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Abstract—A great deal of studies address the use IoT devices
coupled by machine learning in order to predict and better detect
health problems. Diabetes is an issue that society is struggling
for a very long time. The ease with which ECG signals can be
recorded and interpreted provides an opportunity to use Deep
Learning techniques to predict the estimated Sugar Levels of
a patient. This research aims at describing a Deep Learning
approach to provide models for different short term heart rate
variability measurements.

Our approach is based on a special method to calculate heart
rate variability with identification of segments, then averaging
and concatenating them to exploit better feature engineering
results.The short-term measurements are used for determination
of instantaneous plasma glucose levels. Deep Learning method
is based on Autokeras, the neural architectural search provided
the best results for the 15 minute measurements.

Our research question is to develop a solution to estimate
the Instantaneous glucose value from heart rate variability with
sufficient quality. The evaluated test set gave the following results:
RMSE(0.368), MSE(0.193), R square(51.281), and R squared
loss(54.128).

Index Terms—ECG; HRV; Deep Learning; Glucose Short Term;
Diabetes;

I. INTRODUCTION

Diabetics is a health condition that affects people of all age
groups, and in a lot of cases, people are not aware they are
diabetic. Known methods to detect raised glucose levels in-
clude invasive, minimally invasive and non-invasive techniques
[1]. Invasive techniques are based on finger pricking and
measuring the chemical properties of a blood drop, while the
minimally invasive techniques mainly use a set of very small
needles and test interstitial body liquids or other parameters.
Non-invasive techniques use electromechanical properties to
scan the effects that raised glucose levels produce on the
skin, eyes or other interstitial body liquids. Our approach is
based on using wearable non-invasive ECG sensors to scan he
heart condition and determine a set of heart rate variability
parameters which will be processed by a new Deep Learning
(DL) method.

DL-methods are subset of the field Machine Learning (ML),
utilizing artificial neural networks. The technology has been

around for quite some time, the first recognized use dating
back to 1873 where Alexander Bain introduced Neural Group-
ings as the earliest models of neural network, inspired Hebbian
Learning Rule. [2]. However, in that period machines were
slow and the calculations quite expensive both in terms of
computation and finance wise. The last decade in computer
science has seen an explosion of DL-methods, especially with
the availability of cloud computing. Machines have enhanced
their performance so much that today a person can run a DL
process at home or even on a raspberry PIL. [3]

Taking into account the current state of DL, we set a
research hypothesis to explore and find out whether it is
possible to develop a DL solution which detects the glucose
level from HRV. This endeavour brings about an inquiry for
a DL method of estimated instantaneous blood glucose level
from simple Time Domain HRV parameters. The approach
begins with collecting electrocardiogram data from which
HRV parameter are calculated for different short term time
frames. The initial steps are followed by correlation analysis
and conclude with the training of DL models for each time
frame. The data and resources are provided under the umbrella
of the Glyco project [4]

The measurement were conducted within the Glyco project,
in which a group a patients carry a small apparatus that records
the persons ECG signal and then relays that to a proprietary
application which processes and annotates the appropriate in-
formation. These processed annotations comprise the adequate
information for calculating Heart Rate Variability (HRV). HRV
is known as a good parameter for predicting different health
conditions [5]. From previous research we have identified two
methods for calculating HRV for a certain annotation file
segmenting the signal into clean Normal-to-Normal intervals

[6]:

o Averages - taking the average HRV for each segment.
e Combined - concatenating all segments into one long
segment and calculating the HRV on that long segment.

The concept behind our idea is that the autonomous nerve
system controls the heart and reacts on blood glucose levels,



setting a lead that short-term HRV are correlated to instanta-
neous plasma glucose levels. Further on, we are eager to find
answers on the following questions:

o« How do these different HRV measurements hold up

against the fluctuation of sugar levels in the blood?

o Do these calculations have predictive capabilities?

o Which calculation method performs the best at predic-

tions?

