
Implementation Of The Viola Jones Algorithm For
Face Detection And Tracking On Robots With

Limited Computation Power
Dimitar Bezhanovski

Ss. Cyril and Methodius University

Faculty of Computer Science and Engineering

Skopje, North Macedonia
dimitar.bezhanovski@students.finki.ukim.mk

Aleksandar Stankovski
Ss. Cyril and Methodius University

Faculty of Computer Science and Engineering

Skopje, North Macedonia
aleksandar.stankovski@students.finki.ukim.mk

Abstract—This paper aims at presenting how to implement
face detection and tracking on a low powered robot that uses
hardware such as the Raspberry Pi using the Viola Jones algo-
rithm. With face detection and tracking implemented, the robot
can follow the movement of a person, and move accordingly.

I. INTRODUCTION

This paper aims to explain how the challenges of face
detection and tracking with robots that have low processing
power can be overcome. Face detection in image processing
is a computer technology that is able to identify the presence
of people’s faces within digital images or videos, and it is
not to be confused with face recognition, which refers to the
ability to distinguish and recognize the person in the image.
The main challenge that we face is the face detection part. For
a mobile robot (robot with wheels or caterpillars) to be able
to move towards a person and also to orient towards them,
first we need a method by which we will detect the person’s
face. Even though the whole human figure can be detected,
in this research paper, we focus on face detection because the
face of a person always has the same order of characteristics.
In contrast, the whole human figure can change depending of
the movement or pose that the person is in, such as stretched
arms or bent knees.
When it comes to face detection, we do not have a huge
choice to solve this problem. A widely used approach to
overcome this challenge is by applying deep learning tech-
nique, but in our case, there is a problem with that. Deep
learning is too demanding in terms of computing power for
devices like the Raspberry Pi. Deep learning would be an
adequate approach if the embedded computer used has built-
in CUDA cores. Such embedded computers can cost more
than 100 USD, but this paper focuses on devices that cost
less than 50 USD, as per example Raspberry Pi devices
and similar variants. The purpose of this is to demonstrate
a way for students to be able to implement tracking func-
tionality in robots that are built with low cost. This research
explains an implementation that is a good compromise be-
tween performance and functionality using Viola-Jones face
detection algorithm. Once the face is detected we apply an
algorithm to calculate the distance and location of a person
in relation to the robot. The code for this paper running on
the Ricardo robot can be found on the following repository
https://github.com/dimitarbez/Ricardo

II. RELATED WORK

Many existing works use neural networks to implement the
feature of user following [4]. Other works use a Bayesian

based approach for facial recognition and following using
SIFT descriptors [5]. This is effective however it is a prob-
lem when implementing such functionality on a device that
doesn’t have a dedicated graphics processor such as the
Raspberry Pi.

III. VIOLA JONES ALGORITHM

The Viola-Jones object detection algorithm [1] is an object
detection algorithm that was proposed by Paul Viola and
Michael Jones in 2001. Although it can be trained on various
classes of objects, the main motivation of the algorithm was
detection of faces.
The Viola-Jones algorithm uses a machine learning approach
to detect objects in pictures. The classifier works with very
simple image features. One part of the image is subtracted
from another one. That alone is not very good. But if there
are thousand such features, then we are well on our way to
detection.
When we have a black and white image, the eye area is darker
than the forehead area. When we subtract the lighter part from
the darker part, we get classification. The algorithm works on
this simple principle. Viola-Jones requires a full front-facing
view. So in order for the face to be detected it will have to
be aimed at the camera and it should not be tilted to one
side. While this sounds like something that would reduce the
usefulness of the algorithm, in practice these limitations are
quite acceptable.
The features found by the algorithm involve a sum of pixels
within the boundaries of rectangular regions. As such, they
have similarities to the Haar basis functions, which have been
used to detect objects in an image. But because the features
used in Viola-Jones depend on more than one rectangular
region, they are generally more complex.
This algorithm consists of fours stages:

1) Haar features.
2) Create an integral image
3) AdaBoost training
4) Cascading

A. Haar features

The detection procedure classifies based on values from
simple features. There are several motivations for using
features instead of working with pixels directly. The most
common reason is because with features knowledge can be
encoded in ad hoc domain. There is another critical reason
and that is that a feature-based system is much faster than a
pixel-based system. The simple features used are reminiscent

148

The 19th International Conference on Informatics and Information Technologies – CIIT 2022



of Haar basis functions. The algorithm uses three types of fea-
tures. The value of a two-rectangular feature is the difference
between the sum of the pixels in the two regions. The regions
have the same size and form and are vertically or horizontally
adjacent. Feature with three rectangles calculates the sum of
the two outer rectangles subtracted from the middle rectangle.
Finally, a feature with four rectangles calculates the difference
between diagonal pairs of rectangles.

