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Abstract. In the present paper a class of two-dimensional nets Zκ,µ
B2,ν

of type of Zaremba-Halton constructed in generalized B2−adic system
is introduced. In order to show their very well uniform distribution, we
made their visualization with mathematical software Mathematica.
In our paper ”On the (V ilB2 ;α; γ)−diaphony of the nets of type of Zarem-
ba - Halton constructed in generalized number system” (in preparation)
we constructed a class Zκ,µ

B2,ν
of two-dimensional nets (throughout this

paper the term net will denote finite sequence) of type of Zaremba-
Halton. Also, the (V ilB2 ;α; γ)−diaphony which is based on using two-
dimensional Vilenkin functions constructed in the same B2−adic system,
of the nets of the class Zκ,µ

B2,ν
is investigated. The obtained results have

theoretical character and treat to the influence of the parameter α to
the exact order of the (V ilB2 ;α; γ)−diaphony of the nets from the class
Zκ,µ

B2,ν
.

The purpose of this paper is to present in extended form the visualization
of some concrete nets from the class Zκ,µ

B2,ν
and to show the distribution

of the points of these nets. In this sense the reader can understand the
distribution properties of the considered nets. To construct nets of the
class Zκ,µ

B2,ν
we use the mathematical software Mathematica.

Our interest for the importance of these types of sequences is implied
from their usage in numerical integration, construction of random num-
ber generators e.t.c.

Key words and phrases: Nets of type of Zaremba-Halton, Visualization.

1 Introduction

Let s ≥ 1 be a fixed integer which will denote the dimension throughout the
paper. The functions of some classes of complete orthonormal systems over the

⋆ Supported by Faculty of Computer Science and Engineering at ”Ss Cyril and
Methodius” Univ. in Skopje



2 V. Dimitrievska Ristovska , V. Grozdanov, and Ts. Petrova

s−dimensional unit cube [0, 1)s are used with a big success as an analytical tool
for investigation of the distribution of sequences and nets. Also, these systems
stand on the basis of the definitions of some quantitative measures which show
the quality of the distribution of sequences and nets. We will remind the def-
initions of the functions of some complete orthonormal function systems. The
first example is the trigonometric system. For an arbitrary integer k the func-
tion ek : [0, 1) → C is defined as ek(x) = e2πikx, x ∈ [0, 1). For an arbi-
trary vector k = (k1, . . . , ks) ∈ Zs the function ek : [0, 1)

s → C is defined

as ek(x) =
s∏

j=1

ekj (xj), x = (x1, . . . , xs) ∈ [0, 1)
s
. The set Ts = {ek(x) : k ∈

Zs, x ∈ [0, 1)s} is called trigonometric function system.

Following Larcher, Niederreiter and Schmid [9] we will present the concept
of the Walsh functions over finite groups. For this purpose let m ≥ 1 be a given
integer and {b1, b2, . . . , bm : 1 ≤ l ≤ m bl ≥ 2} be a set of fixed integers. For
1 ≤ l ≤ m let Zbl = {0, 1, . . . , bl − 1} the operation ⊕bl is the addition modulus
bl and (Zbl ,⊕bl) is the discrete cyclic group of order bl.

Let G = Zb1×. . .×Zbm and the operation ⊕G = (⊕b1 , . . . ,⊕bm) is defined as:
for arbitrary elements g,y ∈ G, where g = (g1, . . . , gm) and y = (y1, . . . , ym),
let g ⊕G y = (g1 ⊕b1 y1, . . . , gm ⊕bm ym). Then, the couple (G,⊕G) is a finite
group of order b = b1 . . . bm.

For arbitrary g,y ∈ G of the above form the character function χg(y) is

defined as χg(y) =
m∏
l=1

exp

(
2πi

glyl
bl

)
. Let φ : {0, 1, . . . , b − 1} → G be an

arbitrary bijection which satisfies the condition φ(0) = 0.

