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Abstract – In this paper, the behavior of a system 
dynamics is represented where neuro-controller is 
designed, trained, and implemented. The development 
of the mathematical models is based on suggestions and 
recommendations from the literature issued by the 
working group of IEEE. According to the 
mathematical models, simulation is developed in 
Simulink software. MATLAB/Simulink software was 
used to represent the difference between the 
conventional PID controller and artificial neural 
network (ANN) neuro-controller. Nonlinear 
autoregressive-moving average (NARMA-L2) has been 
used for control simulation of the hydro-power plant 
(HPP) with neuro-controllers on one hand, and 
conventional PID control on the other hand.  

Keywords – neuro-controller, PID controller, HPP 
control. 

1. Introduction

New approaches and techniques as a result of the 
modern-world advances have been developed [1] and 
used in order to achieve more reliable, energy-
efficient, and safer processes where the 
environmental regulations are stricter and more 
demanding. 
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Considering the above mentioned characteristics, 
the industrial processes, as well as power plants have 
become more complex and highly non-linear. 

The research which is the focus of this paper 
covers hydro-power plant (HPP) control when only 
one turbine is in island operation mode [2]. It does 
not matter if it is linear or non-linear, the HPP model 
which is a real case, experimentally verified, used in 
this paper, is proposed by the working group of 
IEEE, as shown in Figure 3 [2], [3], [4], [5]. 
According to the proposed HPP model and the HPP 
control, previous research was settled with traditional 
proportional-integral (PI), proportional integral 
derivative (PID) [5], [6], or proportional integral – 
proportional derivative (PI-PD) controllers [6]. It is 
concluded in [6] that with PI controller, the plant 
represents the best performances, while in [2], [5], 
[7], PID controller is represented as a more proper 
and successful HPP control technique. 

As described in [2], the gain scheduling technique 
on PID controller (used especially in non-linear 
models) has an advantage over the manual or auto-
tuning of the conventional PID controller values 
because gain scheduling can be applied in a complete 
working area of the plant while using PID controller 
only, its control is valid in the vicinity of the 
workstation for which the controller is designed.   [8] 
proposed simple structured PI control results in low 
cost and fast time response. Moreover, PI control 
provides poor system dynamics which is overcome 
by introducing I-PD controller where I-controller 
parameters are present in feedforward and PD-
controller parameters are present in a feedback loop. 

Another approach of HPP control [9], [10] is using 
an intelligent algorithm for system stability and 
better dynamics performances. When dealing with 
complex non-linear systems, PID control techniques 
are prone to overshoot and oscillate, and because of 
that, fuzzy logic control has proven to be a better 
solution. Furthermore, in [11] and [12], the 
combination of fuzzy logic and neural networks 
(NN) is proposed, especially for high-order non-
linear HPP model where random disturbances could 
be eliminated due to the robustness of the system. 
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Using intelligent algorithms for better dynamic 
performance such as neuro-controller implementation 
into multiple processes: hydro-pneumatic systems, 
thermal power plants, etc., is a well-known approach. 
However, such a control technique has not been yet 
developed/implemented in an HPP. Therefore, neuro-
control implementation is the focus of the research 
presented in this paper. In order to exhibit the plant 
behavior improvement, meaning faster system 
stabilization and better dynamic performance, a non-
linear autoregressive-moving average (NARMA-L2) 
is used. 

 
2. Methodology 

 
Customization and design of a conventional PID 

controller, on one hand, and neuro-controller, on the 
other, in this paper is utilized in order to achieve 
more efficient, stable, and reliable HPP control. As a 
further research goal, the difference in responses with 
both controlling techniques will be examined.  

