
A New Tool for Calculation of a New Source Code

Metric

Emil Stankov, Mile Jovanov, Kjiro Gjorgjiev and Ana Madevska Bogdanova

Faculty of Computer Science and Engineering

Ss. Cyril and Methodius University

Skopje, Macedonia

{emil.stankov, mile.jovanov, ana.madevska.bogdanova}@finki.ukim.mk, kire9dk@gmail.com

Abstract Teaching programming is an activity that becomes

more and more popular. Assessment of the students that attend

introductory courses in programming can partly be done through

presentation of simple source code fragments to them. Students

should be able to provide the answer to the question: What is

the output of the given code? When preparing the code

segments, teachers should be aware of the complexity

of the code, and should also try to provide same or similar

complexity tasks for all students. Nowadays, when there is a lot of

research on the issue of automatic question production, the

necessity of having a way to automatically measure the weight of

some code is indisputable.

In this paper we present a new source code metric that helps

defining the weight of the code and a new tool that employs it.

Keywords source code analysis; source code weight; teaching

programming

I. INTRODUCTION

Teaching programming is an activity that is becoming more
and more popular. Undoubtedly, this is due to the popularity of
computer science nowadays, and moreover of programming, as
its essential part. One of the most important challenges that
teaching programming brings, particularly in courses attended
by large numbers of students, is assessment.

inevitable part of the process of education on high school and
university level, can be implemented in different ways,
depending on the type of knowledge (theoretical, practical, or
both) that is expected to be gained by the students. When it
comes to programming courses, especially introductory ones,
assessment can partly be done by presenting simple source
code fragments to students and determining their basic level of
knowledge and understanding of the programming language in
which the respective fragments have been written. One clear
means to do this is by asking them questions of the form:

 Although these types
of questions can hardly assess capabilities such as problem
solving, algorithmic thinking or deep logical reasoning, they
can (at least) give a good insight into the understanding of the
basic programming constructs of the underlying programming
language, as well as the comprehension of some basic
programming concepts in general. According to the Bloom s

taxonomy of educational objectives [1], comprehension is a
stage that precedes application, so it is a good practice to

 comprehension, before asking
them to apply their knowledge.

In order to achieve objective and fair assessment on a
particular course exam, all students taking the exam must be
asked questions of same or very similar complexity, i.e.
questions that require the same level of knowledge to provide a
correct answer. In the context of teaching programming and the
types of questions mentioned previously, this means that
teachers should be aware of the program codes complexity
when preparing these questions, and should always try to
provide questions containing same or similar complexity code
fragments for all the students. As noted previously, this
becomes particularly challenging when working with large
groups of students, since teachers must maintain the
consistency in creating

Programming is a compulsory subject in every computer
science educational curriculum, and thus, usually lots of
computer science students enroll in these courses. This means
that vast majority of programming teachers have to deal with
the problem of consistency of question complexity mentioned
above. A possible solution to this problem is to provide a
means of automatic production of questions. In the past ten
years there has been a significant research on the issue of
automatic production of questions of good quality for educative
assessment needs.

Our wider research is concentrated on the automatic
production of questions containing a source code or a chunk of
a source code. In order to achieve the desired complexity
consistency in the process of automatic production of questions
for programming courses, we must have a way to automatically
measure the complexity (weight) of source codes.

In this paper we present a source code metric acceptable for
the previously mentioned purpose (calculation of the
complexity of a given code), and a new tool that employs the
metric to produce new source codes.

The paper proceeds as follows. In Section II, some common
software metrics typically used to measure the complexity of a
given source code and their drawbacks are described. In
Section III we present our new proposed metric. Section IV

252525252525

The 12th International Conference for Informatics and Information Technology (CIIT 2015)

presents the tool, and Section V gives the results of a case
study of the tool. The conclusion and remarks on the future
work are given in Section VI.

II. RELATED WORK

In this section we will describe some common software
metrics typically used to measure the complexity of a given
source code. The examples will include the Halstead
Complexity [2] and
Complexity) [3]. We will discuss the advantages of using each
of these metrics, as well as their respective drawbacks, and we
will consider the possibilities for their application in the
domain of teaching programming.