Answers to all these questions lead to specification of the
research question which is addressed in this paper: Are HRV
parameters able to predict Sugar Level of a person?

The article begins with presentation of related work in
Section II and description of the Methods in Section III.
Section IV shows the results with their evaluation, and Sec-
tion V discusses the applicability and performance of achieved
results. Finally, the conclusions and future work are elaborated
in Section VL.

II. RELATED WORKS

There is a solid amount of studies on Correlating HRV
parameters to Glucose levels, and in some cases there are
attempts at implementing ML or even DL techniques in order
to predict whether a person is diabetic. However, finding
works on predicting an actual Sugar Level value proves to be
extremely difficult. To the authors knowledge no such works
were found.

In December 2018 Swapna et al [7] published a paper
describing their attempts at detecting diabetes using DL al-
gorithms. Their dataset consists of 20 diabetic and 20 healthy
patients. Each patient had a 10min recording of their ECG
in a lying down relaxed supine position. The ECG signal
is sampled at 500 Hz from which 71 datasets for each
group of patients are generated. Each dataset consists of 1000
samples. The authors conclude that the maximum accuracy
they achieved through DL-methods is 95,70%.

In a more recent study Aggrawal et al [8], explore the
possibilities of detecting diabetes using artificial neural net-
works and support vector machines from HRV parameters.
The study is conducted on a population of 10 rats, where they
are evenly split into a experimental and control group. The
difference between the groups were their diets which for the
experimental group would induce diabetes. After collecting the
ECG signals and calculating HRV parameters the authors then
implement Artificial Neural Networks (ANN) and Support
Vector Machines (SVM) to predict diabetes. They conclude
that ANN had an accuracy of 86.30, while SVM had an
accuracy of 90.50%.

Another recent study by Rahman et al [9] who aim to see
the predictive capabilities of diabetes through different DL
techniques: Convolutional Long Short-term Memory (Conv-
LSTM), Convolutional Neural Network (CNN), Traditional
LSTM (T-LSTM), and CNN-LS. The dataset contains records
of 768 female patients aged atleast 21 years among them
268 are diabetes positive and the rest arediabetes negative.
The dataset has eight predictor variables like Preg-nancies,

Glucose, Blood Pressure, BMI, Skin Thickness, Insulin, Dia-
betesPedigree Function, and Age for diagnostically predicting
whether apatient has diabetes or not and one target vari-
able named as outcome. The authors conclude that the best
model was generated by the Conv-LSTM with an accuracy of
97.26%.

DeepHeart is another study worth mentionig [10]. This
study cohort encompasses 14,011 users of a specific Apple
Watch app. Each participant’s data was then split into week-
long chunks, and any weeks < 30 minutes of continuous
heart rate recordings were omitted this resulted in a total of
57,675 person-week data. The authors conclude that a multi-
task long short term memory (LSTM) yielded high accuracy
results at detecting multiple medical conditions, including dia-
betes (0.8451), high cholesterol (0.7441), high blood pressure
(0.8086), and sleep apnea (0.8298)[10].

III. METHODS

In this section we described the methods and materials used,
First we describe the used dataset, along with dataset splitting
techniques for creation of training and testing subsets, then we
continue to elaborate the feature engineering process. Special
focus is set on the specification of the experimental setup and
evaluation metrics.

A. Dataset

The Dataset consists of subjects that take part in the Glyco
Study. There are a total of 155 subjects however, from those
155 only 138 are valid subjects that pose both clean and
continuous ECG measurements alongside manual Glucose
measurement through finger pricking. It is also important
to note that the subjects in this dataset are known to have
health problems, more precisely heart problems. The dataset
contains 94 male and 44 female patients consisting of 75.442
observations, the age in males is 59.7+9.6 years of age while
in females 63.2+11.3 years of age. Where males have a weight
of 84.4 + 17.6 cm and females 76.6 £ 11.1 cm, with height
being 161.9 + 46.5 kg and 164.1 &+ 4.7 respectively. Finally,
males have a BMI of 26.1 +8.6 while females 28.5+4.1. The
distribution are visualized in Fig.1.
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Fig. 1. Distribution of Age, Weight and Height by Gender

