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Abstract. Real estate mass valuation models of a market value have a tendency to 
generate real estate property values as close as to the real market values. Property 
valuation theory, as one of the primary factors influencing property value, considers 
location. The main statistical tool used for modelling in this investigation is 
geographically weighted regression. More precisely, the paper is striving to establish a 
mass valuation real estate property model considering the implementation of spatial data 
as a significant factor in determining the market value of condominiums in Skopje.  

 
1. INTRODUCTION 

 
The great importance of real estate, both in economic as well as in social 

life creates a need for trustworthy data about its own value, which will be 
helpful in making decisions during its management and usage. 
The value, in the publication Uniform standards of professional appraisal 
practice by the Appraisal Foundation, is defined as “the monetary relationship 
between properties and those who buy, sell, or use those properties”. Value 
expresses an economic concept. As such, it is never a fact, that is, it is always an 
opinion about the value of the property at a given time in accordance with a 
certain definition of value. Real estate appraisal or property valuation is "the act 
or process of developing an opinion of value of the property", [1]. 

It is important to distinguish the term market value from the term market 
price, which is the amount for which real estate is sold on a certain date. In 
addition to the market, investment, liquidation value, value according to the 
principle of continuity and many other types of real estate value can be also 
estimated. The market value by the International Valuation Standards Council in 
their publication International Valuation Standards is defined as "the estimated 
amount for which an asset or liability should exchange on the valuation date 
between a willing buyer and a willing seller in an arm’s length transaction, 
after proper marketing and where the parties had each acted knowledgeably, 
prudently and without compulsion", [8]. 

Regarding the method of valuation, i.e., the number of real estates that are 
apprised, there is an individual and mass valuation.  
__________________________________________________ 
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The individual valuation is an estimate of the value specifically intended for 
individual real estate, taking into account its specific characteristics and 
referring to a specific date. Unlike individual valuation, mass valuation is a 
process of valuing a group of real estate, on a given date, using common data, 
applying standardized methods and conducting statistical tests to ensure unity 
and equality in valuation. When assessing a large number of real estates, it is 
difficult to emphasize each of their qualities, so special attention is paid to 
defining what is common to all real estate that is valued, i.e., significant factors 
for their value. The mass valuation, by the Appraisal Foundation in their 
publication Uniform Standards of Professional Appraisal Practices, is defined as 
a "process of valuing a universe of properties as of a given date using standard 
methodology, employing common data and allowing for statistical testing", [1]. 

Mass valuation is based on the same basic principles as individual 
valuation. However, mass valuation includes many real estates for a certain 
date, which is why mass valuation techniques include equations, tables, and 
plans, collectively called models. 

Mass valuation models attempt to represent the market for a certain type of 
real estate in a particular area. The structure of such models can be seen as a 
two-step process: 

 Model specification and 
 Model calibration. 

The model specification provides a framework for simulating supply forces 
and real estate market demand. This step involves selecting the variables of 
supply and demand, that need to be considered and defining their correlation 
towards the value as well as their own correlation. Model calibration is the 
process of adjusting the mathematical model for mass valuation, the tables, and 
the estimates for the current market. The structure of the model can be valid for 
several years, but it is usually calibrated or updated each year. For longer 
periods, a complete market analysis is required, [3]. The purpose of the mass 
valuation is to reflect the current conditions in the local market. 

When specifying the mass valuation model, firstly the variables are 
identified (supply and demand) that can impact the value of the real estate and 
then they are defined as mathematical conversions such as logarithms, which are 
often used to transform nonlinear data. At the same time, the mathematical form 
of the model is defined.  It can be used in linear (additive) and nonlinear 
(including multiplier) forms. Next, the model is calibrated, i.e., the data are 
analysed so we can determine the adjustments or the coefficients that represent 
the contribution to the value of the real estate of the selected variables. 

The construction of the models requires a good theoretical foundation, data 
analysis, and research methods. The best valuation models are expected to be 
accurate, rational, and explainable. Regression analysis is one of the most used 
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methods in statistics, it is used for understanding, modelling, predicting, and 
explaining complex phenomena. In regression analysis, the predicted variable is 
called a dependent variable, and the variables used for prediction are called 
independent variables. Regression analysis allows the creation of a model for 
predicting the values of a dependent variable, based on the values of other 
independent variables or only one independent variable. 