A. The Halstead Complexity

The Halstead complexity metrics [2] are among the oldest
measures of source code complexity. They were introduced in
1977 by Maurice Halstead, as a principal attempt to
quantitatively estimate the effort of the programmer when

. The goal of
 research at that time was to identify measurable

properties of software, as well as to establish the relations
between them.

Halstead interprets the source code of a given program as a
sequence of tokens, and classifies each of the tokens as an
operator statement

, or a keyword
) or an operand (literal expression, constant or

variable). The four basic metrics defined by Halstead are the
following:

 1n number of unique (distinct) operators

 2n number of unique (distinct) operands

 1N total number of operators

 2N total number of operands

All the basic metrics are calculated by counting the
frequencies of each of the operator and operand tokens in the

. The other Halstead metrics are derived
from them as explained below:

 Program vocabulary (n) it is defined as the sum of

the number of distinct operators and the number of

distinct operands, i.e. 21 nnn .

 Program length (N) it is defined as the sum of the

total number of operators and the total number of

operands, i.e. 21 NNN .

 Calculated program length (
^

N) this metric provides

a way of measuring the relationship between the

program length N and the program vocabulary n . It is

given by)(log)(log 222121

^

nnnnN .

 Program volume (V) this metric describes the size of

the implementation of a given algorithm, expressed in
mathematical bits. It can be calculated as the program
length times the logarithm (base 2) of the size of the

program vocabulary, i.e.)(log 2 nNV .

 Difficulty (D) this metric is also known as error
proneness. According to Halstead, the level of difficulty
of a program (or its error proneness) is proportional to
the number of unique operators, as well as to the ratio
between the total number of operands and the number

of unique operands, i.e.

2

21

2 n

Nn
D . This means

that if we use the same operand(s) many times in our
program, it will be more prone to errors. The metric also
suggests that sources of program difficulty are
repetition of operands and introduction of new operators
in the program.

 Program level (L) it is defined as the inverse of the

difficulty level of the program, i.e.
D

L
1

. This means

that a high level program is less prone to errors than a
low level program.

 Effort (E) this metric refers to the effort required to
implement or to understand a program. Halstead
suggests that the effort is proportional to the level of

difficulty and the volume of the program: DVE .

 Time (T) it refers to the actual coding time, i.e. the
time required to implement or to understand a program,
expressed in seconds. As expected, this time is
proportional to the effort required to write the program.
Halstead has experimentally found that a good
approximation for the time can be obtained by dividing

the effort by 18 (
18

E
T), but further experiments

may be conducted to calibrate the measure.

metrics are the facts that they are simple to calculate,
applicable to any programming language, and that they do not
require in-depth analysis of the program s structure. These
metrics measure the overall quality of programs and can
predict the maintenance effort. Many studies support the use of

programming effort,
as well as of the number of programming errors.

B.

The [3] (also known as cyclomatic
complexity or program complexity) is one of the most widely
accepted software metrics, and undoubtedly the most widely
used static software metric. It was developed in 1976 by
Thomas J. McCabe. This metric measures the number of
linearly independent execution
source code. For example, if the source code under
consideration does not contain decision points (such as if

262626262626

The 12th International Conference for Informatics and Information Technology (CIIT 2015)

statements or for/while loops), its complexity will be 1, since
there exists only a single path through this code. On the other
hand, if the source code contains a single decision point, then
there will be two paths through the code: one path where the
condition corresponding to the decision point evaluates as
logically true and the other one where the condition evaluates
as logically false.

Formally, the cyclomatic complexity (M) of a structured

program is defined by PNEM 2 , where E is the

number of edges, N is the number of vertices and P is the

number of connected components in the control flow graph of

the program. For a single program, P always equals 1, so the

formula becomes 2NEM .

McCabe proved that the cyclomatic complexity of any
structured program with a single entrance point and a single
exit point is equal to the number of decision points plus one.
However, we must note that this applies only to decision points
on the lowest level (machine-level instructions). When writing
programs in high-level languages, programmers often use
compound conditions and these decision points should be
counted in terms of the predicate variables involved in the

e level). For programs with more than one exit
point, the cyclomatic complexity can be calculated as

2ed , where d is the number of decision points and e

is the number of exit points.

