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Abstract— The paper is focused on the missing scans in the 
context of longitudinal image retrieval for Alzheimer's Disease. 
Namely, we explore the influence of missing data on the retrieval 
results when the subjects are represented by the longitudinal 
changes calculated on the basis of the within-subject template 
generated using the available time points. To evaluate the effect 
of the missing scans, we defined two (most characteristic and 
most common) scenarios, in which missing scans at a specific 
time point are considered, and one scenario that is based on 
complete data used as a baseline to compare against. 
Additionally, we increased the number of patients with missing 
scans from 10% to 50% and evaluated its impact on the retrieval 
results.  

The evaluation showed that from the examined types of 
feature vectors, concatenated longitudinal changes of the 
volumes of the cortical and sub-cortical structures are superior 
and robust. In the case when the dimensionality of the descriptor 
is an important criterion, we recommend the usage of the 
percent change or symmetrized percent change of the 
volumetric measures. Additionally, the influence of the missing 
scans on the retrieval results is lower when incomplete data 
occurs in the early time points, rather than in later ones. 
Moreover, very little or no performance reduction was detected 
by increasing the number of subjects with missing scans. In 
general, the evaluation showed very small or no performance 
degradation in the retrieval process in the scenarios with 
missing scans, in comparison to the scenario with fully complete 
data.  

Keywords— Missing Data, Longitudinal Images, Longitudinal 
Image Retrieval, Alzheimer’s Disease, Magnetic Resonance 
Imaging. 

I. INTRODUCTION 

Alzheimer’s Disease (AD) is a progressive 

neurodegenerative disease and the most common cause of 

dementia [1]. Considering this, early diagnoses of the disease, 

monitoring the patient’s condition or the disease progression, 

finding powerful diagnostic or prognosis biomarkers, 

identifying the patients who are most probable to ultimately 

develop AD, as well as reaction to the therapy are active 

research fields.  

 Advances in genetics and medicine, as well as the rapid 

evolution of technology and neuroimaging techniques 

increase the amount of generated data of the medical cases 

for AD. Among all the data generated within the medical 

cases for AD, Magnetic Resonance Images (MRI) offer 

extremely good opportunities and are found to have a key role 

in early diagnosis, prognosis and monitoring of AD [2]. 

Considering that the information extracted from the brain 

images provide precise and consistent markers for diagnosis 

and monitoring the development of the disease [3-4], our 

research is towards medical case retrieval by using medical 

images as input queries. 

The image retrieval process involves representation of the 

query image with a descriptor and then comparing it with the 

descriptors of all images in the medical data- base. The result 

is a list of all images sorted in the database by similarity, so 

that the most similar one is at the top [6]. In that sense, for a 

given medical case of a patient for whom an MRI was 

acquired, the image is given as a query to the system. The 

retrieval system provides a sorted list of all images of other 

patients according to their similarity to the query. The main 

challenge is to get the result that is semantically relevant [7-

8]. 

Taking into consideration the progressive nature of AD, 

longitudinal data are extremely important. Longitudinal 

images (images acquired at multiple consecutive time points) 

are meant to reflect the disease progression. However, a key 

problem that arises considering longitudinal images is 

missing data, i.e. lack of scan/s for one or more time points. 

The reason for this might be the patient's inability to undergo 

scanning at the predefined period, disability to continue the 

examination, poor quality of the scan, etc. [9]. In addition, the 

occurrence of missing data where the time difference between 

time points is not uniform is very common [10]. 

One possible solution is to exclude from the research all 

patients with incomplete data. The main limitation of this 

solution is that it significantly reduces the number of patients 

included in the examination, excluding possibly important 

knowledge that might be extracted from them. One way to 

overcome this limitation is to use data imputation [5,9, 11-

12]. This would complement those features that correspond 

to the missing time point, in order to maintain the same 

dimension of the vector for all scans and to artificially 

* Data used in preparation of this article were obtained from the 

Alzheimer’s Disease Neuroimaging Initiative (ADNI) database 

(adni.loni.usc.edu). As such, the investigators within the ADNI 

contributed to the design and implementation of ADNI and/or 

provided data but did not participate in analysis or writing of this 

report. A complete listing of ADNI investigators can be found at: 

http://adni.loni.usc.edu/wp-content/uploads/how_to_ap-

ply/ADNI_Acknowledgement_List.pdf. 
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supplement the missing information. In [13] multivariate 

normal imputation (MVNI) method and fully conditional 

specification (FCS) method are compared and discussed. 