Building a regression model is an iterative process that involves finding 
effective independent variables to explain the dependent variable we are trying 
to model or understand. By repeating the regression procedure, we determine 
which variables are effective predictors, and then we constantly subtract and/or 
add variables until we find the best possible regression model. The process of 
building a model is a research process. It is necessary to identify explanatory 
variables in consultation with theory, experts in the field, and based on common 
sense. We need to be able to state and justify the expected relationship between 
each explanatory variable and the dependent variable before the analysis, and 
we need to question the models where these relationships do not match. 

The first law of geography, given by Waldo Tobler, is that “everything is 
related to everything else, but near things are more related than distant things”, 
[12]. Foundations of many spatial statistical methods are based on this law. 
Geographically weighted regression (GWR) is a method used in spatial 
statistical analysis, discovering geographical variations in the relationship 
between a response variable and a set of covariates. GWR has been applied in a 
variety of disciplines and studies, aided by the increased availability of geo-
referenced data at finer scales, and by an appreciation that global regression 
models can mask substantively important departures from average trends at 
local levels. 

Based on the established infrastructure related to the mass valuation of real 
estate, the aim of this research paper is defined as the first attempt to establish a 
model for mass valuation of real estate for parts of the city of Skopje, while 
explicitly incorporating the spatial factor. The research also focuses on the 
application of data that the Agency of Cadastre, registers as real estate 
transactions that take place within the state, and which are the only official and 
relevant data source. Considering that in the value of the real estate, and 
consequently in the assessment of the value, the location has a great impact, the 
intention is to base the research on GeoInformation systems with which the 
spatial factor will be easily implemented in the model as well as the control of 
this component will be more extensive. 

The rest of the paper is arranged as follows. In Section 2, the basic 
concerning geographically weighted regression are provided. Central part in this 
paper is Section 3. In this section are given two different models of real estate 
mass valuation, both using geographically weighted regression. The impacts of 
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the age of the building and garage area are separately depicted and analysed.   
At the end, certain comparison of mass valuation models performance is given. 
 
 
 
2. GEOGRAPHICALLY WEIGHTED REGRESSION  

 
The main objective of spatial analysis is to identify the nature of the 

relationships that variables exhibit, [5-7]. Usually, this is made by calculating 
statistics or estimating parameters with observations taken from different spatial 
units across a study area, [9-12]. The obtained statistics or estimates of the 
parameter are assumed to be constant across space although this might be a very 
questionable assumption to make in many circumstances. In general, it is 
reasonable to assume that there might be intrinsic differences in relationships 
over space or that there might be some problem with the specification of the 
model from which the relationships are being measured and which manifests 
itself in terms of spatially varying parameter estimates. In either case it would 
be useful to have a means of describing and mapping such spatial variations as 
an exploratory tool for developing a better understanding of the relationships 
being studied, [2]. 

The most used model in geographical analysis is the model of simple linear 
regression. Using this technique, a particular variable (the dependent variable), 
is modeled as a linear function of a set of independent or predictor variables. 
The model states as follows: 

0
1

m

i k ik i
k

y a a x 


                          (1) 

where iy  is the i th observation of the dependent variable, ikx is the i th 

observation of the k th independent variable, i  are independent normally 

distributed error terms with zero means, and each ka  are determined from the 

observations. The number of observations is n . Using the least squares method, 

ка , 1, 2,...,k m  are estimated. In context of matrices, the upper equation can 

be written as 

     1ˆ ( )t ta x x x y                                                       (2) 
where the independent observations are the columns of x  and the dependent 
observations are the single column vector y . The column vector â contains the 
coefficient estimates. Each of these estimates can be looked of as a “rate of 
change” between one of the independent variables and the dependent variable. 
For example, if y  were agreed condominiums prices, and x  contained several 

variables related to the attributes of the condominiums and its surrounding 
environment, coefficients could be used to estimate the change in 
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condominiums price for an extra square meter of garage, an extra bedroom, or 
the condominiums being located one kilometer closer to the nearest school.  

Note that these rates of change are assumed to be universal. Wherever an 
apartment is located, for example, the marginal price increase associated with an 
additional bedroom is fixed. It might be more reasonable to assume that rates of 
change are determined by local culture or local knowledge, rather than a global 
utility assumed for each commodity. Returning to the example, the value added 
for an additional bedroom might be greater in a neighborhood populated by 
families with children where extra space is likely to be viewed highly beneficial 
in a neighborhood populated by singles or elderly couples, in which case extra 
space might be viewed as a negative feature. These variations in relationships 
over space, such as those described above, are referred to as spatial 
nonstationarity, [2]. 