One of the most important advantages of the cyclomatic
complexity metric is that it can be used to guide the process of
dynamic testing of the functionality of the programs (using test
cases). Because the cyclomatic number describes the control
flow complexity, it is clear that programs with high cyclomatic
number need more test cases than programs with low
cyclomatic number.
metrics, cyclomatic complexity is also easy applicable to any
programming language, but it can be computed earlier in the

complexity value).

Both presented metrics, as well as the others that can be
found in the literature, rely on the complete source code, and

values of the program variables. Because this is an important
issue, we decided to propose a new metric. It takes into
consideration the fact that sometimes, even with a very
complex code, the student may simply calculate the output of
the so on large portions of the
code. The metric is presented in the following section.

III. OUR SOURCE CODE COMPLEXITY METRIC

In this section we define a new metric that can be used to

the C++ programming language. The same metric can be
extended for usage with source codes written in any
programming language.

In our approach, we assume that all of the branch
statements of the C++ language (if, while, do-while and for)
and the most commonly used C++ operators (the arithmetic
operators: +, , *, / and %; the relational operators: <, >, <=,
>=, != and ==; the logical operators: !, && and ||; and the
remaining binary operators, such as the assignment operators =,
+=, etc.) are assigned a specific weight value. Each of these
weight values represents the effort required (from a human) to
perform the corresponding operation or execute the
corresponding branch statement manually. If the weights of all
the operators and branch statements are known, we define the

complexity C of a given C++ source code using the following

equation:

n

i

ii ewC
1

 (1)

where n is the number of lines in the source code, iw is the

weight assigned to line i , and ie is the number of executions

of line i in a single execution of the source code. The weight

assigned to a line is the sum of the weights of all the operators
and branch statements present in that line.

 This metric should, more precisely, calculate the
complexity of the source code from perspective of the student
effort to calculate the output of the code. In the next section,
we will present our tool that employs this metric.

IV. OUR TOOL FOR CALCULATION OF THE PROPOSED SOURCE

CODE COMPLEXITY METRIC

For the purpose of calculating our proposed complexity
metric for a given source code discussed in the previous
section, and to provide a means of automatic production of
similar complexity source codes on the basis of the initial code,
we have created an appropriate software tool. The tool
represents a Java web application that can be accessed using a
web browser. Currently, it works only with programs written in
the C++ programming language, and it supports Windows and
Linux platforms.

The following technologies and libraries were used in the
development process of the tool:

 Maven a software project management and
comprehension tool based on the Project Object Model

 life cycle from a
centralized XML file [4];

 Eclipse CDT (C/C++ Development Tooling) API [5];

 FreeMarker a ; a generic tool to
generate text output (anything from HTML to auto
generated source code) based on templates [6];

 Gcov a tool used in conjunction with GCC to test
coverage of programs [7];

 Java Server Faces Java based framework which
implements Model View Controller (MVC) design
pattern in a stateful manner. The usage of this

272727272727

The 12th International Conference for Informatics and Information Technology (CIIT 2015)

framework allowed well refining of the application
layers as well as tracking of beans state [8];

 Spring used for inversion of control via dependency
injection and bean life cycle manipulation [9].

Our tool represents an extension of a tool that uses an initial
code to generate a user-specified number of codes by altering
literal values and/or operators in it. With the help of the new
tool, the newly produced codes can have complexities that do
not exceed the complexity of the initial code plus a threshold
value. We will refer to the new codes generated by the tool in
this way from an initial code as code variations of the initial
code.

The combined tool consists of two main parts: 1)
Uploading and editing of an initial source code, and generation
of code variations; 2) Configuration of the weights associated
to each of the operators/statements.