This article’s scope is on short term recordings. The ap-
proach here is to divide the dataset into six distinct datasets,
each dataset is treated as a separate experiment group which
results in a classification model for each short term recordings.
Each datasets consists of data collected on a sliding window
concept. In the end we are left with the following short term
datasets:



e D30S - 30s sliding window with a 30s offset

e DIM - Im sliding window with a 1m offset

e D5M - 5m sliding window with a 1m offset

e DIOM - 10m sliding window with a 5m offset
e DI5SM - 15m sliding window with a 5m offset
e D30M - 30m sliding window with a 10m offset

B. Features

The HRV parameters that are taken into consideration are
the the Time Domain features. It was decided to take them
because of the ease of calculation and the already standardized
techniques which can be reproduced in other environments.
Since we are dealing with 2 calculation techniques we are left
with 15 features:

Parameter Description

A-SDNN Standard Deviation of NN intervals

A-ASDNN The Average Standard Deviation of NN intervals (mini-
mum 5 minutes)

A-SDANN The Standard Deviation of the averages of NN intervals
(minimum 5 minutes)

A-NN50 Adjacent NN interval pairs differing more than 50ms

A-pNN50 NN50 counts divided by total count of NN intervals

A-rMSSD The square root of the mean of the sum of the squares of
differences between adjacent NN intervals

C-SDNN Standard Deviation of NN intervals

C-ASDNN The Average Standard Deviation of NN intervals (mini-
mum 5 minutes)

C-SDANN The Standard Deviation of the averages of NN intervals
(minimum 5 minutes)

C-NN50 Adjacent NN interval pairs differing more than 50ms

C-pNN50 NNS5O0 counts divided by total count of NN intervals

C-rMSSD The square root of the mean of the sum of the squares of
differences between adjacent NN intervals

Distance Total length of recording expressed in seconds

Timestamp The time of the recording

An important aspect that requires attention is that some
parameters require a min of Smin recordings in order to be
calculated. This means that for the D30S, D1M, D5M datasets
the parameters ASDNN, SDANN, NN50, pNN50 are removed
from the feature list.

C. Experiments

As mentioned previously each dataset is considered as a sin-
gle experiment group. In other words, each dataset represents
a time frame for which HRV is calculated. We aim at creating
a model for each time frame (dataset) which can be used in
real world cases where there would be a need to predict on
30s, Im, Sm, 10m, 15m or 30m time spans. Each model may
only be used for the desired time frame, so the model trained
and tested on 30s can not be used to make predictions on 30m
data or vice versa.

The experiments or DL processes, are done through the
utilization of AutoKeras[11]. Autokeras is an automated ML-
based system based on Keras[12]. Keras in turn in a just a
wrapper of Tensorflow which in turn is a DL-based frame-
work developed by Google[13]. For these experiments we are
attempting to predict the estimated sugar level of a patient
from their ECG, which means we have a regression problem.
Autokeras requires us to only set some parameters and provide

the data, after that it handles the architectural search entirely
automatically. The parameters we provide are:

« the structured data regression class

e epochs - number of epochs for each trial

o max number of trials - the number of different architec-
tures to try (trial=architecture)

e batch size

e metrics - which metrics to report while training

« objective - which metric to track and develop upcoming
architectures according to the metric maximization or
minimisation

o callbacks - custom callback which the user wants to use,
the same as manual Keras callbacks (optional)