This study is the first that uses real data as part of an ongoing 

trial to make the validation and comparison. Detailed review 

of the hierarchy of missing data mechanisms and their 

relationship to likelihood-based methods and a series of 

simulation studies with designs common in longitudinal 

neuroimaging studies is provided in [14]. Although the 

challenging problem of missing data has been researched for 

over forty years [14], it still an active research field and a big 

challenge. 

The aim of the paper is to investigate the influence of 

missing scans on the retrieval performance in the context of 

longitudinal image retrieval for AD. Several key questions 

arise here: 

1. What kind of features are more powerful and robust 

when missing scans are present? 

2. How does retrieval results change with increasing the 

number of patients with missing data? 

3. Does the time point at which the scan is missing affect 

the retrieval results? 

4. How does a missing scan at a different time point 

affect the retrieval results in comparison to fully 

complete dataset? 

A research that answers these questions in the context of 

image retrieval for AD is still not performed. Thus, our 

research is aimed to provide insight into the problem of 

missing data in this context as well as answers to the 

aforementioned questions.  

Moreover, taking into consideration the diversity of the 

datasets and/or the sample selection for the evaluation 

process, we cannot provide an objective comparison with 

other research involving addressing the problem of missing 

data. 

 The paper is organized as follows. We present the 

methods used in this study in Section 2. The experimental 

results and discussion are provided in Section 3. The 

concluding remarks and future work are summarized in 

Section 4. 

II. MATERIALS AND METHODS 

A. Participants and Inclusion Criteria 
The performed research is based on the scans and data 

obtained from the Alzheimer’s Disease Neuroimaging 

Initiative (ADNI) database (adni.loni.usc.edu). launched in 

2003 by the National Institute on Aging (NIA), the National 

Institute of Biomedical Imaging and Bioengineering 

(NIBIB), the Food and Drug Administration (FDA), private 

pharmaceutical companies, and non-profit organizations as a 

$60 million, 5-year public–private partnership. The aim of 

the initiative is to enable research on whether serial magnetic 

resonance imaging (MRI), positron emission tomography 

(PET), other biological markers, such as cerebrospinal fluid 

(CSF) markers, APOE status and full-genome genotyping via 

blood sample, as well as clinical and neuro-psychological 

assessments can be used together to indicate and estimate the 

progression of mild cognitive impairment (MCI) and 

Alzheimer’s Disease (AD). Finding appropriate markers 

indicating early AD progression is aimed towards 

development of new treatments, improving the process for 

monitoring treatments effectiveness, and reducing the time 

and cost of the clinical trials. 

The Principal Investigator of this initiative is Michael W. 

Weiner, MD, VA Medical Center and University of 

California - San Francisco. Many coinvestigators from a 

broad range of academic institutions and private corporations 

have given their support and contribution to make ADNI a 

valuable product. Subjects have been recruited from over 50 

sites across the U.S. and Canada, initially supposed to be 800 

subjects in total. However, ADNI has been followed by 

ADNI-GO and ADNI-2, with over 1500 participants, namely 

in fact adults in the age group of 55 to 90 years. The protocols 

for ADNI-1, ADNI-2, and ADNI-GO specify the three 

groups (Cognitively normal individuals, adults with early or 

late MCI, and people with early AD) available in the dataset 

with different follow up duration of each group. For up-to-

date information, see http://www.adni-info.org. 

For this research, we used the standardized list from 

ADNI-1, containing images acquired at multiple time points. 

From this list, we selected the subjects that have available 

scans at baseline (TP1), and the 6-month (TP2), 12-month 

(TP3), and 24-month (TP4) follow-ups and belong to AD or 

normal control (NL) group. In this way, we selected a total of 

267 subjects, 168 in AD group, and 99 in NL group. Patients’ 

demographics information can be found in [15]. The timing 

of scans per time point by clinical group is provided in Table 

I, also available in [15], but included in this paper as well for 

clarity.  