Fig. 1. Haar features [1].

B. Integral image

Rectangular features can be computed very quickly using
an image that is called an integral image. The integral
image at location x,y contains all the pixels above and left,
inclusively.

ii(x, y) =
X

x0x,y0y

i(x0, y0)

Fig. 2. Calculating the area with the integral image [1].

ii(x,y) is the integral image and i(x,y) is the original image.
Using the following formulas:

s(x, y) = s(x, y � 1) + i(x, y)

ii(x, y) = ii(x� 1, y) + s(x, y)

(where s(x,y) is the cumulative sum of the row, s(x,-
1) = 0) the integral image can be calculated with just
one iteration across the pixels of the original image. Using

the integral image, any rectangular sum can be calculated
using four references to an array. The difference between
two rectangular sums can be calculated in eight references.
Because two rectangular features above involve neighboring
rectangles, they can be calculated in six references to an array,
eight in case of three rectangle features and nine in four
rectangle features. With this, the calculation complexity of the
sum of the rectangular regions becomes of O(1). Calculation
of the integral image has to be done only once per new frame
and its complexity is O(n). This is way better than having
complexity of O(n2) for the entire image.

C. Cascades with attention

This section explains the algorithm for constructing a
cascade of classifiers that manages to increase detection
performance but drastically reduce the computation time. A
smaller and more effective classifier can be constructed that
will reject many of the negative sub-windows while at the
same time it will detect almost all positive instances. Simpler
classifiers are used to reject most of the sub-windows, before
more complex classifiers are used in order to obtain a low
negative rate. The general form of the detection process is
that of the degenerative decision tree, which we call cascade.
A positive result from the first classifier provokes the
evaluation of the second classifier which is also set to
manage to reach very high rates of detection. A positive
result from the second classifier causes the third classifier
and so on. A negative result in any step is followed with the
rejection of sub-window.

Fig. 3. Processing of sub-windows [1].

The cascade tracks are constructed by training a classifier
using AdaBoost and then changing the threshold values
to minimize false negatives. The default threshold values
is designed to have a low error rate for data training. In
general, a lower threshold leads to higher installments of false
positives. For example, an excellent first-stage classifier can
be constructed from two functional strong classifiers with
threshold reduction to minimize false negatives. Measured
against validation data, the threshold can be adjusted to detect
100% of persons with a false positive rate of 40%. The
calculation of the classifier of the two features is about 60
instructions for a microprocessor. It seems hard to imagine
that any simpler filter can achieve higher bounce rates. For
comparison, to scan a simple template per image or a single
layer of perceptron, 20 times more sub-window operations
are required.

149

The 19th International Conference on Informatics and Information Technologies – CIIT 2022



D. Training of a cascade of classifiers

The cascade training process involves two types of ex-
changes. In most cases, multi-feature classifiers will achieve
higher detection rates and lower false positive rates. At the
same time, the classifiers with more features require more
time to calculate. Optimization framework can be defined
in which the number of classification stages, the number of
features in each phase and the threshold of each phase is
traded in order to minimize the expected number of rated
features. Unfortunately, finding this optimum is an incredibly
difficult task.
In practice, a very simple framework is used to produce an
effective classifier which is highly efficient. Each phase of
the cascade reduces the false positive rate. Target is selected
to minimize false positives and to maximize detection. Each
stage is trained by adding characteristics until the targets are
met, the stages are tested with testing the detector on the
validation set.

Fig. 4. Example of frontal upright face images used for training [1].

IV. PRACTICAL IMPLEMENTATION ON THE ROBOT

The goal of the implementation is to give the robot the
ability to follow users it sees. It does this by detecting their
faces [2]. This can be implemented on any kind of robot
that uses wheels or tank tracks to allow it to move. For this
implementation the Ricardo robot is used. A 3D printable
robot that uses tank tracks powered by DC motors. The robot
has four DC motor that drive the two tank tracks.

Fig. 5. Frontal view of Ricardo.

