. To overcome

this, the waves are absorbed by adding absorbing properties

to the nodes of the infinite elements. The idea of adding

viscous damping layer is seen in the work of Lysmer and

Kuhlemeyer [13], in which damping forces are introduced

to get rid of artificial wave reflections.

In this work the main focus is given to the geotechnical

problems, where commonly low-frequency excitations are

present. The permeabilities are low and entail very low

relative motions between the solid matrix and the pore

fluid. Thus, it is accepted that the pore fluid is almost

trapped in the solid matrix at far boundaries. Here, only

fully saturated poroelastic media with intrinsically incom-

pressible solid and fluid constituents in the low-frequency

regime are considered giving rise to only fast compres-

sional and transverse shear waves.

The element displacement in u and v direction is inter-

polated with the usual shape functions Nu
1, Nu

2, Nu
4, Nu

5

and Nu
7. On the same element, the fluid pressure (water or

air pressure) is interpolated with the shape functions Np
1

and Np
4.

u ¼ ½N1
u N2

u 0 N4
u N5

u 0 N7
u 0 �u

v ¼ ½N1
u N2

u 0 N4
u N5

u 0 N7
u 0 �v

pf ¼ ½N1
p 0 0 N4

p 0 0 0 0 �pf
ð1Þ

In expression (1), u, v and pf are vectors of nodal point

displacements and fluid pressure in global coordinates. Equa-

tion (1) implies that displacements andfluidpressuresgradients

are set to zero at infinity. The shape functions for displacement

and fluid pressures are given in expression (2) as:

N1
u ¼ �ðr � 1Þð�1þ sÞðsþ 1þ rÞ=4

N2
u ¼ ðr � 1Þð1þ rÞð�1þ sÞ=2

N4
u ¼ �ðr � 1Þð1þ sÞðs� 1� rÞ=4

N5
u ¼ �ðr � 1Þð1þ rÞð1þ sÞ=2

N7
u ¼ ð�1þ sÞð1þ sÞðr � 1Þ=2

N1
p ¼ s� 1ð Þ r � 1ð Þ=4

N4
p ¼ � sþ 1ð Þ r � 1ð Þ=4

ð2Þ

Based on the isoparametric concept, the infinite element

in global coordinate is interpolated onto an element in local

coordinate system using the expressions (3) and (4). In the

formulation of the infinite element, only the positive r

direction extends to infinity. Following Fig. 1 the mapping

functions for coordinate interpolation considering dis-

placement degrees of freedom are defined as follows:

r ¼ ½M1
u M2

u 0 M4
u M5

u 0 M7
u 0 �r

s ¼ ½M1
u M2

u 0 M4
u M5

u 0 M7
u 0 �s

ð3Þ

The mapping functions for coordinate interpolation

considering fluid pressures as degrees of freedom are

defined as follows:

r ¼ ½M1
p 0 0 M4

p 0 0 0 0 �r
s ¼ ½M1

p 0 0 M4
p 0 0 0 0 �s

ð4Þ

where

M1
u ¼ �ð1� sÞrs

1� r

M2
u ¼ �ð1� sÞð1þ rÞ

2ð1� rÞ

M4
u ¼ �ð1þ sÞrs

1� r

M5
u ¼ �ð1þ sÞð1þ rÞ

2ð1� rÞ

M7
u ¼ � 2rð1þ sÞð1� sÞ

ð1� rÞ

M1
p ¼ 1� s

1� r

M4
p ¼ 1þ s

1� r

ð5Þ

In expression (3) and (4), r and s are vectors of nodal

point displacements in local coordinates where it is to be

mentioned that, on the side of infinity (r = 1), no mappings

have been assigned to the nodes as it is taken that dis-

placement in infinity tends to zero while fluid pressures

gradients in infinity are zero. The number and location of

the nodes connecting finite and infinite elements must

coincide to guarantee the continuity condition between the

elements. The main advantage of the proposed infinite

elements is that the number of nodes for displacement on

the infinite element allows coupling with finite elements

with eight nodes which are used for displacement-sensitive

problems. The difference of fluid pressure and displace-

ment node numbers is in full agreement with the

Ladyzhenskaya–Babuška–Brezzi conditions as given in the

work of Pastor et al. [18]. Construction of element matrices

is done by using the usual procedures as described above

for the infinite elements. The developed infinite element

has the advantage concerning the fact that is due to the

correct assessment of the boundary conditions. In case of

finite elements only extending to infinity, the fluid pressure

development is influenced at the boundary of domain by
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the displacement limitation conditions, while considering

the newly developed infinite elements the fluid pressure

gradient is considered to be zero at boundaries, thus

allowing correct fluid pressure distribution in both finite

and infinite elements. As pore pressures are very sensitive

to the boundary conditions 1/r decay function in mapping

functions is used while constructing the newly developed

infinite elements. The matrix corresponding to the mapped

infinite element is very similar to the one used for the

standard finite elements.