For an arbitrary integer k ≥ 0 and a real x ∈ [0, 1) with the b−adic rep-

resentations k =

ν∑
i=0

kib
i and x =

∞∑
i=0

xib
−i−1, where ki, xi ∈ {0, 1, . . . , b − 1},

kν ̸= 0 and for infinitely many of i xi ̸= b − 1, the k−th Walsh function over
the group G with respect to the bijection φ G,φwalk : [0, 1) → C is defined as

G,φwalk(x) =

ν∏
i=0

χφ(ki)(φ(xi)).

Let us denote N0 = N∪{0}. For an arbitrary vector k = (k1, . . . , ks) ∈ Ns
0 the

function G,φwalk : [0, 1)s → C is defined as G,φwalk(x) =
s∏

j=1

G,φwalkj (xj), x =

(x1, . . . , xs) ∈ [0, 1)s. The setWG,φ = {G,φwalk(x) : k ∈ Ns
0,x ∈ [0, 1)s} is called

a system of Walsh functions over the group G with respect to the bijection φ.

In the case when m = 1, G = Zb and φ = id is the identity between the
sets {0, 1, . . . , b − 1} and Zb the obtained function system WZb,id is the system
W(b) of the Walsh functions of order b which was proposed by Chrestenson [1].
If b = 2 then, the system WZ2,id is the original system W(2) of the Walsh [13]
functions.

The numerical measures for the irregularity of the distribution of sequences
and nets in [0, 1)s give us the order of the inevitable deviation of a concrete
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distribution from the ideal distribution. Generally, they are different kinds of the
discrepancy and the diaphony. So, let ξN = {x0,x1, . . . ,xN−1} be an arbitrary
net of N ≥ 1 points in [0, 1)s.

For an arbitrary vector x = (x1, . . . , xs) ∈ [0, 1)s let us denote [0,x) =
[0, x1) × . . . × [0, xs) and A(ξN ; [0,x)) = #{xn : 0 ≤ n ≤ N − 1,xn ∈ [0,x)}.
The L2−discrepancy of the net ξN is defined as

T (ξN ) =

∫
[0,1]s

∣∣∣∣∣∣A(ξN ; [0,x))

N
−

s∏
j=1

xj

∣∣∣∣∣∣
2

dx1 . . . dxs


1
2

.

In 1976 Zinterhof [14] introduced the notion of the so - called classical di-
aphony. So, the diaphony of the net ξN is defined as

F (Ts; ξN ) =

 ∑
k∈Zs\{0}

R−2(k)

∣∣∣∣∣ 1N
N−1∑
n=0

ek(xn)

∣∣∣∣∣
2
 1

2

,

where for each vector k = (k1, . . . , ks) ∈ Zs the coefficient R(k) =
s∏

j=1

R(kj) and

for an arbitrary integer k

R(k) =

{
1, if k = 0,
|k|, if k ̸= 0.

In order to study sequences and nets constructed in b−adic system, in the last
twenty years, some new versions of the diaphony was defined. These kinds of the
diaphony are based on using complete orthonormal function systems constructed
also in base b. In 2001 Grozdanov and Stoilova [5] used the system W(b) of
the Walsh function to introduce the concept the so-called b−adic diaphony. In
2003 Grozdanov, Nikolova and Stoilova [4] used the system WG,φ of the Walsh
functions over the group G with respect to the bijection φ to introduce the
concept of the so-called generalized b−adic diaphony. So, the generalized b−adic
diaphony of the net ξN is defined as

F (WG,φ; ξN ) =

 1

(b+ 1)s − 1

∑
k∈Ns

0\{0}

ρ(k)

∣∣∣∣∣ 1N
N−1∑
n=0

G,φwalk(xn)

