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Abstract—When it comes to atomic simulations, the 
regularization of the deep neural networks is key to its 
successful application. The generalization capability of deep 
network depends on some factors. This paper aims to show that 
activation function is one of the most important factors that 
influence to decreasing the generalization error. For that 
purpose, several experiments were performed. Moreover, new 
approach for choosing the activation function is proposed. The 
purpose of the activation mechanism is not to find a universal, 
new activation function, although this is not excluded, but the 
most appropriate for the given task and for the given data set. 
The obtained results show that using the proposed activation 
approach, a decreasing of the mean absolute error compared to 
the benchmark set is achieved.  

Keywords—activation, regularization, deep neural networks, 
atomic simulations 

I. INTRODUCTION  
Nowadays, developing advanced machine learning based 

approaches in many domains is more than a trend. Deep 
learning, as sophisticated concept of machine learning, allows 
solving the most specific issues related to the data. Those 
issues in the cheminformatics are striking and the automatic 
construction of complex features is crucial [1]. Due to the 
ability of deep learning to provide a hierarchical 
representation of a compound, where higher levels present 
more complex concepts [2], its application in atomic 
simulations give advantages that could not be achieved 
otherwise. That is noticeable in tasks such as: prediction of 
absorption, distribution, metabolism, excretion and toxicity 
(ADMET) properties [3], prediction of molecular activity, 
toxicity [4], quantitative structure activity relationship 
(QSAR) predictive modeling [5], prediction of the drug-target 
interaction [6], virtual screening [7] etc. 

When it comes to atomic simulations, the regularization of 
the deep neural networks is key to its successful application. 
Regularized deep neural network is capable to predict on 
previously unseen data with a small error. Usually 
regularization is viewed as modification to the learning 
algorithm to reduce its generalization error but not its training 
error [8]. In [9] more general definition is given. The authors 
in [9] include various properties of the loss function, the loss 
optimization algorithm, or other techniques and define the 
regularization as any supplementary technique that aims at 
making the model generalize better. In this research, we also 
follow that broader definition.  

The regularization methods can be classified into several 
groups: methods that affect data (generic data-based methods 
[10] - [14], [15], [16] and domain-specific data-based methods 
[17], [18], [19]), methods that affect the network architectures 

[20], [21], [22], [23], error terms [24], [25], regularization 
terms [23], [27], and optimization procedures. The 
generalization capability of deep network depends on some 
factors. This paper aims to show that activation function is one 
of the most important factors that influence to decreasing the 
generalization gap defined as difference between the models’ 
performance on training data and on new data.  

The paper is organized as follows: in the second section 
the deep neural network architecture and the mechanism for 
the activation are presented. The third section includes the 
details of experimental design: description of the data sets, 
evaluation measures and the experimental setup. Results of 
the experiments followed by discussion are provided in the 
fourth section. At the end of this paper the concluding remarks 
are given.    

II. METHODS 

A. Deep Tensor Neural Network (DTNN) architecture  
The deep architecture which deploy the proposed 

mechanism for choosing activation function is based on the 
architecture in [28]. The reference DTNN use tanh 
(hyperbolic tangent) activation function, which has S-shape 
and take real values as inputs and outputs in range -1 to 1. For 
consistency, we use data division: 80/10/10, 
training/test/validation. The prediction of the atomic 
properties using DTNN (Fig.1) is realized by: computing 
features, generating, embedding, feedforwarding, gathering 
and backpropagation. Since the nature of the atomic data, 
there is a need for special procedures to make the data suitable 
for manipulation. Those procedures dos not include standard 
preprocessing such as denosing; elimination of redundancy; 
reduction; identifying and dealing with missing data; 
standardization; solving the problem with multicollinearity of 
data etc., but featurization, and splitting. Featurization is 
procedure for effective encoding of the molecules in the 
string with fix length or vectors.  

The Deep Tensor Neural Network (Fig.1) does not include 
explicit binding information, the atomic features are updated 
using all other atoms based on their physical distances. In 
Table 1 details for the parameters of DTNN are given. 

B. Activation mechanism  
The proposed mechanism chose the activation function 

!"($), which can have three general forms. The occurrence 
of each form is equally probable. The forms are: 
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!"($) = '(($), 

!"($) = '(('()*($)) and 

!"($) = +('(($), '()*($)	) 
 

where '(($)  is unary function, while +('(($), '()*($))  is 

binary function where . ∈ (1,15) and 2 ∈ (1,14). 