We chose exactly this selection criteria because of the 

following reasons: (1) more time points (ex. 36-month 

follow-up) is not available for the AD group of patients and, 

additionally, the total number of patients for whom all the 

scans are available is reduced by more than 12%; (2) a 

smaller number of time points would not give enough space 

for research and an opportunity to have a good insight into 

the problemч (3) with the selected time points, we have an 

opportunity to analyze the problem in the case of equally and 

unequally spaced available time pointes (depending of which 

time point is missing).   

TABLE I.  TIMING OF SCANS PER TIME POINT BY CLINICAL GROUP 

Time Point 
Time from baseline (years) 
AD NL 

TP1 (Baseline) 0 0 

TP2 (Month 6) 0.57 (0.05) 0.58 (0.06) 

TP3 (Year 1) 1.07 (0.05) 1.08 (0.07) 

TP4 (Year 2) 2.09 (0.14) 2.1 (0.11) 

Abbreviations: TP = Time Point. 

The time from baseline is given in mean (standard deviation). 

B. Longitudinal image representation  
This study is based on longitudinal data for patients that 

undergo examination for Alzheimer’s Disease. This kind of 

data are characterized by that the outcome variables are 

measured repeatedly on the same cohort of individuals at 

multiple time points. This enables identifying the influence 

of the changes in the derived measurements over time to the 

examined clinical, biological or experimental factor, possibly 

reflecting the diseases progress and/or reaction to the 

treatment. Longitudinal studies provide direct assessment of 
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within-subject changes across different time points, free of 

any between-subject variability [10, 20]. Several distinctive 

characteristics should be emphasized for longitudinal data 

[10]: 

1. Longitudinal measurements are ordered in time. They 

reflect the temporal trajectory of an underlying non-

stationary continuous process. 

2. Typically, serial measurements obtained for a single 

subject are positively correlated caused by the smooth 

trajectory of the underlying biological process. 

3. Between-subject variance is not usually constant over 

the duration of the study. 

4. Missing data and non-uniform timing are extremely 

common, particularly for longitudinal studies of larger 

duration. 

This study takes into account the aforementioned 

characteristics and focuses specifically on the fourth. 

Namely, when longitudinal images are available for the 

patients, the information contained in all of them should be 

properly extracted and utilized. This is a crucial step to be 

able to get the semantically more relevant retrieval result. A 

significant challenge that arises in this case is how to deal 

with the missing scan/s for some of the patients. 

In fact, to deal with the problem of missing scans for 

Alzheimer’s disease, we used the feature extraction method 

that we explored in our previous research [15] and evaluate 

the impact of the missing time point when using this 

approach. Namely, for each patient who has a missing scan at 

a specific time point, we processed the data longitudinally 

and generated a within-subject template only from the 

available time points for a particular patient and not for all 

possible time points. For example, if for a particular patient 

only the scan at baseline (TP1), the 12-month (TP3), and the 

24-month (TP4) follow-ups are available, then we generate 

the template on the basis of only these time points, instead of 

on the basis of all the possible four time points (scans at 

baseline (TP1), the 6-month (TP2), 12-month (TP3), and 24-

month (TP4) follow-ups)). The longitudinal scheme for 

generating the template is designed to be unbiased with 

respect to any time point and there was no initialization with 

information from a specific time point [16]. 

We performed this processing with the FreeSurfer's fully 

automated longitudinal pipeline [16]. Fig. 1 shows a 

schematic illustration of the main steps in the longitudinal 

pipeline. The full list of methods applied to the examined 

dataset is included in [15] and proposed and explained in 

more details in [16].  

 After this kind of processing, we generated the feature 

vector by using longitudinal changes of the volume of the 

cortical and sub-cortical regions. The following reliable 

estimates of the longitudinal changes on the bases of the 

available time points were calculated and used as features [15 

-17]:  

● VolumesRC - rate of change (RC) of the volumes 

(calculated as a difference per time unit). The statistic 

is derived from the volumetric temporal information 

per subject for each cortical (34 measures for each 

hemisphere) and sub-cortical region (55 measures), 

123 measures in total; 

● VolumesPC1fit - percent change of the volumes 

(calculated with respect to the value obtained from the 

linear fit at baseline, i.e. percent thinning/volume loss 

per year) The statistic is derived from the volumetric 

temporal information per subject for each cortical and 

sub-cortical region, 123 measures in total; 

● VolumesSPC – symmetrized percent change (the rate 

with respect to the temporal average). The statistic is 

derived from the volumetric temporal information per 

subject for each cortical and sub-cortical region, 123 

measurements in total. 