∣∣∣∣∣
2
 1

2

,

where for a vector k = (k1, . . . , ks) ∈ Ns
0 the coefficient ρ(k) =

s∏
j=1

ρ(kj) and for

an arbitrary non-negative integer k

ρ(k) =

{
1, if k = 0,

b−2g, if bg ≤ k ≤ bg+1, g ≥ 0, g ∈ Z.
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In 1954 Roth [11] obtained a general lower bound of the L2−discrepancy of
arbitrary net. He prove that for any net ξN composed of N points in [0, 1)s the
lower bound

T (ξN ) > C(s)
(logN)

s−1
2

N
(1)

holds, where C(s) is a positive constant depending only on the dimension s.
In 1986 Proinov [10] obtained a general lower bound of the diaphony of

arbitrary net. So, for any net ξN composed of N points in [0, 1)s the lower
bound

F (Ts; ξN ) > α(s)
(logN)

s−1
2

N
(2)

holds, where α(s) is a positive constant depending only on the dimension s.
Cristea and Pillichshammer [2] obtained a general lower bound of the b−adic

diaphony of arbitrary net. So, for any net ξN composed of N points in [0, 1)s

the lower bound

F (W(b); ξN ) ≥ C(b, s)
(logN)

s−1
2

N
(3)

holds, where C(b, s) is a positive constant depending on the base b and the
dimension s.

About the exactness of the lower bound (1) of the L2−discrepancy of two -
dimensional nets the following results are obtained. Let b ≥ 2 and ν > 0 be fixed
integers.

Following Van der Corput [12] and Halton [6] for an arbitrary integer i

such that 0 ≤ i ≤ bν − 1 with the b−adic representation i =
ν−1∑
j=0

ijb
j we put

pb,ν(i) =

ν−1∑
j=0

ijb
−j−1. Let us denote ηb,ν(i) =

i

bν
and to construct the net

Rb,ν = {(ηb,ν(i), pb,ν(i)) : 0 ≤ i ≤ bν − 1}. The net R2,ν was introduced and
studied by Roth [11]. Hammersley [8] used sequences of Van der Corput−Halton
constructed in different bases to construct a class of s−dimensional nets.

Roth proved that the L2−discrepancy T (R2,ν) of the net R2,ν have an exact

order O
(
logN

N

)
, where N = 2ν . According to the lower bound (1) the order

O
(
logN

N

)
is not the best possible.

There exist two important techniques to improve the order of the L2−
discrepancy of arbitrary net. They are a digital shift and a symmetrization
of the points of the net. The first approach was realized in 1969 by Halton
and Zaremba [7]. They used the original net of Van der Corput {p2,ν(i) =
0, i0i1 . . . iν−1 : ij ∈ {0, 1}, 0 ≤ j ≤ ν − 1} and changed the digits ij that
stay on the even positions with the digits 1− ij . In this way the net {z2,ν(i) =
0, (1 − i0)i1(1 − i2) . . . : ij ∈ {0, 1}, 0 ≤ j ≤ ν − 1} is obtained. The net
Z2,ν = {(η2,ν(i), z2,ν(i)) : 0 ≤ i ≤ 2ν − 1} which now usually is called net of
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Zaremba−Halton is constructed. It is shown that the L2−discrepancy of the net

Z2,ν has an order O
(√

logN

N

)
, N = 2ν , which of course is the best possible.

In 1998 Xiao proved the exactness of the lower bound (2) of the diaphony
for dimension s = 2. It is shown that the diaphony of the nets of Roth Rb,ν and
Zaremba−Halton Zb,ν , both constructed in arbitrary base b ≥ 2, have an exact

order O
(√

logN

N

)
, N = bν .

Grozdanov and Stiolova [5] proved the exactness of the lower bound (3) of
the b−adic diaphony for dimension s = 2. They proved that the b−adic diaphony

of the nets Rb,ν and Zb,ν have an exact order O
(√

logN

N

)
, N = bν .

Grozdanov [3] constructed the so-called net of Zaremba−Halton G,φZ
p,q
b,ν

over the group G with respect to the bijection φ and obtained the exact order

O
(√

logN

N

)
of the generalized b−adic diaphony of the nets Rb,ν and G,φZ

p,q
b,ν .