TABLE I DTNN ARCHITECURE DETAILS 

The values of . and 2 are determined by the number of unary 
functions that are used. The set of unary functions used in this 
research contains the following functions	0, 1, 		$, −$,	 |$|,	 
	$78, 	$9	, 	$

:
;, 	<=, 	<= − 1, >?@(<= + 1) , $ ∙ C($) (known as 

Swish), where C($) 	= 	 (1	 +	<(7=))78 is sigmoid function, 

 
1 https://deepchem.io/  

$ ∙ tanh	(ln(1 + <=))  (known as Mish) and 	 =
I
J)K

LIM
	 , N, O >

0	 (as Soft-Root-Sign). The set of binary function include the 
following functions: '8 + '9, '8 − '9, 	'8 ∙
'9,

Q:
Q;
, '8Q;,max('8, '9) ,min	('8, '9).  

First of all, the search space is formed by the specified unary 
and binary functions as the sum of the permutations for all 
three general forms (Fig.1) in which the activation function 
occurs. The activation mechanism automatically selects one 
of the possible activation functions from the search space, 
formed  
 
a) For the first general form of the activation function, 

defined with !"($) = '(($) , we have to choose  one 
from 15 unary functions. Or permutations 

U(15,1) = 8V!
(8V78)!

= 15; 

b) For the second general form, defined with !"($) =
'(('()*($)), where . ≠ 2 , we chose 2 from 15 unary 

functions, or 

U(15,2) = 8V!
(8V79)!

= 8V∙8Z∙8[!
8[!

= 15 ∙ 14 functions; 

c)  For the third general form, !"($) = +('(($), '()*($)	), 
we use 15 unary и 7 binary functions and obtain  

 7 ∙ 8
8V
U(15,15) = 7 ∙ 8

8V
8V!

(8V78V)!
= 7 ∙ 8

8V
8V∙8Z!
]!

= 7 ∙ 14! 
functions. 
 

The total number of candidate functions is 15 + 15 ∙ 14 + 7 ∙
14! i.e. 610 248 038 625. Due to computer resources, the 
number of used unary and binary functions is limited. The 
large number of possible activation functions further 
increases the complexity and causes difficulties in the 
activation mechanism. It should be emphasized that the 
purpose of the activation mechanism is not to find a universal, 
new activation function, although this is not excluded, but the 
most appropriate for the given task and the given data set. The 
activation mechanism solves a classic optimization problem, 
with iterative search - attempts to find the best of the 
candidates solutions according to the selected criterion.  
 

III. EXPERIMENTAL DESIGN  
We use DeepChem1 package, which is result of project 

that aims to create high quality, open source tools for drug 

 
 

Figure 2. Combining functions  
a) First general form b) Second general form c) Third general form 

 

DTNN_model
n_tasks (int) 
n_embedding (int, optional) 
n_hidden (int, optional) 
n_distance (int, optional) 
distance_min (float, optional) 
distance_max (float, optional) 
mode (str) 

compute_features_on_batch(X_b)
default_generator 

dataset (Dataset) 
epochs (int) 
mode (str) 
deterministic (bool) 
pad_batches (bool) 

DTNNEmbedding
n_embedding: int, optional
periodic_table_length: int, optional
init: str, optional

DTNNStep
n_embedding: int, optional
n_distance: int, optional
n_hidden: int, optional
init: str, optional
activation: str, optional

DTNNGather
n_embedding: int, optional
n_outputs: int, optional
layer_sizes: list of int, optional(default=[1000])
init: str, optional
activation: str, optional

 
Figure 1.  DTNN atomic model [29]  
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discovery, materials science, quantum chemistry, and biology. 
In the implementation are used Scikit-learn, TensorFlow [30] 
and Keras [31]. For experiment tracking wandb.ai tool is 
deployed.  In order to show the influence of choosing the 
activation function, well established activation functions are 
applied in different experiment runs.  

 

A. Datasets 
For the purpose of the research presented here we use four 

datasets form MoleculeNet2 aggregator [29]: QM7, QM7b, 
QM8 and QM9. The datasets belong to quantum mechanics 
category for solving regression task.  
  