In the first part of the tool, accessed via its home page,
there is a wizard that guides the user through the process of
generation of code variations. A view of the first step of this
process is shown in Fig. 1. In this step, the user can input the
initial code the source code of the program for which he/she
wants to generate variations. As can be seen from Fig. 1, in the
upper left corner there is a text box in which the user can enter
the number of code variations to be generated, and in the upper
right corner there is a check box which enables the user to
select whether he/she wants modification of the operators in the
different code variations. If this check box is not selected, the
operators will remain unchanged in all of the generated code
variations and will be exactly the same as those in the initial
code.

To proceed to the second step of the process, the user has to

the page. The wizard will allow this only if no errors have been
made in the first step, and otherwise it will show an appropriate
error message. Possible error messages at this point are:

that cannot be compiled and executed are rejected.

Fig. 1. A view of the first step of the process of generation of code

variations.

The second step of the process of generation of code
variations enables configuration of the domain for the values of
the locations of interest in the code (Fig. 2). Locations of
interest in a given code are the positions in the code where

literal constants (numerical or non-numerical) are present. For
numerical locations of interest, the user can configure the range
of values from which each of the locations can be filled.
Furthermore, the user can explicitly specify a set of values that
should be excluded from this range, i.e. which must not appear
in the particular location of interest in any of the generated
code variations. If the values entered are floating point
numbers, then the generated values will contain at most a
single digit after the decimal point. For non-numerical
locations of interest, the user can configure the character set
from which the locations will be filled. The allowed character
set can be configured to include (or exclude) digits, lowercase
letters, uppercase letters and special characters, by selecting (or
leaving unselected) the corresponding check box. Both
numerical and non-numerical locations of interest can be left

which means that they will keep their default values the
values present at the same locations in the initial code.

Fig. 2. A view of the second step of the process of generation of code

variations.

As shown in Fig. 2, at this moment the user can see the
calculated complexity (weight) for the initial code under
consideration. The calculated complexity value represents a
referent value for the process of generation of code variations.
This means that all the code variations that will be generated at
the end of the process will have a complexity not greater than

s complexity value and a predefined
threshold. Generated codes with complexities greater than this
sum are discarded.

generation process starts the actual generation of the code
variations. The time required to complete the generation
depends on the number of codes that will be generated. After
the completion of the codes generation, the wizard brings the
user to the third and final step, where he/she can see the results
(Fig. 3). The page shows the number of generated codes, and
presents the first of them, together with its output and the
calculated complexity value. The user can then browse through
the other generated codes (by clicking on the left/right arrows
above the area where the codes are shown) to see their
respective outputs and complexity values.

The second part of the tool provides an interface for
configuring the values of the weights that are used in the
process of calculation of the complexity of a given code. It can
be accessed by clicking on the Configuration hyperlink from

282828282828

The 12th International Conference for Informatics and Information Technology (CIIT 2015)

the green menu in the upper right corner at any step of the
generation process. The interface provides a tabular view of all
these weights (Fig. 4), where each row corresponds to a single
weight assigned to a particular operator or statement. Each
weight has a default value, as can be seen from Fig. 4. The
weight values can be easily changed by entering new values in
the appropriate fields in the second column of the table. Here,
the user can also modify the threshold value by supplying an
appropriate value in the last row of the table. In this way,
he/she can control the allowed deviation of the complexities of

complexity.

Fig. 3. A view of the third and final step of the process of generation of code

variations.

Fig. 4. Configuration of the weight values and the threshold value to be used

in the calculation of the complexity of each code.

V. A CASE STUDY

In this section we will describe a case study of an
application of our
calculate its complexity and generate code variations with
complexities that have a desired deviation. The example C++
source code is shown in Fig. 5.

Fig. 5. An example source code for the case study.

 Given this ini
generate 15 different code variations, but without changing any
operators in the code. Specifying these input parameters to the
tool brings us to the second step of the generation process, as
described in the previous section. Here we can specify domains
for the locations of interest in the code. We have three
numerical and two non-numerical locations of interest in this
case, which correspond to the numerical (10, 5 and 7) and the
non-numerical literals (the two str
each of them containing a single white-space character) present
in the code. -numerical

check box for each of them. For the numerical literals, we
specify the following ranges of integer values as domains:

 [10, 30] for the value of the location of interest
corresponding to the variable a,

 [20, 20] for the value of the location of interest
corresponding to the variable b, and

 [30, 10] for the value of the location of interest
corresponding to the variable c.