2 The nets of type of Zaremba-Halton constructed in
generalized system

We will remind the concept of the so-called generalized number system or a
system with variable bases. Let the sequence of integers B = {b0, b1, b2, . . . : bi ≥
2 for i ≥ 0} be given. The so-called generalized powers are defined by the next
recursive equalities. We put B0 = 1 and for j ≥ 0 define Bj+1 = Bj .bj . Then, an
arbitrary integer k ≥ 0 and a real x ∈ [0, 1) in the generalized B-adic number
system can be represented of the form

k =
ν∑

i=0

kiBi and x =
∞∑
i=0

xi

Bi+1
,

where for i ≥ 0, ki, xi ∈ {0, 1, . . . , bi − 1}, kν ̸= 0 and for infinitely many i we
have xi ̸= bi − 1.

For arbitrary reals x, y ∈ [0, 1) which in the B−adic system have the rep-

resentations of the form x =

∞∑
i=0

xi

Bi+1
and y =

∞∑
i=0

yi
Bi+1

, where for i ≥ 0

xi, yi ∈ {0, 1, . . . , bi − 1} and for infinitely many i we have xi, yi ̸= bi − 1, we
define the operation

x⊕[0,1)
B y =

( ∞∑
i=0

xi + yi(mod bi)

Bi+1

)
(mod 1).

In the next definition we will present the concept of the sequence of Van der
Corput constructed in the generalized B−adic system.
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Definition 1 For an arbitrary integer i ≥ 0 which in the generalized B−adic
system has the representation i = imBm + im−1Bm−1 + · · · + i0B0, where for
0 ≤ j ≤ m ij ∈ {0, 1, . . . , bj − 1} and im ̸= 0, we put

pB(i) =
i0
B1

+
i1
B2

+ . . .+
im

Bm+1
.

The sequence ωB = (pB(i))i≥0 is called a sequence of Van der Corput constructed
in the generalized system B.

The sequence ωB was investigated by many several authors and used for
different purposes.

Now we explain the constructive principle of two-dimensional nets (intro-
duced in our mentioned paper) of the type of Zaremba-Halton constructed in
generalized system.

For this purpose let B1 = {b(1)0 , b
(1)
1 , . . . , b

(1)
ν−1, b

(1)
ν , b

(1)
ν+1, . . . : b

(1)
j ≥ 2 for j ≥

0} be a given sequence of bases. By using the sequence B1 we will define the

sequence B2 = {b(2)0 , b
(2)
1 , . . . , b

(2)
ν−1, b

(2)
ν , b

(2)
ν+1, . . . : b

(2)
j ≥ 2 for j ≥ 0} in the

following manner. We put b
(2)
0 = b

(1)
ν−1, b

(2)
1 = b

(1)
ν−2, . . . , b

(2)
ν−1 = b

(1)
0 and the bases

b
(2)
ν , b

(2)
ν+1, . . . can be chosen arbitrary. Let us denote B2 = (B1, B2).

Let us assume that the sequences B1 and B2 of bases are limited from above,
i. e. there exists a constant M ≥ 2 such that for each j ≥ 0 and τ = 1, 2 we have

b
(τ)
j ≤ M.

Let ν ≥ 1 be an arbitrary and fixed integer. We have thatB
(1)
ν = b

(1)
0 .b

(1)
1 . . .b

(1)
ν−1

and B
(2)
ν = b

(2)
0 .b

(2)
1 . . . b

(2)
ν−1 = b

(1)
ν−1.b

(1)
ν−2 . . . b

(1)
0 , so B

(1)
ν = B

(2)
ν . Let us denote

Bν = B
(1)
ν = B

(2)
ν . For 0 ≤ i ≤ Bν − 1 let us define the quantity ην(i) =

i

Bν
.

Let κ = 0, κν−1κν−1 . . . κ0, where for 0 ≤ j ≤ ν−1 κν−1−j ∈ {0, 1, . . . , b(1)j −
1} be a fixed B1−adic rational number.