Geographically weighted regression (GWR) addresses problems like the 
one in the previous paragraph. It is a relatively simple technique, extending the 
traditional regression framework of equation (1). Local variations in rates of 
change are allowed, so that the coefficients in the model are specific to a 
location i , rather than being global estimates. The regression equation in this 
case is given by 

     0
1

m

i i ik ik i
k

y a a x 


                            (3) 

where ika  is the value of the k  th parameter at location i . Note that (1) is a 

special case of (3), by putting all of the functions are constants across space. As 
will be shown below, the point i  at which estimates of the parameters are 
obtained is completely generalizable and need not only refer to points at which 
data are collected. Using GWR, it is quite easy to compute parameter estimates. 
For instance, for locations lying between data points, which makes it possible to 
produce detailed maps of spatial variations in relationships. Although the model 
in equation (3) appears to be a simple extension of (1), a problem with 
calibrating (3) is that the unknown quantities are in fact functions mapping 
geographical space onto the real line, rather than simple scalars as in (1). In a 
typical data set, samples of the dependent and independent variables are taken at 
a set of sample points and it is from these that the parameters must be estimated. 
In the traditional model, these estimates are constant for all i  but in equation (3) 
this is clearly not the case. For model (3), it seems intuitively appealing to base 
estimates of ika  on observations taken at sample points close to i . If some 

degree of smoothness of the ika , 1, 2,...,k m is assumed, then reasonable 

approximations may be made by considering the relationship between the 
observed variables in a region geographically close to i . 
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By the use of a weighted least squares approach to calibrating regression 
models, different emphases can be placed on different observations in 
generating the estimated parameters. In ordinary least squares, the sum of the 
squared differences of predicted and actual iy , is minimized by the coefficient 

estimates. In weighted least squares a weighting factor iw  is applied to each 

squared difference before minimizing, so that the inaccuracy of some 
predictions carries more of a penalty than others. If w  is the diagonal matrix 
consisting of all iw , then the estimated coefficients satisfy 

      1( )t ta x wx x wy .           (4) 

In Geographically weighted regression, weighting an observation in 
accordance with its proximity to i  would allow an estimation of ika  to be made 

that meets the criterion of “closeness of calibration points” set out above.  Note 
that usually in weighted regression models the values of iw  are constant, so that 

only one calibration has to be carried out to obtain a set of coefficient estimates. 
In this case w varies with i , a different calibration exists for every point in the 
study area. In this case, the parameter estimation formula could be written more 
generally as 

1( ) ( ( ) ) ( )t ta i x w i x x w i y .               (5) 

Comparing this method and that of kernel regression and kernel density 
estimation, we can say the following: In kernel regression, y is modeled as a 

nonlinear function of x by weighted regression, with weights for the i th 
observation depending on the proximity of x and ix , for each i  with the 

estimator being  

1( ) ( ( ) ) ( )t ta x x w x x x w x y .         (6) 

The main difference between the two methods is that in (6), kernel 
regression, the weighting system depends on the location in “attribute space” of 
the independent variables, whereas in geographically weighted regression (see 
(5)) it depends on location in geographical space. The output in (5) is typically a 
set of localized parameter estimates in x space so that highly nonlinear and 
nonmonotonic relationships between y  and x  can be modeled. The typical 

output in (6) is a set of parameter estimates that can be mapped in geographic 
space to represent nonstationarity or parameter “drift”, [2]. 

From the above, iw is a weighting scheme established on the proximity of 

i  to the sampling locations around i , without an explicit relationship being 
stated. The choice of such a relationship will be considered in continuation. 
Firstly, consider the implicit weighting scheme of (2). Here 
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          1ijw  ,            (7) 

for all i  and j . Here j represents a specific point in space at which data are 

observed and i   represents any point in space for which parameters are 
estimated. This means that, in the global model each observation has a weight 
one. An initial step toward weighting based on locality might be to exclude 
from the model calibration observations that are further than some distance d  
from the locality. This is equivalent to putting their weights to be zero, giving a 
weighting function by 

     
1,

0,
ij ij

ij

w d d

w otherwise

 
 

.          (8) 