D. Evaluation metrics

Since the problem at hand is a regression problem, the
following metrics are tracked during model development and
evaluation:

e Mean Squared Error

¢ Root Mean Squared Error
e R squared

¢ R squared loss

Mean Squared Error (MSE) measures the average of the
squares of the errors and is calculated by (1). It is the average
squared difference between the estimated value and the actual
value.
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Root Mean Squared Error (RMSE) is calculated by (2) as an
absolute measure of the goodness for the fit. In other words the
differences between value predicted by a model or an estimator
and the value observed.
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R squared (R?), calculated by (3), is the proportion of the
variance in the dependent variable that is predictable from the
independent variable. Sometimes it is called the coefficient
of determination. In other words R? is the measure of how
close the data is to the fitted regression line. It is expressed
as a percentage. Having an R? value trending towards 100%
shows that the regression line is a good fit for the data.
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IV. RESULTS

The Experiments are done through the utilization of python
packages such as Tensorflow, Keras, and Autokeras. The
environment consists of python 3.8 where all DL processes
are run through a CUDA enabled GPU. The training and
automated DL time for each Dataset is roughly 24h.
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Fig. 2. Final Results.
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OUTLIER REMOVAL

A. Outlier Removal

The DL-based model generation process is similar to every
other ML-based project. The initial steps involved collecting
appropriate data and pushing that data into a statistical analysis
phase. Through this analysis we come to the part of detecting
outliers and their removal. The Outlier removal results are
presented in Tab. IV-A

B. Autokeras

The AuoKeras process for each dataset took around 24
hours to complete. The code is the same only the input data
and the input shape of the initial layer changed. The objective
of the experiments was to track MSE score and minimize it as
much as possible without falling into the trap of overfitting.
Additionally close attentnion was payed to R?> which served
as a way to distinguish the overall fit of the model. This
metric was chosen since it is the most popular metric when
it comes to regression problems[14]. The only negative aspect
of the process is that we do no know the rational behind
which AutoKeras decides to increase layer sizes or number
of electrons. With that said below are presented the results for
each best model generated from AutoKeras tested on the test
set after training Fig.2.

In order to get the bigger picture below is a description of
the architectures of each best model Table.II:

V. DISCUSSION

As mentioned before the data is fed into an Auto ML
process made possible through AutoKeras. Each dataset cor-
responding to a specific time span, goes through the same
process. The only difference is that the time spans less than
five minutes have a smaller amount of features. This is due to
the fact that features such as ASDNN require a minimum of a
five minute recordings, this for example would be impossible
to calculate in 30s dataset. When it comes to metrics tracking,
in the related works section II we see that all research papers
have used MSE as the main metric to follow and track and
then R? in order to asses the accuracy level of generalization
on new data.

A. Comparison to other research

Comparing previous research, we notice that the datasets
in use were relatively small compared to the Glyco datasets.
Additionally, we see that the goal of these papers is to classify
a person as diabetic or not, in other words they tackle a
classification problem. To the authors knowledge there were
no attempts at predicting the actual value of the Sugar Level.

B. Optimizing HRV for glucose estimation

When it comes to the architectures that AutoKeras came up
with, for the 30s time span dataset the optimal combination
of hyperparamater involves an input layer followed by three
dense layers with 16,24, and 32 neurons. Additionally there
are three batch normalization layers and finally the output
layer. All activation functions are of type ReLu, with an Adam
optimizer at a learning rate of 0.001, and for the loss function
Mean Squared Error Loss. The model results an RMSE score
of 1,267, MSE of 3,978, R? of 47,710, and R? of 48,710.

The 1m dataset best performed with a model consisting of 3
hidden layers with 32,32, and 16 neurons respectively. For the
optimizer it chose again Adam with a learning rate of 0.001
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and Mean Squared Error Loss. The model results an RMSE
score of 1,024, MSE of 1,498, R? of 17,341, and R? of 18,341.

Moving on to the Sm dataset, the optimizer learning rate and
loss function stay the same as in the 1m dataset, The number
of hidden layers is also the same, however the number of
neurons changes to 64,16, and 64 respectively. The activation
functions are the same and the usage of Batch Normalization
Layers is also the same. The model results an RMSE score of
0,385, MSE of 0,206, R? of 12,334, and R? of 15,538.