Let µ = 0, µ0µ1 . . . µν−1, where for 0 ≤ j ≤ ν − 1 µj ∈ {0, 1, . . . , b(2)j − 1} be
a fixed B2−adic rational number.

The different choice of the parameters κ and µ permits us to obtain a class
of two-dimensional nets with similar construction and distribution properties of
the points in the plane.

For an arbitrary i such that 0 ≤ i ≤ Bν − 1 let us denote

ηκν (i) = ην(i)⊕[0,1)
B1

κ and zµν (i) = pB2(i)⊕
[0,1)
B2

µ.

Definition 2 Let ν ≥ 1 be an arbitrary and fixed integer. Let κ and µ be as
above. The two-dimensional net

Zκ,µ
B2,ν

= {(ηκν (i), zµν (i)) : 0 ≤ i ≤ Bν − 1}

we will call a net of type of Zaremba-Halton constructed in the generalized
B2−adic system.
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In our mentioned paper we investigated and proved ”very well” uniform
distribution of these nets.

Our interest for the importance of these types of sequences is implied from
their usage in numerical integration, construction of random number generators
e.t.c.

3 Visualization results for nets of type of Zaremba-Halton

We will use the above mathematical model to present a version of the program
in Mathematica which can construct arbitrary net of type of Zaremba - Halton,
for the chosen parameters.

In our work we will confine only to present a visualization of some concrete
nets from the class Zκ,µ

B2,ν
and to show the distribution of the points of these nets.

Some theoretical investigations of the nets from the class Zκ,µ
B2,ν

have been
realized in other paper of the authors.

Our code of the program, for some choices of parameters, is presented below:

(∗ parameters ∗)
nu = 3 ; mi = {2 , 1 , 3} ; n i = {1 , 0 , 1} ;
b2 [ 0 ] = 5 ; b2 [ 1 ] = 2 ; b2 [ 2 ] = 3 ; b2v = {5 , 2 , 3} ;
b1 [ 0 ] = 3 ; b1 [ 1 ] = 2 ; b1 [ 2 ] = 5 ; b1v = {3 , 2 , 5} ;
B1 [ 0 ] = B2 [ 0 ] = 1 ; n i za = {} ;
(∗ end parameters ∗)

Do [
B1 [ j ] = B1 [ j − 1 ]∗ b1 [ j − 1 ] ;
B2 [ j ] = B2 [ j − 1 ]∗ b2 [ j − 1 ] ,

{ j , nu } ]

For [ i = 0 , i < b2 [ 2 ] , i++,
For [ j = 0 , j < b2 [ 1 ] , j++,

For [ k = 0 , k < b2 [ 0 ] , k++, pc = { i , j , k } ;

p = Reverse [ pc ] ;
z = Mod[mi+p , b2v ] ;
zv = Sum[ z [ [ l ] ] / B2 [ l ] ,{ l , nu } ] ;
e t = Mod[ n i + pc , b1v ] ;
etv = Sum[ et [ [ l ] ] / B1 [ l ] ,{ l , nu } ] ;
AppendTo [ niza ,{ etv , zv } ]

] ] ]

We illustrate the work of the code by some examples.
In the first example we make the following choice of the parameters: ν = 3,

b
(1)
0 = 3, b

(1)
1 = 2, b

(1)
2 = 5, b

(2)
0 = 5, b

(2)
1 = 2, b

(2)
2 = 3, κ = 0.101 and µ = 0.213.

The distribution of the points of this net is given in Fig. 1.
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0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

1.0

Fig. 1. b
(1)
0 = 3, b

(1)
1 = 2, b

(1)
2 = 5, κ = 0.101 and µ = 0.213.