Neuro-controllers as a modern control technique 
provides efficient control and faster system 
stabilization as the most important parameter related 
to processes and production. Important attention is 
paid to the design, training, and implementation of 
the NARMA-L2 neuro-controller. The NARMA-L2 
control technique, which is an artificial neural 
network (ANN)-based neuro-controller, offers an 
efficient solution to the problem via utilizing a 
backpropagation training algorithm. NARMA-L2 has 
been used as a controlling technique that linearizes 
the model inside the controller and cancels the 
disturbance dynamics to the input in the system, 
simultaneously aiming to maintain the original 
dynamic of the system [13]. The training process is 
performed offline and uses approximated models 
which represent the process dynamics.   

In the herein proposed model, NARMA-L2 
controls the angular velocity of a hydro-turbine rotor 
depending on a network load. The reference value in 
the neuro-controller is angular velocity which 
according to Figure 3 is connected to a controller and 
the controller is then connected to the 
servomechanism and a hydro-turbine sub-system [2]. 
Accepted as the most accurate/efficient way and as 
the fastest backpropagation algorithm in MATLAB® 
- Deep Learning Toolbox, the training function for 
the controlling technique is performed by Levenberg-
Marquardt Algorithm (LMA) [14].  

 
2.1. Identification and Implementation of NARMA-

L2  
 

NARMA-L2 (Figure 1), as linear/non-linear 
process controller, trained offline, is widely used to 
achieve accurate tracking reference value. Its 

working principle is based on the input and output 
data, whereas the linear function of the plant model 
output is created by the control input [15]. 

 

 
 

Figure 1. Block diagram of the NARMA-L2 controller [13] 
 
Both, g and f, non-linear functions as a part of 

NARMA-L2, have (2𝑛 െ 1) inputs, whereas y 
(output) and u (control effort), are input prior values. 
Both non-linear functions are eliminated, (1) after the 
plant approximation procedure and (2) after the 
training data generation. Then, the system output, 
defined as 𝑦ሺ𝑘 ൅ 𝑑ሻ, is equal to the tracked reference 
model output defined as 𝑦௥ሺ𝑘 ൅ 𝑑ሻ, where (d) is the 
delay, n is plant output and k is the time index [3] 
[5]. Once the data are generated inside the neuro-
controller, the system is trained repeatedly, until 
reaching the desired behavior and minimal data 
output error. 

 

 
 

Figure 2. NARMA-L2 neuro-controller structure [13] 
 

Mathematical model of the control law, with a 
structural representation as in Figure 2, is defined by 
the following discrete time characteristic equation, 
where in (1), (2) and (3), variables have the same 
meaning [16]: 

 

𝑢ሺ𝑘 ൅ 1ሻ ൌ
௬ೝሺ௞ାௗሻି௙ሾ௬ሺ௞ሻ,…,௬ሺ௞ି௡ାଵሻ,௨ሺ௞ሻ,…,௨ሺ௞ି௡ାଵሻሿ

௚ሾ௬ሺ௞ሻ,…,௬ሺ௞ି௡ାଵሻ,௨ሺ௞ሻ,…,௨ሺ௞ି௡ାଵሻሿ
  (1)

were 
 

𝑓 ൌ 𝐹ൣ൫𝑦ሺ𝑘ሻ, … , 𝑦ሺ𝑘 െ 𝑛 ൅ 1ሻ, 0, 𝑢ሺ𝑘 െ 1ሻ, … , 𝑢ሺ𝑘 െ 𝑛 ൅ 1ሻ൯൧ (2)

𝑔 ൌ
𝜕𝐹

𝜕𝑢ሺ𝑘ሻ
ฬ

ൣ൫௬ሺ௞ሻ,…,௬ሺ௞ି௡ାଵሻ,଴,௨ሺ௞ିଵሻ,…,௨ሺ௞ି௡ାଵሻ൯൧

 (3)
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3. Problem Elaboration 
 
Implementing new control techniques may help 

with faster system response, faster system 
stabilization, and avoiding system disturbance.  

 
 

 

The system that is research topic is implementing 
modern control techniques and experiencing their 
advantages. Since the considered plant is HPP, its 
mathematical and functional representation combines 
the following subsystems: servomechanism 
subsystem, hydraulic turbine, electrical subsystem, 
and controller (Figure 3). 