 

Fig. 1. Schematic illustration of the main steps in the FreeSurfer’ 

longitudinal pipeline 

 These features reflect the speed and degree of 

degeneration caused by the disease, in fact the disease 

severity and progression. This way, for a patient with missing 

data, a representation extracted only from the available scans 

will be generated and will be of the same type and with the 

same dimension as those for the patients with complete data. 

In fact, the dimension of all descriptors for all patients will be 

the same, regardless the number of the available time points. 

For example, if a scan taken at the screening 6 months after 

the first visit to the hospital is missing, then the scans at TP1, 

TP3, and TP4 are longitudinally processed and a template on 

the basis of these scans is generated and subsequently the 

longitudinal changes of the volume of the cortical and sub-

cortical structures as well as of the cortical thickness are 

calculated. For a patient with complete data for instance, all 

the time points are longitudinally processed, and the same 

statistics of the same regions are generated. However, the 

dimension of the feature vector is the same as it is for the 

patient with three available time points. 

 Although it is also possible to calculate longitudinal 

changes of the cortical thickness measures, the reason for 

using the volumetric changes is that in our previous research 

[15] they have proven to be superior over the longitudinal 

changes of the cortical thickness in the context of image 

retrieval for AD.  

 We chose this strategy because it has two main 

advantages: (1) it can operate only with the available data 

independently for each subject, whether or not they have a 

missing scan at some point in time (2) it provides the same 

 

 

Step 3: Longitudinal processing 

 Each time point is longitudinally processed [16] 

 

Step 2: Template Generation 

 

Unbiased within-subject template space and image are 
generated for all previously independently processed 

time points for each subject [17] 

 

Step 1: Cross-sectional processing 

 
All the available time points from all patients are 

processed cross-sectionally [17] 
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descriptor dimensionality for all patients, regardless of the 

number of the available time points. 

Additionally, we applied the Correlation-based Feature 

Selection (CFS) method [18] with the aim to reduce the 

feature vector dimensionality and to select the most relevant 

features, because it provided superior results on the 

experimental basis for the longitudinal image retrieval for 

Alzheimer’s disease that we reported in [19]. To provide 

relevant and unbiased results, we performed the feature 

selection method independently of the query subject 

information. In fact, we obtained a specific feature subset for 

each query subject using the information of all other subjects 

similarly like in [15]. 

C. Evaluation of the influence of the missing data on the 
retrieval results 
To be able to evaluate the influence of the missing data 

on the retrieval results, we defined two most characteristic 

and most common scenarios with missing time points and one 

scenario for reference: 

● M1 – from the available four time points, scans at TP2 

were excluded from x% randomly selected patients, 

where x∈{10, 20, 30, 40, 50}, keeping at least 50% of 

the patients with fully complete data. 

● M2 – from the available four time points, scans at TP4 

were excluded from x% randomly selected patients, 

where x∈{10, 20, 30, 40, 50}, keeping at least 50% of 

the patients with fully complete data. 

● M3 – fully complete dataset that we used as a baseline 

to compare against. 

It should be noted that both M1 and M2 scenarios contain 

the first time point. In the clinical environment, this is most 

often the case because it is a screening made during the first 

visit to a medical institution and in most cases, it is available 

with good quality. We did not evaluate the scenario in which 

the third time point is missing, because during the 

longitudinal processing of the other available scans (when the 

third TP is excluded), there was an error that required manual 

interventions in the processing in some of the cases. We 

wanted to keep the processing fully automated, so as to be 

able to reduce the subjectivity of the human factor and to 

perform fair comparison. Another characteristic of M1 and 

M2 is that the time points available are at the same time 

distance (12 months for M1 and six months for M2). 

Additionally, only the M1 scenario contains the time point 

that is the most temporally distant from the first visit to a 

doctor, that is the fourth TP. This is important to be noted 

because according to the previous experiments it has an 

impact on retrieval results when all time points are available 

[15] 

In this examination, we did not consider templates and 

accordingly, scenarios, with only two time points, because in 

order to generate the template, a voxel-wise median was used. 