The points of the net Zκ,µ
B2,ν

are:

Zκ,µ
B2,ν

=

{(
11

30
,
15

30

)
,

(
12

30
,
21

30

)
,

(
13

30
,
27

30

)
,

(
14

30
,
3

30

)
,

(
10

30
,
9

30

)
,

(
16

30
,
12

30

)
,

(
17

30
,
18

30

)
,

(
18

30
,
24

30

)
,

(
19

30
,
0

30

)
,

(
15

30
,
6

30

)
,

(
21

30
,
16

30

)
,

(
22

30
,
22

30

)
,(

23

30
,
28

30

)
,

(
24

30
,
4

30

)
,

(
20

30
,
10

30

)
,

(
26

30
,
13

30

)
,

(
27

30
,
19

30

)
,

(
28

30
,
25

30

)
,

(
29

30
,
1

30

)
,(

25

30
,
7

30

)
,

(
1

30
,
17

30

)
,

(
2

30
,
23

30

)
,

(
3

30
,
29

30

)
,

(
4

30
,
5

30

)
,

(
0

30
,
11

30

)
,(

6

30
,
14

30

)
,

(
7

30
,
20

30

)
,

(
8

30
,
26

30

)
,

(
9

30
,
2

30

)
,

(
5

30
,
8

30

)}
.

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

Fig. 2. b
(1)
0 = 2, b

(1)
1 = 9, b

(1)
2 = 7, b

(1)
3 = 16, κ = 0.180F and µ = 0.F101.
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In the second example we take ν = 4, b
(1)
0 = 2, b

(1)
1 = 9, b

(1)
2 = 7, b

(1)
3 = 16,

b
(2)
0 = 16, b

(2)
1 = 7, b

(2)
2 = 9,b

(2)
3 = 2, κ = 0.180F and µ = 0.F101, where F is the

symbol for the number 15 in the number system with base 16.

The distribution of the points of the second net is given in Fig. 2.

In the third example (see Fig.3) we make the following choice of the parameters:

ν = 4, b
(1)
0 = 2, b

(1)
1 = 3, b

(1)
2 = 7, b

(1)
3 = 11.

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

Fig. 3. b
(1)
0 = 2, b

(1)
1 = 3, b

(1)
2 = 7, b

(1)
3 = 11.

In the next example (see Fig. 4) we make the following choice of the parameters:

ν = 6, b
(1)
0 = 2, b

(1)
1 = 3, b

(1)
2 = 2, b

(1)
3 = 5, b

(1)
4 = 5, b

(1)
5 = 3.

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

Fig. 4. b
(1)
0 = 2, b

(1)
1 = 3, b

(1)
2 = 2, b

(1)
3 = 5, b

(1)
4 = 5, b

(1)
5 = 3.
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Some more examples with ν = 6, are presented on the Fig. 5 ( b
(1)
0 = 2, b

(1)
1 = 3,

b
(1)
2 = 4, b

(1)
3 = 5, b

(1)
4 = 6, b

(1)
5 = 8) and Fig. 6 (b

(1)
0 = 13, b

(1)
1 = 11, b

(1)
2 = 7, b

(1)
3 = 5,

b
(1)
4 = 3, b

(1)
5 = 2).

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

Fig. 5. b
(1)
0 = 2, b

(1)
1 = 3, b

(1)
2 = 4, b

(1)
3 = 5, b

(1)
4 = 6, b

(1)
5 = 8.

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

Fig. 6. b
(1)
0 = 13, b

(1)
1 = 11, b

(1)
2 = 7, b

(1)
3 = 5, b

(1)
4 = 3, b

(1)
5 = 2.
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4 Conclusion

Wemade visualizations with mathematical softwareMathematica of the two-dimensional
nets Zκ,µ

B2,ν
of type of Zaremba-Halton constructed in generalized B2−adic system.

We show some examples with different number of points, different bases and dif-
ferent shift - vectors.

All of the realized experiments with graphical representations, where the number
of points in the nets was between 24 and 2 000 000, very well confirm the theoretical
results, about uniform distribution of the points in the introduced net, obtained in our
previous mentioned paper.
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