 

 
 

Figure 3. Block diagram of a hydropower plant [2] (amended by authors) 
 
Mathematical description of the hydraulic servo 

mechanism system is as follows: 
 

𝐺௩ሺ𝑠ሻ ൌ
1

ሺТଵ𝑠 ൅ 1ሻሺ𝑇ଶ𝑠 ൅ 1ሻ
 

(4) 

 
 

1

1 p

y t

T su t

   
   

L

L
 

 
(5) 

 

In equation (4), Тଵ and Тଶ are determined by the 
pressure characteristics and the flow that enters the 
plant, for moving the servo-mechanism system, 
including servomotors [2]. 

The input in the servo-mechanism system is the 
signal from the controller u(t) where it strives the 
error between the reference value of angular speed 
and the given angular speed, to be as low as possible. 
In this subsystem, the output is the blade opening 
position of the wicket gate i.e., wicket gate 
servomotor stroke, y(t) where 𝑇௣ is a pilot valve and 
servo motor time constant [2], [3]. 

Taking into consideration the parameters, such as: 
time constant of water (water starting time) 𝑇௪, flow, 
pressure, power near operating point, the transfer 
function was obtained i.e. the linear mathematical 
model that describe the hydro-turbine [2]: 

 

∆𝑃௠

∆c
ൌ

1 െ 𝑇௪𝑠

1 ൅
𝑇௪
2 𝑠

 
(6) 

 

where s is Laplace operator.  

Transfer function of the system [2]: 
 

G(s)=
ீ೎ሺ௦ሻሺଵି்ೢ ௦ሻ

ቀଵା
೅ೢ

మ
௦ቁሺ ೘்௦ା஽ሻ

 (7) 

 

where 𝐺௖ሺ𝑠ሻ is transfer function of a control and 
could be PI or PID control, depending on whether the 
system is linear or non-linear, and depending on the 
parameters that could be controlled. 𝑇௠ is 
mechanical time constant in [s] and D is turbine 
damping coefficient [2]. 

The characteristics equation of an electrical 
subsystem [2] which is an essential part of a hydro-
power plant, is as follows:   

 

𝑃௅ ൌ 𝑃଴ ൅ 𝑃଴𝐷௣௙∆𝑓     (8)

∆𝑃଴ ൌ ∆𝑃଴ ൅ 𝐷∆𝑓 (9)

∆𝑃௠തതതത െ ∆𝑃௘ഥ ൌ 2𝐻𝑠∆𝜔ഥ  (10)

∆𝑃௠തതതത െ ∆𝑃௘ ൌ ൫𝑇௠𝑠 ൅ 𝐷௙തതത൯∆𝜔ഥ  (11)

𝜔ሶ ൌ
1

𝑇௠𝜔
ሺ𝑃௠ െ 𝑃௘ሻ 

𝑃௘ ൌ 𝑃௟ ൅ 𝐷ሺ𝜔 െ 1ሻ 

  (12) 
 
  (13) 

 

where equation 8 represents active power. 
Linearizing eq. 8 are defined the load changes which 
are not sensitive to frequency and those that are 
sensitive to change frequency which represent 
equation 9. Combining load equation 9, and 10 -
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generator equation, obtained in equation 11, transfer 
function of mechanical movement of a generator 
with load damping 𝐷௙. Mathematical modeling of 
rotor dynamics is obtained by combining 9 and 11 
and implementing small modification with 12 and 13 
[2]. 
 

𝐺ሺ𝑠ሻ ൌ 𝐾௣ ൅
𝐾௜

𝑠
൅ 𝐾ௗ𝑠 

(14) 

 

Eq. 14 represents the transfer function of a PID 
controller where 𝐾௣, 𝐾௜ and 𝐾ௗ are parameters that 
could be manually calculated or could be auto tuned 
using 𝑀𝐴𝑇𝐿𝐴𝐵® software. 