The movement of the robot to follow the user is being cal-
culated based on the size (width) of the user’s face bounding

Fig. 6. Angle view of Ricardo.

box on the screen and its position accordingly [2]. The robot’s
movement can be divided into two categories: translational
and rotational. The translational movement is being calculated
based on the user’s face size, meaning whether the user is
close or far away from the robot, the robot should move
forward or backward. There are two thresholds for calculating
at which distance the robot needs to be from the user. The
value we are working with is the width (size) of the users
face. The higher threshold is for detecting when the user is
too close. It means that the size of the user’s face on the
screen has passed the upper threshold. In that case the robot
has to move backwards to get to a far enough distance. The
lower threshold means that the size of the face has become
too small on the screen. This is when the user gets too far
from the robot. In this case the robot has to move towards
the user to get close enough. The robots stops moving when
the face size reaches a value in between the two thresholds
[3].

These thresholds have to be set accordingly to the reso-
lution of the image. For the current implementation which
runs on a resolution of 400x300, the upper threshold works
best at a value off 150 (pixels wide) and the lower threshold
should be a value of 120 (pixels wide) for a robot placed on
a table in front of you. These thresholds can be increased
or decreased depending on what distance we like to keep the
robot at and also keeping in mind the resolution of the image.
The rotational movement is calculated based on the position
of the face on the image. There are two borders that trigger
the rotational movement. If the face bounding box enters the
left border then the robot starts to rotate towards the left. If
the face enters the right border then the robot proceeds to
turn right. If the robot is in neither of the borders then just
the translational movement is being calculated. If the face
has entered both borders then the translational movement is
being calculated only.

Fig. 7. Dimitar Bezhanovski.

If the face has entered both borders then the user is too

150

The 19th International Conference on Informatics and Information Technologies – CIIT 2022



Fig. 8. Dimitar Bezhanovski.

Fig. 9. Aleksandar Stankovski.

close and the robot has to back off. The rotation speed
increases linearly as the user’s face enters deeper into the
border that triggers rotation.

V. CONCLUSION

The optimal way to implement face detection and tracking
on a robot with low powered embedded computer is:

• Detect faces using the Viola-Jones algorithm
• Implement translational movement based on the person’s

face size in the image
• Implement rotational movement based on the person’s

face position in the image
This implementation is for devices that do not have a dedi-
cated graphics processor. An argument could be made that the
Nvidia Jetson Nano which has a dedicated graphics processor
falls into the low powered embedded computer category
and that we can run a neural network on it. But devices
such as the Jetson Nano are not as available and abundant
compared to devices like the Raspberry Pi. Especially due to
the ongoing chip shortage, devices with graphics processors
are hard to find to and are very expensive. With this Viola
Jones implementation we can effectively implement a basic
robot following system od readily available and cost effective
hardware.

REFERENCES

[1] P. Viola and M. Jones, ”Rapid object detection using a boosted cascade
of simple features,” Proceedings of the 2001 IEEE Computer Society
Conference on Computer Vision and Pattern Recognition. CVPR 2001,
2001, pp. I-I, doi: 10.1109/CVPR.2001.990517.

[2] M. D. Putro and K. Jo, ”Real-time Face Tracking for Human-Robot
Interaction,” 2018 International Conference on Information and Com-
munication Technology Robotics (ICT-ROBOT), 2018, pp. 1-4, doi:
10.1109/ICT-ROBOT.2018.8549902.

[3] K. Goyal, K. Agarwal and R. Kumar, ”Face detection and tracking:
Using OpenCV,” 2017 International conference of Electronics, Commu-
nication and Aerospace Technology (ICECA), 2017, pp. 474-478, doi:
10.1109/ICECA.2017.8203730. Technology Robotics (ICT-ROBOT),
2018, pp. 1-4, doi: 10.1109/ICT-ROBOT.2018.8549902.

[4] Hanjing Ye, Jieting Zhao, Yaling Pan, Weinan Chen, Hong Zhang, ”Fol-
lowing Closely: A Robust Monocular Person Following System for Mo-
bile Robot” Under review in 2022 IEEE/RSJ International Conference
on Intelligent Robotics and Systems (IROS 2022), arXiv:2204.10540

[5] Cruz, Claudia Sucar, Luis Morales, Eduardo. (2008). Real-Time face
recognition for human-robot interaction. Proceedings of the 8th IEEE
International Conference on Automatic Face and Gesture Recognition.
1 - 6. 10.1109/AFGR.2008.4813386.

151

The 19th International Conference on Informatics and Information Technologies – CIIT 2022