Construction of element matrices is done by using the

usual procedures as described in Bathe [5]. The new

coordinate interpolation functions are taken into consider-

ation in the Jacobian matrix as described in Bettess [6]. For

the absorbing layer of the infinite element, the Lysmer-

Kuhlemeyer approach [13] is used. In all cases, a plane

strain two dimensional case is studied. For impact of plane

waves on element sides, normal and tangential stresses are

derived as follows:

rn

s

� �
¼ aqcp 0

0 bqcs

� �
_un

_ut

� �
ð6Þ

where cp and cs indicate the wave velocities for the P wave

(compressional) and S wave (shear), respectively. The term

q stands for density of soil medium. In order to take into

account the directions of the incident waves coefficients, a

and b are used as multipliers. Transformation from local to

global coordinates is done by the software ANSYS [2] in

such a way that there is no need of defining the transfor-

mation matrices. Time derivatives are approximated by the

Newmark’s method. The programming part of the infinite

element has been performed using the Programmable

Features of the ANSYS software. The overall implemen-

tation in ANSYS software is shown in Fig. 2:

The starting point for deriving the equations is the mass

balance equation for fluid phase with respect to the motion

which can be written as follows:

dfqf

dt
þ qfr � vf ¼ 0 ð7Þ

In Eq. 7 the term q stands for density while the term t
stands for fluid velocity. On the other hand, the momentum

balance equation for fluid phase yields simply the gener-

alized Darcy’s law:

_usfi ¼ kf �pf ;i þ qf bi � €uið Þ
� �

ð8Þ

where _usfi stands for velocity of fluid phase relative to the

moving solid, kf stands for the relative permeability of the

fluid phase, bi is the body force vector while €ui is the

acceleration vector.

Following the work of authors Edip et.al [8] the finite

element equations for the numerical model can be sum-

marized as follows:

M 0
Mf 0

� �
€u
0

� �
þ C 0

CT
sf Pff

� �
_u
_pf

� �

þ K �Csf

0 Hff

� �
u
pf

� �

¼ fu
f f

� �
ð9Þ

The nodal degrees of freedom for displacement and fluid

pressure are taken into consideration as u and pf. Their first

and second time derivatives of solid phase complete the

system of equations. The different matrices of the system

of equations describe different properties of the numerical

model. The definition of saturation relationships enables

usage of different saturation models to perform analysis of

partially saturated soil media.

The indices provide information about the nature and

function of the matrix, which can be interpreted as follows.

The coupling matrices Csf describe the interaction of the

solid phase with fluid phase. The compressibility of the

various phases and their effects on the entire media is

considered by compressibility matrix Pff. The permeability

matrix Hff on the other hand concerns the flow behaviour.

Fig. 2 ANSYS implementation of the proposed numerical model
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3 Verification of infinite elements
in saturated soil media

In order to verify the infinite elements in saturated soil

media, a fully saturated soil domain is shown in Fig. 3. The

model considers the coupling of finite and infinite elements

considering all degrees of freedom. The restraint conditions

at the bottom are fixed boundaries as shown in Fig. 3.

As can be seen in Fig. 3, the vertical soil column is

modelled in two ways considering the discretization with-

out and with infinite elements. The soil properties are given

in the table below (Table 1).

In order to show the applicability of infinite elements in

saturated soil model, the infinite elements have been placed

at the bottom and two points of interest at depths of 5 m

and 50 m have been selected to compare the of results. At

the top of the soil layer, a fixed pressure of 1 kPa is applied

as a transient load.

In Figs. 4 and 5 the time histories of displacements and

water pressure at the depths of 5 m and 45 m for the

transient wave propagation problem are presented. It can be

observed that there is a good comparison between the

analytical solution and the numerical one obtained by using

coupled finite-infinite elements. However, when the fixed

boundary is used at the bottom of the finite elements, the

accuracy of the numerical results becomes significantly

worse because spurious reflections take place at the artifi-

cial boundary and the reflected waves propagate back to the

near field system. The displacement is considerably

underestimated in the case using the artificially fixed

boundary. This fact indicates that if the artificially fixed

boundaries are used in the analysis, the near field of the

system should be made large enough to avoid reflections on

the artificially truncated boundary within the duration of

the analysis. Otherwise, the numerical results will be

affected by the reflected wave. Although a small numerical

oscillation in the pore fluid pressure exists, in the case of

using the absorbing boundaries it decreases quickly as time

goes on. Thus, it is concluded that the use of the proposed

absorbing boundary is an effective and efficient way of

modelling the far field of the system for the transient wave

problem. As can be seen from the figures, in the cases

where the infinite.

elements are used the results show good correlation with

the analytical results for both vertical displacement and

water pressures. This verifies the correctness of the pro-

posed infinite absorbing infinite elements.