 

 
 

Figure 4. Simulink model configuration for PID models 
[2] 

 
The most frequently used controller for HPP 

control is the PID [5], [6]. This type of controller is 
sensitive to small errors and is more capable of quick 
response. Emerging new technologies, such as neuro-
controllers, are able to speed up the stabilization, no 
matter whether the process is linear or non-linear. 
The reason for developing and implementing new 
controllers lies in the inability of the PID controller 
to return the system to a stable state, due to its 
physical limitation and saturation. 

 
4. Results and Discussion 

 
In this section, results obtained are elaborated 

while using conventional PID controller for HPP 
plant control, compared to those when using 
NARMA-L2 neuro-controller, based on the proposed 
mathematical model (equations 4 to 13).  

 

 
 

Figure 5. Simulink model configuration for NARMA-L2 
 

Tuning the parameters for the PID controller is 
done via using the gain-scheduling technique. 
According to Figure 3, block diagrams and lines in 
black represent the HPP model with PID controller, 

while red lines depict the newly implemented neuro-
controller.  

Simulink model for PID and neuro-controller 
control techniques are shown on Figure 4 and Figure 
5, respectively. NARMA-L2 has a specific block 
diagram where the parameters for the neuro-
controller and the neural network are specified inside 
the block diagram. 

Configuration and generation of the training data 
for the neuro-controller are according to Table 1, 
whereby training lasts until the desired responses are 
obtained and until the regression-R approaches 1.  

 
Table 1. Linear plant identification and controller 
configuration 

 

Network Architecture 
Size of 
hidden layer 

1 
Delayed plant 

inputs 
3 

Sampling 
interval 
(sec) 

0.1 
Delayed plant 

outputs 
2 

Training data 
Training 
samples 

1000 
Minimum 

interval value 
0.01 

Maximum 
plant input 

2 
Maximum plant 

output 
1 

Minimum 
plant input 

-1 
Minimum plant 

output 
0 

Maximum 
interval 
value 

1 
Simulink plant 

model 
LinearPlant

Model 

Training parameters 
Training 
Epochs 

500 
Training 
function 

trainlm 

 
As per [14] the training function, which in a most 

accurate and efficient way solves the generic-curve 
fitting problem, is Levenberg-Marquardt Algorithm 
(LMA). Hence, herein, this type of algorithm is 
implemented.  

 

 
 

Figure 6. NN training performance graphical 
representation 
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Figure 7. Comparison of the responses given by PID 
controller and neuro-controller 

 
 

Figure 9. Response of a non-linear model of a turbine 
tracking the input signal using gain scheduling PID 

[2] 

The desired response (Figure 6) is reached at epoch 
44 when the mean square error is 2.2318 e-06. 

Compared to the results when the system is 
controlled by PID, a significant difference in the 
responses is noticed after implementing the neuro-
controller (Figure 5). As the NARMA-L2 uses linear 
approximation in the vicinity of u(k)=0, the obtained 
plant model successfully tracks the signal, it becomes 
stable in a shorter period, while no response 
overshoot occurs. The controller input reference 
signal is the angular velocity, whereas the trajectory 
that should be tracked is the network load. The 
negative decline in the mechanical power due to 

inertia, as a crucial feature in the hydro turbine 
behavior, is successfully addressed. Short oscillations 
are still present, but no overshoot occurs. 

As shown in Figure 7, the difference in the 
stabilization period between both responses (PID 
controller in green and neuro-controller in red) is 10 
seconds, where better results are obtained from using 
neuro-controller rather than the conventional PID 
controller.  