We will leave the predefined weight values (as shown in
Fig. 4) for the operators and statements unchanged. The
calculated complexity of our initial source code with these
settings is 29. We will set the threshold value to 20, so that we

292929292929

The 12th International Conference for Informatics and Information Technology (CIIT 2015)

t get code variations with complexities that exceed the
value 49.

The results obtained in the final step of the generation
process are shown in Table I. As we can see, the desired
number of 15 codes have been generated which means that

large complexity). The minimum complexity value of a
generated code is 9, and the maximum complexity is 29, so
only codes with complexities that are less or equal to the initial

TABLE I. STATISTICS FOR THE GENERATED CODE VARIATIONS

Observed statistic Value

Minimum complexity value 9

Maximum complexity value 29

Average complexity value 24.33

Average deviation from initial

6.22

Number of generated codes 15

Number of codes with same

complexity as the initial code
10

Number of codes with larger

complexity than the initial code
0

Number of codes with smaller

complexity than the initial code
5

The results show that even when the initial code is fairly
simple (as the one observed in this case study) and the
threshold value is set to be relatively small, we may obtain
code variations with complexities that may significantly differ
from the initial code
essential to have a tool for checking the complexities of the
generated code variations.

VI. CONCLUSION AND FUTURE WORK

In this paper we described the need for maintenance of
consistency of question complexity that appears in the
assessment process in the domain of teaching programming,
which is especially difficult when working with large course
classes. Teachers have to produce questions with same or
similar complexity for the
objectiv A
possible and already widely employed solution to this problem
is to use automatic production of questions. However, in order
to achieve complexity consistency in the process of automatic
production of questions that contain source code fragments,

which are commonly used in programming course exams, we
must have a way to automatically measure the complexity

Further in the paper we described the software metrics that
are most commonly used to measure the complexity of a given

We explained their advantages and
e not

suitable to be used for the problem under consideration. Next,
we proposed a new metric that considers the source code

to manually calculate the output of the program (if the input is
known), and thus, is well suited for the problem. The metric
measures the complexity using user-specified weight values
assigned to each of the operators and branch statements in the
code. We also described our new tool that employs this metric
to calculate the complexity of an initial source code, and
generate a desired number of new source codes (code
variations) with same or close enough complexity (using a
user-defined threshold value to control the complexity
deviation).

For our future work, we plan to conduct an extensive
research in order to determine weight values that will
accurately represent the stu
perform the operations and execute the statements in a given
source code.

ACKNOWLEDGMENT

The research presented in this paper is partly supported by
the Faculty of Computer Science and Engineering, at Ss. Cyril
and Methodius University in Skopje.

REFERENCES

[1] B.S. Bloom, M.D. Engelhart, E.J. Furst, W.H. Hill, and D.R. Krathwohl,
Taxonomy of educational objectives: The classification of educational
goals, Handbook I: Cognitive domain. New York: David McKay
Company, 1956.

[2] M.H. Halstead, Elements of Software Science. New York: Elsevier
North-Holland, 1977.

[3] T.J. , IEEE Transactions on Software
Engineering, vol. 2, no. 4, pp. 308-320, December 1976.

[4] Apache Maven [Online]. Available: https://maven.apache.org/

[5] D. Piatov, A. Janes, A. Sillitti, and G. Succi
Development Tooling as a robust, fully functional, actively maintained,

Communication Technology, pp. 399, 2012.

[6] FreeMarker [Online]. Available: http://freemarker.org/index.html

[7] to Gcov, GCC online documentation [Online]. Available:
https://gcc.gnu.org/onlinedocs/gcc/Gcov.html#Gcov

[8] JSR 344: JavaServerTM Faces 2.2
Process [Online]. Available: https://www.jcp.org/en/jsr/detail?id=344

[9] Spring framework [Online]. Available: http://projects.spring.io/spring-
framework

303030303030

The 12th International Conference for Informatics and Information Technology (CIIT 2015)