The use of (8) allows efficient computation, since for every point for 
which coefficients are to be computed; only a subset (often quite small) of the 
sample points need to be included in the regression model. Hence, the spatial 
weighting function in (8) suffers the problem of discontinuity. As i  vanes 
around the study area, the regression coefficients could vary drastically as one 
sample point moves into or out of the circular buffer around i  and which 
defines the data to be included in the calibration for location i . Although instant 
changes in the parameters over space might genuinely occur, in this case 
changes in their estimates would be artifacts of the arrangement of sample 
points, rather than any underlying process in the phenomena under 
investigation.  One way to address this problem is to make ijw  a continuous 

function of ijd , where ijd  is the distance between i  and j . In this case, it can 

be seen from (5) that the coefficient estimates would then vary continuously 
with i . A straightforward choice for the weight function ijw might be  

2

e ijd

ijw  ,             (9) 

so that if i is a point in space at which data are observed, the weighting of that 
data will be unity and the weighting of other data will decrease according to a 
Gaussian curve as the distance between i  and j increases. In the latter case the 

inclusion of data in the calibration procedure becomes “fractional.” For 
example, in the calibration of a model for point i , if 0,5ijw  , then data at 

point j contribute only half the weight in the calibration procedure as data at 

point i itself. For data far away from i  the weighting will be asymptotically 
zero, effectively excluding these observations from the estimation of parameters 
for location i .  

Adjustments of (8) and (9) may be made, having the computationally 
desirable property of excluding all data points greater than some distance from 
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i  and also the desirable property of continuity. An example is the bisquare 
function given by 

2 2 2(1 / ) ,

0,
ij ij

ij

d d d d
w

otherwise

  
 


.       (10) 

This excludes points outside radius d , but tapers the weighting of points 

inside the radius, so that ijw is a continuous and once differentiable function for 

all points less than d  units from i . 
Whatever the specific weighting function employed, the essential idea of 

Geographically weighted regression is that for each point i  there is a “bump of 
influence” around i corresponding to the weighting function in a way that 
sampled observations close to i  have more influence in the estimation of i ’s 
parameters than do sampled observations farther away. 

 The following problem occurs when use GWR: The estimated parameters 
are, in part, functions of the weighting function or kernel selected in the method. 
In (8), for example, as d  becomes larger, the closer will be the model solution 
to that of OLS and when d  is equal to the maximum distance between points in 
the system, the two models will be equal. Equivalently, in (9) as   tends to 
zero, the weights tend to one for all pairs of points so that the estimated 
parameters become uniform and GWR becomes equivalent to OLS. Conversely, 
as the distance- decay becomes greater, the parameter estimates will 
increasingly depend on observations in close proximity to i and hence will have 
increased variance. The problem is therefore how to select an appropriate decay 
function in GWR. Consider the selection of   in (9), one possible solution is 

  to be chosen on a least squares criteria. If the error terms in (3) are assumed 
to be Gaussian, then this also fulfills a maximum likelihood criterion. Hence, 
the way to proceed would be to minimize the quantity 

          * 2

1

( ( ))
n

i i
i

y y 


 ,       (11) 

where *( )iy   is the fitted value of iy  using a distance-decay of  . For the 

sake of finding the fitted value of iy  , it is necessary to estimate the ika ’s at each 

of the sample points and then combine these with the z -values at these points. 
However, when minimizing the sum of squared errors suggested above, a 
problem is encountered. Let   was made very large so that the weighting of all 

points except for i itself become negligible. Hence the fitted values at the 
sampled points will tend to the actual values, so that the value of (11) tends to 
zero. This means that under such an optimizing criterion, the value of   tends 
to infinity, but clearly this degenerate case is not useful. First, the parameters of 
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such a model, are not defined in this limiting case. Second, the estimates will 
fluctuate wildly throughout space in order to give locally good fitted values at 
each i . 

The cross-validation (CV) approach suggested 
for local regression by Cleveland (1979) and for kernel density estimation by 
Bowman (1984), is a solution to this problem. Here, a score of the form  

* 2

1

( ( ))
n

i i
i

y y 


  

is used where *( )iy   is the fitted value of iy  with the observations for point i
omitted from the calibration process. This approach has the desirable property 
of countering the wrap-around effect, since when becomes very large, the model 
is calibrated only on samples near to i and not at i itself. Plotting the CV score 
against the required parameter of whatever weighting function is selected will 
therefore provide guidance on selecting an appropriate value of that parameter. 
If it is desired to automate this process, then the CV score could be maximized 
using an optimization technique such as a Golden Section search, [2]. 
 