4 Numerical simulation of an earth dam
considering infinite element boundaries

In order to implement the proposed saturated infinite ele-

ments, the case study shown in Oettl [17] has been simu-

lated. In this study, water flow through an earth dam is

simulated. In this particular example the air pressure is

considered to be atmospheric while the suction effects are

presented as negative fluid pressures. Our main focus is on

the water flow in the body of the dam. Therefore, the

analysis of the foundation soil is limited to the quasi static

case. The material parameters for the solid phase of the

earth dam problem are given in Table 2.

In this work, the same dam geometry as [17] is taken

into consideration, whereas the material model for the body

is taken as nonlinear (hypoplastic) [8]. The analysis per-

formed focuses on the dynamic analysis case with the

inclusion of the surrounding field which is composed of

infinite elements as shown in Figs. 6 and 7.

The geometry of the dam is shown in Fig. 6 with the

cross section width of 52 m at the base which is reduced to
Fig. 3 Fully saturated soil domain discretized by finite and infinite

elements

Table 1 Mechanical properties of soil medium

Young’s modulus of elasticity E = 0.8333 kPa

Poisson’s ratio m = 0.25

Solid grain density qs = 0.31 kg/m3

Bulk modulus of solid grains Ks = !

Bulk modulus of water Kf = 40 kPa

Fluid density qf = 0.2977 kg/m3

Initial porosity n = 0.33

Permeability k = 4.883 9 10-3 m2
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4 m at the top. The height of dam is 12 m. In order to get a

drainage of the leakage occurring through the dam and thus

to prevent stability problems, a drainage with a length of

12 m is provided at the base of the downstream slope. The

height of the water level at the upstream slope is 10 m.

Furthermore, the soil used for the construction of the earth

dam is considered to be homogeneous and isotropic with

respect to the coefficient of water permeability. In the

numerical simulation of the problem, both earth dam and

base are taken into consideration. The domain is dis-

cretized by quadrilateral elements as given in Fig. 7.

Quadratic interpolation is used for the displacements of

soil skeleton, while bilinear interpolation approximates the

fluid pressure.

The air stress is taken to be atmospheric. The matric

suction is equal to the negative value of the hydrostatic

stress in the water phase which also governs the degree of

saturation. This explains the reason for the definition of the

saturation relations, i.e. to enable the simulation of the

partially saturated soil media. It is to be mentioned that, in

classical seepage analysis, the soil skeleton is assumed

rigid and only the flow problem is investigated. In this case,

an earth dam of trapezoidal cross section built to retain

reservoir water is considered numerically. The bottom

boundary is modelled as a long layer of soil extending to

infinite. At the drainage, in the bottom boundary of the

dam, in the vicinity of the downstream slope, the initial

water stress is set to zero. Therefore, a permeable boundary

at the drainage is simulated. At the ends of the soil layer

infinite elements are used to absorb the waves.

Similar boundary conditions with respect to the water

phase are assumed for the dam at the top and at the

upstream slope above the water level in the reservoir.

Therefore, the excess water pressure at the upstream

boundary linearly increases from zero at the water level to

100 kPa at the base of the dam as shown in Fig. 8. The

Fig. 4 Time histories of displacement at 5 m and 50 m depth

Fig. 5 Time histories of pore water pressure at 5 m and 50 m depth
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pore pressure at the bottom has different values due to the

boundary conditions which are impermeable conditions.

On the other hand, the negative values of fluid pressure at

the end nodes of infinite elements show the incapability of

infinite element to correctly simulate the pressures at the

very end nodes. However, the presence of infinite elements

does not affect the fluid pressure distribution at the

boundary with finite elements.

For the sake of completeness, the same dam body is

considered composed only of finite elements in order to

compare the pore pressure distribution as given in Fig. 9.

As shown from Fig. 9 the pores pressure field has sim-

ilar distribution at the boundaries when compared with

Fig. 8 in which infinite elements are used. Negative value

of fluid pressures at the dam body is for tensile hydrostatic

water stress due to the assumed prevailing atmospheric air

pressure. In the numerical simulation at the beginning

(time t = 0) the water level in the reservoir is raised

instantaneously, i.e. the water pressure boundary condition

at the upstream slope is applied suddenly and held constant

in the course of the calculation. The computed distribution

of the degree of saturation at steady-state conditions for

hypoplastic material models are presented in Fig. 10.