 
Table 2. Non-linear plant identification and controller 
configuration 

 

Network Architecture 
Size of 
hidden layer 

10 
Delayed plant 
inputs 

3 

Sampling 
interval 
(sec) 

0.01 
Delayed plant 
outputs 

2 

Training data 
Training 
samples 

3000 
Minimum 
interval value 

30 

Maximum 
plant input 

1 
Maximum plant 
output 

inf 

Minimum 
plant input 

0 
Minimum plant 
output 

-inf 

Maximum 
interval 
value 

300 
Simulink plant 
model 

Non-
linearPlant

Model 
Training parameters 

Training 
Epochs 

2500 
Training 
function 

trainlm 

 

 

Configuration of the NARMA-L2 controller 
parameters is performed either by trial-error method 
or by realizing the manner of effect that specific 
parameters have on the system. Using NARMA-L2 
as a controller in non-linear systems, indicates that it 
linearizes the model because of the controller’s 
architecture. Configuration and generation of the 
training data for the neuro-controller are according to 
the Table 2. 

Comparing Figure 8 and Figure 9, it could be 
concluded that implementing a neuro-controller 
results in a shorter rise time, in overshoots, and in 
oscillations, which stabilize swiftly. According to 
Figure 8, after more than 1000 trials of network 
training of the non-linear plant model, a response 
error compared to the network load in the last two 
steps is still not eliminated, i.e., the turbine does not 
follow the network load; while in Figure 9, where the 
gain scheduling technique is used, the system is 
stable and the mechanical power is tracking the 
network load, but the system’s response is slower 
(i.e., larger rise time). Additional research is required 
to explain why after so many trials when using a 
neuro-controller that gives better dynamic responses, 
the error in the last two steps remains. 
 
5. Conclusion 
  

A comparison in the HPP dynamic behavior has 
been successfully elaborated while using a 
conventional PID controller and a NARMA-L2 
neuro-controller.  

 
 

Figure 8. Response of a non-linear model of a turbine 
tracking the input signal using NARMA-L2 
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The study of both control approaches shows that 
NARMA-L2 neuro-controller is more beneficial in 
providing fast rise time, stable response, and a faster 
system stabilization than the conventional PID 
control technique. 

In contrast to the resolved network load tracking 
problem in the linear model, in the non-linear model 
the error in the last two steps still pertains. Thus, 
initial results are promising, although the actual aim 
of successful tracking has not yet been achieved. 
Further research, in order to reach the desired 
dynamic behavior of the non-linear system is 
foreseen, whereby a combination of NARMA-L2 and 
PID controller emerges as a possible solution.  
 
Nomenclature 

 
Table 3. Table with important variables 

 

Т௜ Integral time constant [s] 
𝑇௪ Water starting time [s] 
𝑇௠ Mechanical time constant [s] 
𝑃௠ Mechanical power [kW] 
𝑃௘ Electrical power [kW] 
𝐷௙ Load attenuation [-] 
𝜔 Angular speed [rad/s] 
𝐾௣ Proportional gain [-] 
𝐾௜ Integral gain [-] 
𝐾ௗ Derivative gain [-] 
c Opening of the wicket gate [pu] 
g Non-linear function [-] 
f Non-linear function [-] 
y Output from neuro-controller [-] 
u Control effort [-] 
k Time index [-] 
n Plant output [-] 

𝑇௣ Pilot valve and servo motor time 
constant 

[s] 

d Control error [-] 
w Vector of real-values weights [-] 
x Vector of input values [-] 
m Number of inputs to the Perceptron [-] 
b Bias [-] 

𝑃௅ Active power [MW] 

𝑃଴ 
Power load (not sensitive to changes 
in frequency) 

[W] 

𝐷௣௙ Frequency sensitivity parameter [%] 
H Rotational mass moment of inertia [kgm] 
𝑃௟ Electric load [kW] 
j Number of neurons  [-] 

𝑁௨ Tentative control signal [-] 
𝑦௥ Desired response  [-] 
𝑦௠ NN response [-] 

𝜌 
is sum of the squares of the control 
increments 

[-] 

𝑢ᇱ Control increment [-] 
t Time index [-] 
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