 
 
3. MODELLING WITH GEOGRAPHICALLY WEIGHTED 

REGRESSION 
 
According to the theoretical settings, experience, available research and data 

made available from the Register of Leases and Real Estate Prices, a set of 
proposed explanatory variables has been identified that are considered to 
determine the market value of the real estate. Despite the good reasons for 
including any available real estate data as variables in the model, it was found 
that some of the explanatory variables were statistically significant and some 
were statistically insignificant. For this reason, statistical tests have been 
conducted to make a number of possible combinations of proposed input 
explanatory variables, requiring models that best explain the dependent variable 
and thus perform the model specification. The analysis of the proposed 
explanatory variables gave the results shown in the table below. Also, through 
the statistical analysis, multicollinearity is calculated between the explanatory 
variables, i.e., VIF value. In which the value taken as a limit is the value 7.5, 
i.e., if the VIF value is less than 7.5 there is no multicollinearity between the 
explanatory variables.  

The following table shows the result for significance and multicollinearity 
based on the analysis of the explanatory variables. 
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Table 1: Result of the analysis of variables 
Summary of variable significance Multicollinearity 

Variable Significant Negative Positive VIF 
Area 100 0 100 1.69 
Garage (area) 100 0 100 1.19 
Distance to closet 
mall 

100 100 0 4.17 

Age 98.07 100 0 1.67 
Elevator 87.67 0 100 1.64 
Distance to closest 
university 

85.09 99.14 0.86 2.97 

Distance to school 79.93 0 100 1.33 
Balcon area 74.53 0.02 99.98 1.19 
Floor number 73.79 0 100 1.21 
High quality 
interior 

69.43 0 100 1.03 

Distance to closest 
park 

65.00 62.99 37.01 3.71 

Rooms 60.68 18.84 81.16 1.47 
Own heating 
system 

60.21 8.77 91.23 1.93 

Distance to closest 
hospital 

54.98 16.58 83.42 1.90 

Distance to closest 
kinder garden 

44.19 42.45 57.55 1.38 

Distance to city 
centre 

43.51 48.20 51.80 2.56 

Basement area 39.99 77.79 22.21 1.30 
Communal 
heating system 

33.04 24.30 75.70 2.32 

Distance to closest 
bus station 

22.33 72.18 27.82 1.33 

 

The results obtained from the analysis of the explanatory variables show 
that there is a high significance of certain structural, but also spatial 
characteristics for the real estate that is subject to transaction. It can also be 
noted that we do not have a redundant explanatory variable, i.e., there is no 
multicollinearity between the explanatory variables. In the process of defining 
an appropriate model, it is necessary to experiment with different variables to 
explain the value of the real estate. It is important to be aware that the 
coefficients of the explanatory variables (and their statistical importance) may 
change radically depending on the combination of variables we include in the 
model. 
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For the purposes of the research, two models were created with GWR, while 
for assessing the quality of the created models, the statistical parameters R2, 
adjusted R2and Akanke’s Information Criterion (AICc) were used. R2 and 
adjusted R2 are statistically derived from the regression equation to quantify 
model performance. The value of R2 ranges from 0 to 1. If the model explains 
the dependent variable perfectly R2 is 1.0. As an example, if you get a value of 
R2 of 0.49, it can be interpreted with the words: "the model explains 49 percent 
of the variations in the dependent variable". Adjusted R2 is always slightly lower 
than the value for R2, as it reflects the complexity of the model (number of 
variables). Consequently, the adjusted R2 is a more accurate measure of model 
performance. The Akaike information criterion (AIC) is an estimator of 
prediction error and thereby the relative quality of statistical models for a given 
set of data. AIC estimates the relative amount of information lost by a given 
model: the less information a model loses, the higher the quality of that model.  

Model 1 
Model 1 created with GWR is specified only with structural features of 
residential property. As explanatory variables for which statistical tests showed 
the greatest signification are as follows: Area, Garage (area), Balcony area and 
Age. Using these explanatory variables, the first model for which the following 
statistical indicators are obtained is formed in the table below, through which 
we can see the success of the model. 
 