But, when only two time points are available, median is equal 

to mean, hence resulting in blurry, instead of crispy edges, 

which is the case when more time points are available to build 

the template [16]. 

To evaluate the proposed strategy, we used the standard 

evaluation metric for quantitative measurement of the 

retrieval performance, Mean Average Precision (MAP). It 

was calculated as the mean of the average precision scores for 

each query, evaluation metric for the general retrieval 

performance. It is meant to favor retrieval systems that return 

more relevant subjects at the top of the list. The retrieved 

subject is assumed to be relevant if the patient has the same 

diagnosis as the query one. The higher the relevant subjects 

are in the retrieved list, the higher the value of the precision 

is. 

Considering the small number of patients included in this 

study, we used leave-one-out strategy. This means that each 

patient’s representation was used as a query against all other 

representations stored in the database. 

Considering that a random selection of patients with 

missing data was performed, and to get representative results, 

we did 10 repetitions of the random selection and we repeated 

the experiment for each case accordingly. Then we calculated 

the mean of the MAP for each of the 10 repetitions. 

Subsequently we compared those results with the retrieval 

results obtained by the scenario based on the complete dataset 

(M3). 

III. EXPERIMENTAL RESULTS AND DISCUSSION 

This section summarizes the results from the evaluation 

of the presented strategy for dealing with missing data in the 

context of longitudinal image retrieval for AD. 

Table II shows the results associated with the M1 scenario 

for a different percentage of patients with a missing scan at 

TP4. According to the results, the rate of change of the 

volume of the cortical and sub-cortical regions provides the 

same value as in the case of fully complete data when the 

number of patients with missing data is not more than 30% of 

the total number of patients in the examined dataset. When 

30-50% of the subjects have missing scan at TP4, the value 

of MAP is lower by 1%. The value of VolumesPCfit and the 

VolumesSPC remains constant as the number of patients with 

missing data increases up to 50%, which makes them stable 

features, suitable in the case of missing data. It should be 

noted that VolumesPCfit led to a 1% lower value of MAP in 

comparison with the case of fully complete data. The 

combination of all calculated longitudinal changes led to the 

best result in terms of MAP. In this case, the value of MAP 

remained the same, even though the number of patients with 

missing data was increased up to 50%. Moreover, it is the 

same as the corresponding value in the case of fully complete 

data. 

TABLE II.  EVALUATION OF THE SCENARIO M1 BASED ON THE VALUE 

OF MAP – MISSING SCAN AT TP2 IN X% RANDOMLY SELECTED PATIENTS, 

WHERE X∈{10, 20, 30, 40, 50} 

 M1 
(10%) 

M1 
(20%) 

M1 
(30%) 

M1 
(40%) 

M1 
(50%) М3 

VolumesRC 0.76 0.76 0.76 0.75 0.75 0.76 

VolumesPCfit 0.78 0.78 0.78 0.78 0.78 0.79 

VolumesSPC 0.78 0.78 0.78 0.78 0.78 0.78 

All volume 
rates - 
concatenated 

0.79 0.79 0.79 0.79 0.79 0.79 

 

Regarding the second scenario M2 (Table III), the 

obtained results indicate reduction of MAP value by 1-4% 

when the number of patients with missing data increases to 

50%, when the patients are represented by the rate of change 

of the volumetric measures. Even when 10% of the patients 
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are with missing data, the value of MAP is reduced. By 

increasing this percentage to 20, there was again a reduction 

in MAP by 1%, but it remained the same when the number of 

patients with missing data was increased to 30%. Then again, 

the value of MAP decreased by 1% in case of 40% of patients 

with missing data. This trend was also the case when the 

number of patients with missing data was increased to 50%. 

When PCfit and SPC of the volumes of cortical and sub-

cortical structures were used to generate the descriptors, the 

value of MAP started at 0.77 and decreased by 0.01 as the 

number of patients with missing data increased to 20%. It 

remained the same in the case of 30% of patients with missing 

data. Then it decreased firstly by 1% and then, by 2% as the 

number of patients with missing data increased to 40% and 

50% respectfully. When concatenation of all the longitudinal 

changes was used to generate the feature vector, it led to the 

best results regarding the M2 scenario but showed the same 

trend of decreasing the values of MAP. 