1) QM7 and QM7b data set  
The data sets contain 3D Cartesian coordinates and electronic 
properties of 7165 molecules. The main goal is to predict the 
following electronic properties:  

× Atomization energy - PBE0 

× Excitation energy of maximal optimal absorption - 
ZINDO 

× Highest absorption - ZINDO 

× HOMO - ZINDO 

× LUMO - ZINDO 

× 1st excitation energy - ZINDO 

× Ionization potential - ZINDO 

× Electron Affinity - ZINDO 

× HOMO - KS 

× LUMO - KS 

× HOMO - GW 

× LUMO - GW 

× Polarizability - PBE0 

× Polarizability - SCS  
 

2) QM8 
This data set is consisted of low-lying singlet-singlet vertical 
electronic spectra of over 20 000 synthetically feasible small 
organic molecules. QM8 data are used for prediction of 
electronic spectra in a high-throughput manner across 
chemical space: 

× E1 - CC2 

× E2 - CC2 

× f1 - CC2 

× f2 - CC2 

× E1 - PBE0 

× E2 - PBE0 

× f1 - PBE0 

× f2 - PBE0 

× E1 - CAM 

× E2 - CAM 

× f1 - CAM 

× f2 – CAM 

3) QM9 
QM9 data include geometric properties and energetic, 
electronic and thermodynamic properties in order to predict 
atomic properties using geometric properties (atomic 
coordinates) which are integrated into features 

 
2 https://moleculenet.org/  

× mu 

× alpha 

× HOMO 

× LUMO 

× gap 

× R2 

× ZPVE 

× U0 

× U 

× H 

× G 

× Cv 

B. Evaluation measures 
The proposed approach is evaluated using Mean Absolute 

Error (MAE), as a golden standard for regression task. The 

MAE is calculated using the formula ^_` =	∑ |bcd7bd|e
df:

g
, 

where hc( denotes the predicted value for a single data using 
the model, while the actual value from the training set is 
denoted by h( . Thus, the term error depict the difference 
between the predicted value for a variable and its actual 
(observed, measured) value. 

 

C. Experimental setup 
The optimization of the hyper parameters is done by 

Gaussian Process Optimization in maximum 20 iteration. The 
training of the models is limited and is not longer than 10 
hours.  
 

IV. RESULTS AND DISCUSSION 
In order to depict the effectiveness of proposed 

mechanism for activation of the neurons and the impact on 
regularization in general, several experiments were obtained. 
The first experiment includes prediction of the atomic 
properties using 3 architectures: ANI-1 [32] -  Extensible 
neural network, DTNN [28], MPNN [33] - Message Passing 
Neural Network. All models are graph-based, as a more 
convenient for modeling molecules, since the fact that the 
molecules and their features are often represented by graphs. 
The results are given in Table II and Fig.2.  

TABLE II PERFORMANCE OF THE REFERENCE VS PROPOSED APPROACH 

 
Dataset 

 
Best 

performance  

 
MAE 

kcal/mol 
[29] 

 
MAE 

kcal/mol 
[proposed approach] 

QM7 ANI-1 2.8600 0.80960 
QM7b DTNN 1.7700 0.03656 
QM8 MPNN 0.0143 0.00129 
QM9 DTNN 2.3500 2.14323 
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Figure 2. Deep Tensor Neural Network performance – MAE in kcal/mol: 

Reference vs. Proposed model 
 
If we compere the performance of ANI-1 architecture and the 
DTTN architecture with applied proposed activation 
mechanism on QM7 dataset we can see improvement of the 
performance for more than 3.5 times. For the QM7b dataset 
the improvement is most noticeable (Fig. 2). We have 
decreasing of MAE value for more than 40 times. When it 
comes to MPNN, the obtained results with the applied 
activation approach also outperform the benchmark. For 
QM9 the difference is small, but in terms of atomic 
simulations small differences can have a big impact. 
Decreasing the MAE value, as indicator for regularized 
neural network, show us that activation function has a 
regularization effect on the network. 

V. CONCLUSIONS  
In this paper a different approach to regularization is 

presented. The main idea is to show that – the selection 
process of the activation function has a big influence to the 
need for regularization of the network. The new approach, 
named as an activation mechanism, don not try to find a 
universal, new activation function, although this is not 
excluded, but the most appropriate one for the given task and 
for the given data set. The obtained results show that the 
activation function can be viewed as an implicit regularizer.  
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