The typical curve indicating the position of a zero

hydrostatic water stress, i.e. the so-called phreatic surface,

stretches from the position of the water level to the upper

end of the drainage region. In the region above this curve,

the tensile water stress according to the initial conditions

Table 2 Material parameters for solid phase of the earth dam problem

Geometry Dam Dam Soil layers Infinite elements

Material parameters Symbols Hypoplastic Linear Linear Linear

Density of solid phase qs (t/m
3) 2.7 2.7 2.7 2.7

Density of water phase qw (t/m3) 1 1 1 1

Permeability k (m2) 10-7 10-7 10-7 10-7

Permeability of the drainage filter k (m2) 10-2 10-2

Compression modulus of solid phase Ks (kPa) 109 109 109 109

Compression modulus of water phase Kw (kPa) 2 9 104 2 9 104 2 9 104 2 9 104

Dynamic viscosity of water lw (kNs/m2) 1.31 9 10-6 1.31 9 10-6 1.31 9 10-6 1.31 9 10-6

Elasticity modulus E (kPa) 7000 9000 9000

Poisson’s ratio m 0.3 0.3 0.3

Porosity n 0.5 0.5 0.5 0.5

Critical friction angle uc 35

Granulate hardness hs (MPa) 1600

Exponent n 0.39

Minimum void ratio ed0 0.62

Critical void ratio ec0 0.94

Maximum void ratio ei0 1.08

Numerical parameter a 0.2

Numerical parameter b 1

Intergranular strain R 0.0001

Intergranular strain mr 2.5

Intergranular strain mt 9.0

Intergranular strain br 0.25

Intergranular strain V 9

Fig. 6 Coupled soil-dam system

Fig. 7 Element types in the simulation of dam problem
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prevails. Due to the assumed atmospheric air stresses, the

development of the degree of water saturation is governed

by the negative hydrostatic water stress. In the course of

the numerical simulation, the wetting front propagates from

the upstream face of the dam to the upper end of the

drainage region. Starting from this steady state of satura-

tion, the computation is carried out for a 10 s period of an

earthquake input. The fully coupled analyses are performed

using the acceleration time history of the El Centro

earthquake with a scaled peak ground acceleration of

0.25 g and the results presented. Horizontal displacements

and the pore pressure build up are shown in Figs. 11 and

12.

As can be seen from Figs. 11 and 12, the horizontal

displacement distribution in the dam body at the end of

earthquake input shows the deformation which is mainly

due to the effect of the nonlinear hypoplastic modelling of

the solid phase of the soil medium. On the other hand,

when comparing the pore water pressure distributions, it is

observed that there is an increase in the pore water pressure

at the upper part of the dam body due to the earthquake

loading. In both cases the infinite elements have shown to

be stable elements allowing continuation of the spreading

fields of deformation and pore pressure to the infinity.

Thus, it can be concluded that the infinite elements can be

used as boundary conditions in saturated soil media in

which the domain of interest lays within the region of the

finite elements.

Fig. 8 Pore pressure distribution at the beginning of the problem

Fig. 9 Pore pressure distribution at the beginning of the problem (discretization only with finite elements)

Fig. 10 Water saturation degree at the beginning of the problem
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5 Conclusion

The proposed infinite element, which is frequency inde-

pendent, is derived for simulation of unbounded saturated

soil media. The usage of infinite elements as boundary

conditions together with finite elements in numerical sim-

ulations gives promising results. The verification of the

newly developed infinite element has been done by simu-

lation of fully saturated soil domain in which the infinite

element has proven to hinder the wave reflections back to

the domain of finite elements. On the other hand, in case of

numerical simulation of an earth dam, the infinite elements

have been considered as good replacement for far-field

geometry in which the waves are absorbed successfully.

The pore pressure build up and horizontal displacements

for the earth dam presented, show the continuity between

finite and infinite elements. Summarizing, the proposed

infinite elements approximate the far field behaviour in an

adequate manner. Thus, it can be concluded that the usage

of the proposed infinite elements is an efficient and inex-

pensive way of modelling the far field of the saturated soil

domains.

Appendix

The mass matrices are given as follows:

M ¼ rNu qs 1� nð Þ þ nSwqw½ �Nu dX

Mf ¼ rrNT
p

kkrf
gf

Nu dX

The coupling matrix follows as:

Csf ¼ rNT
paSfm

TLNu dX

The compressibility matrix is given as:

Pff ¼ rNT
p

Sf
Kf

þ a� nð Þ Sf
Ks

Sf þ pc
oSf
opc

� �
� n

oSf
opc

� �
Np dX

The permeability matrix can be written as:

Hff ¼ rrNT
p

kkrf
gf

rNp dX

The domain forces follow as:

fu ¼ rNu qs 1� nð Þ þ nSfqf
� 	

gNu dX

f f ¼ rNT
p

kkrf
gf

qf g dX
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