Table 2: Results of the analysis – GWR for Model 1 
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Table 3: Correlation coefficient between the projected prices by Model 1 and 
the actual purchase prices for the control group points 

 
The correlation analysis between the appraised market value of the 

residential property that has been sold, obtained with model 1 and the actual 
purchase price performed in transactions for the control group of transactions, 
calculated with Pearson the correlation coefficient in the SPSS software for this 
model is 0.899, i.e., 89.9 %. 
 
Model 2  
Model 2 created with GWR uses the same structural and explanatory variables 
as Model 1 and supplemented by three spatial explanatory variables that the 
analysis showed were statistically significant: Distance to the closest mall, 
Distance to the closest hospital and Distance to the closest university. By 
applying all these explanatory variables, the following statistical indicators 
shown in the following table are obtained: 
 

Table 4: Results of the analysis –GWR for Model 2 
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The correlation analysis between the appraised market value of the 
residential property that has been sold, obtained with model 2 and the actual 
purchase price performed in the transactions for the control group points, 
calculated with Pearson correlation coefficient in the SPSS software for this 
model is 0.906, i.e., 90.6%. 
 

Table 5: Correlation coefficient between the projected prices by Model 2 and 
the actual purchase prices for the control group points 

When calibrating mass valuation models where spatial regression models 
are used, they have a variable value that varies depending on the location. In 
order to register this variation, spatial data in raster data format is used. Hence, a 
significant advantage in using the GWR model and applying GeoIS is the ability 
to create a series of raster layers of variable coefficients. This allows the 
identification of spatial variations within the research area, which can help in 
effective decision making. Such records can provide an excellent insight into the 
key parameters that affect the value of the property in a particular area. For 
example, the age of the property can have a significant negative impact on the 
value of the property in newly developed areas where most of the properties are 
completely new, and on the other hand it can have a positive impact in an old 
part of the city where older buildings have architectural features and historical 
significance. In order to emphasize the importance of these models, the results 
of the age factor of the building will be presented. As expected, the age of the 
building is inversely proportional to the value of the property, i.e., the older 
construction reduces the value of the property due to obsolescence, deterioration 
and depreciation. The analysis of the raster data model of the coefficient for the 
age of the building showed that the impact of this factor varies through the field 
of research and less impact (lower coefficients) this factor is observed in the 
central area of the city, while the impact of the age of the building increases as 
we move away from the central urban area, to the settlements of Karposh, 
Aerodrom, where new buildings are being built and the demand for new 
buildings is higher. 
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Figure 1: Value of the coefficient before the variable age 
    

The analysis of the raster data model of the coefficient for the impact of the 
garage surface showed that this impact is greater in the municipalities of Centar 
and Karposh, while in the municipalities of Aerodrom and Chair, that impact is 
less, as expected, due to the existence of more and larger parking spaces. 

 
Figure 2: Values of the coefficient in front of the variable area of the garage 
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4. CONCLUSIONS  
 

Based on the results obtained from quality control of the established models 
for mass valuation we can conclude that both models meet the statistical checks 
and have a satisfactory accuracy of market value prediction. However, although 
they have satisfactory accuracy, it is necessary to emphasize the difference 
between the number and type of explanatory variables that these models 
incorporate and how they affect the end result.   
 

Table 6: Comparison of mass valuation models performance 
 

 Model 1 - GWR Model 2 - 
GWR 

Coefficient of determination – R2 79.5% 82.0% 
Akaike Information Criterion – AICc 17822 17724 
Pearson correl. 89.9% 90.8% 

Input data Non-spatial Spatial 

Number of explanatory variables 4 7 
 

Model 2 has higher R2 coefficient, which means that the created model fits 
much better in the data. A higher percentage shows that the dependent variable 
(the value of the residential property) is better explained by the selected 
independent variables, while this percentage is lower in Model 1. Also, the 
AICc value of the first model is lower than the one of Model 2. 

 As for the accuracy of the prediction, which is calculated as the correlation 
coefficient between the projected prices of the control transactions that were 
omitted from the creation of the models and the actual prices of their purchase, 
Model 2 has a higher Pearson correlation factor than Model 1.      

The results show that the use of Geographically weighted regression (GWR) 
in predicting market real estate values is a great basis for developing mass 
valuation models. In doing so, the incorporation of spatial explanatory variables 
can have a positive impact on real estate mass valuation models.                  
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