The 10m dataset, consists of 2 hidden layers each with
32 neurons and ReLu activation functions. It has no dropout
layers, but has two Batch Normalization layers. The loss is
the same as in the previous models. The optimizer that best
performed is Adam with a learning rate of 0.001 . The model
results an RMSE score of 0,314, MSE of 0,162, R? of 10,080,
and R? of 11,080.

The 15m dataset, consists of 3 hidden layers with 512, 512,
and 128 neurons all of which have a ReLu activation function.
It has no dropout layers, but has two Batch Normalization
layers. The loss is the same as in the previous models. The
optimizer that best performed is Adam with a learning rate of
0.001 . The model results an RMSE score of 0,368, MSE of

TABLE II

BEST MODEL ARCHITECTURES

Dataset | Optimizer | Learning | Decay | Loss | Input Dense Number Activations Dropout | Batch
Rate Layer Layers Neurons Functions Layers Layers

D30S Adam 0.001 0.0 MSE | shape (0,6) 3 16,24,32 ReLu, ReLu, ReLu 0 3
DIM Adam 0.001 0.0 MSE | shape (0,6) 3 32, 32, 16 ReLu, ReLu, ReLu 0 0
D5M Adam 0.001 0.0 MSE | shape (0,6) 3 64, 16, 64 ReLu, ReLu, ReLu | 0 0
D10OM Adam 0.001 0.0 MSE | shape (0,15) | 2 32,32 ReLu, ReLu 0 2
DISM Adam 0.001 0.0 MSE | shape (0,15) | 3 512, 512, 128 | ReLu, ReLu, ReLU | 0 2
D30M Adam 0.001 0.0 MSE | shape (0,15) | 2 512, 256 ReLu, ReLu 0 2

SEL = Mean Squared Error Loss

0,193, R? of 51,280, and R? of 54,513.

Finally, AutoKeras decided that the best architecture for the
30m dataset to have two hidden layers of 512, and 256 neurons
with ReLu activation functions and O dropout layer. The loss
function is the same like in previous experiments, and same
goes for the optimizer with the learning rate. The model results
an RMSE score of 0,232, MSE of 0,090, R2 of 23,182, and
R? of 24,183.

It is interesting to notice how the datasets that have longer
time spans have better predictive capabilities. We believe this
is due to the fact that longer time spans allowed for the other
features to be present in the dataset, in other words the features
that required a minimum of 5 minute recordings are not present
in the 30s, 1m and 5m datasets which could be the reason that
the rest of the datasets are better and generating models for
prediction.

With that said following is a list of each dataset with its R?
score:

o D30S - 47,710

e« DIM - 17.341

e D5M - 12,334

o DIOM - 10.080



e DISM - 51,280

o D30M - 23.181

The best result here is the D15M dataset where the R? is
51,280. The value is not ideal but the results can be improved.
In order to make improvements more data would definitely
help out, but also a longer training session would yield better
results.

VI. CONCLUSION

To conclude, the architectural neural search capabilities of
AutoKeras seem to differ greatly between datasets even though
the correlations in some were stronger then the rest. There
are however some common grounds, such as the loss function
being the mean squared error, the Adam optimizer, the learning
rate 0.001 and the activation function being ReLu for each
dataset. We also notice that the maximum number of hidden
layers does not exceed 3 layers and the number of neurons
per layer is quite sporadic from 16 to 512.

The authors conclude that the research question is addressed
and answered positively. Where the best architecture consists
of three layers with 512,512, and 128 neurons, Adam opti-
mizer, learning rate of 0.001, loss of MSE and two Batch
Normalization Layers.

Regarding future endeavours, it would be interesting to see
the comparison of manual DL-based experiments alongside a
more controllable architectural search through the utilization
of the Grid Search technique. Furthermore, the current results
are results of a 24h training, thus a more longer training period
might yield better architectures.
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