TABLE III.  EVALUATION OF THE SCENARIO M2 BASED ON THE VALUE 

OF MAP – MISSING SCAN AT TP4 IN X% RANDOMLY SELECTED PATIENTS, 

WHERE X∈{10, 20, 30, 40, 50} 

 M2 
(10%) 

M2 
(20%) 

M2 
(30%) 

M2 
(40%) 

M2 
(50%) М3 

VolumesRC 0.75 0.74 0.74 0.73 0.72 0.76 

VolumesPCfit 0.77 0.76 0.76 0.75 0.73 0.79 

VolumesSPC 0.77 0.76 0.76 0.75 0.73 0.78 

All volume 
rates - 
concatenated 

0.78 0.77 0.77 0.76 0.74 0.79 

 

According to the performed evaluation, we can note that 

the presence of a time point that is more distant from the first 

visit to a medical institution, makes the features more 

relevant, more stable and more powerful to deal with missing 

scan. In fact, the ability of the algorithm to handle missing 

data in the context of image retrieval is closely related to the 

longitudinal processing of the scans, i.e. the stability and 

relevance of the results of the longitudinal processing using 

the available points. Namely, according to the previous 

research [15], it was concluded that the features extracted 

from the scans at time point 1, 3 and 4 are more promising 

and lead to greater accuracy compared to those extracted on 

the basis of the scans at time point 1, 2 and 3. This was 

directly reflected in the results obtained from the evaluation 

of the scenarios with missing data. 

The main findings of our research on the bases of the 

evaluation of the defined scenarios are: 

1. From the examined features vector types, 

VolumesPCfit or VolumesSPC, or concatenated 

feature vector of all longitudinal change, 

VolumesPCfit and VolumesSPC proved to be more 

efficient, stable and powerful to deal with missing 

scans when separate longitudinal changes are used. 

2. Very small or no performance reduction as the 

number of cases with missing data increases. This 

means that the strategy for representing the subjects 

with longitudinal changes of the volumetric measures 

provides reliable and robust way of image 

representation, and the whole setup that we used for 

image retrieval provides promising way for facing the 

problem of missing data.   

3. When the scan is missing in the earlier time points, 

then the influence to the retrieval results is smaller, 

rather than in the case of missing data at the later time 

points. This is highly expected because the changes in 

the brain as the time passes carry more significant 

information about the progression of the disease.  

4. There is no or small degradation in the retrieval 

performance in cases with missing scans in 

comparison to the scenario with fully complete data. 

According to the obtained results, in the case of missing 

data we suggest representing the patients’ scans by feature 

vector comprised of concatenated longitudinal changes of the 

volumes of cortical and sub-cortical structures. In case when 

the feature vector should be kept as short as possible, then 

VolumesSPC or VolumesPCfit of the volumetric 

measurements are advisable as they turned out to be superior 

and more robust.  

IV. CONCLUSION 

Missing data is a serious problem when longitudinal data 

are considered. In this paper, we evaluated the influence of 

the missing data in the context of image retrieval for 

Alzheimer’s disease. Our results showed that the retrieval 

performance is closely related to time points at which the 

scans are missing and to the reliability of the longitudinal data 

extracted from the available time points. The features 

extracted from the scans at the later time points, proved to be 

more efficient, stable and powerful to deal with missing 

scans. From the examined types of feature vectors, 

concatenated longitudinal changes of the volumes of cortical 

and sub-cortical structures provided superior results. In the 

case when the dimensionality of the descriptor is important 

factor, VolumesSPC or VolumesPCfit of the volumetric 

measurements are advisable to be used as more powerful and 

robust. In all cases, we noticed very small or no degradation 

in the retrieval performance when we used these features as 

the number of cases with missing data increased. 

In the future, we plan to extend the evaluation of this 

strategy on a bigger cohort, to include more available time 

points and also to consider scenarios with more than one 

missing scan per patient. Moreover, we are going to examine 

deep neural network architectures developed in a longitudinal 

manner to provide a solution for dealing with missing data. 
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