
logs2graphs: Data-driven graph representation and
visualization of log data

Stefan Andonov
Faculty of Computer Science

and Engineering
Ss. Cyril and Methodius University

Skopje, North Macedonia
stefan.andonov@finki.ukim.mk

Viktor Jovev
Faculty of Computer Science

and Engineering
Ss. Cyril and Methodius University

Skopje, North Macedonia
viktor.jovev@students.finki.ukim.mk

Aleksandar Kitanovski
Faculty of Computer Science

and Engineering
Ss. Cyril and Methodius University

Skopje, North Macedonia
aleksandar.kitanovski@students.finki.ukim.mk

Aleksandar Krsteski
Faculty of Computer Science

and Engineering
Ss. Cyril and Methodius University

Skopje, North Macedonia
aleksandar.krsteski@students.finki.ukim.mk

Gjorgji Madjarov
Faculty of Computer Science

and Engineering
Ss. Cyril and Methodius University

Skopje, North Macedonia
gjorgji.madjarov@finki.ukim.mk

Abstract—In recent years, AIOps has helped a lot with the

exploration of different types of resources, in the processes of

optimization and automation of complex IT operations. One of

the main resources that AIOps is exploring is system logs. There

are many techniques based on machine learning in AIOps that

help in logs anomaly detection, logs prediction, and root cause

analysis guided by logs, but a majority of them are considering

log messages either individually or as log sequences, without

exploring the relationships between different types of logs. We

believe that those relationships can be expressed via using graph

representations of log messages and those representations can

be utilized in almost any AIOps operation. Therefore in this

paper, we present logs2graphs, an open-source system for the

creation and visualization of such graph representations of log

messages, which is compatible with several publicly available

log sources and expandable to other log sources.

Index Terms—AIOps, logs, graphs, visualization, software

engineering, design patterns

I. INTRODUCTION

A. AIOps

AIOps is a field that became popular after 2017 when the
term AIOps was coined by Gartner in [8]. As AIOps is a
modern concept, there is no widely adopted definition yet.
[11] For the purpose of this paper we will use the definition
by Nedelkovski et al. in [10]: ”Artificial Intelligence for IT
Operations (AIOps) combines big data and machine learning
to replace a broad range of IT Operations tasks including
availability, performance, and monitoring of services. By
exploiting log, tracing, metrics, and network data, AIOps
enable detection of faults and issues of services”. According
to the definition, one of the 4 important resources that are
explored by AIOps are logs, so therefore this paper focuses
on a graph representation of log data which can later be used
in various operations related to AIOps. There are many papers
on the topic of AIOps which are focused on logs and how they
can be used to detect future anomalies or determine the root
cause of incidents, but mainly all of them are considering logs
just as a sequence of logs. We believe that log messages can
be represented as graph structures in which the relationship
between log message types will be highlighted. This concept

was also recently introduced in [12]. As our goal is a graph
representation of logs, the next subsection will give a short
introduction to logs and graphs.

B. Logs

The background of computer systems generates logs in
order to record notable events and executions indicating what
has happened. Therefore, these logs are precious sources to
check and investigate system status and detect anomalies in
them. Logs usually are in a structured format that is defined
on a system-level i.e all the logs that are generated by one
system will be in the same format. Log formats are varying
depending on the system, but in general they all mandatory
contain a timestamp (the moment when the log was produced
on the system), content (textual explanation of what happened
in the system), type (information about the severity of the log
per ex. error, information, etc.)

C. Graphs introduction

A graph is a mathematical structure used to model pairwise
relations between objects. There are different types of graphs,
the ones used in this project are directed graphs. Directed
graphs are formally defined as an ordered pair G = (V,E),
where V is a set of nodes (or vertices), and E is a set of links
(or edges) which are ordered pairs of nodes (v1, v2) meaning
there is a link from node v1 to v2. For the purposes of our
paper, we build graphs from the logs as described in [12] -
each alert type is a node, and there is a link between two
nodes (r1, r2) if an alert of type r1 appears before an alert
of type r2. A detailed explanation of the graph representation
of log sequences is provided in Section 4.

In the following, Section 2 provides an overview of the
relevant work for log collection, log parsing, and their ap-
plication in AIOps. Section 3 offers detailed descriptions of
some publicly available log sources which will be available
for exploration in our system. Section 4 presents technical
details on the system design, architecture, and implementation

86

The 19th International Conference on Informatics and Information Technologies – CIIT 2022



of all subsystems part of the logs2graphs tool. Section 5
demonstrates the user interface of our system as well as the
visualization of the graph representation of different types of
logs, which is the primary goal of our paper. Section 6 states
our plans for utilization of this application in future research
related to building models for graph representation learning.
Section 7 concludes the paper and its results.

II. RELEVANT WORK

Logs are an important tool for monitoring and trou-
bleshooting computer system behavior [5, 4]. As a result,
there has been substantial work on automated log analysis.
Techniques have been proposed for highlighting anomalous
messages [3, 2] or patterns of messages [4]. Generally, these
techniques are evaluated on proprietary log sources described
in fairly general terms. Many recent papers describe the logs
in question with a handful of excerpted lines plus a few
aggregate statistics [5]. This is unfortunate because it makes
it hard to reason about the relationship between log structure
and analysis quality. Many research results are based on
measurements taken at particular sites with highly customized
software environments; there is often a justifiable reluctance
to reveal operational details. Additionally, the general work-
flow is adapted when working with logs as shown in [6]. The
phases relevant from that workflow for this work are:

Fig. 1. Workflow (Source: [6])

• Log Collection (This phase is generally completed be-
cause in our paper we are using publicly available
datasets explained in Section 3)

• Log Parsing (There are several techniques for parsing of
the logs and extraction of generic event templates from
log collection. In our work we are using DRAIN which
will be explained shortly in Section 4)

• Feature Extraction (Based on the extracted event tem-
plates, log data is being windowed with the usage of
tumbling windows, sliding windows, and session win-
dows, if applicable. Features are being extracted from
the logs in the created windows and afterward they are
used for supervised and unsupervised tasks in Machine
Learning.)

In this work, we are replacing the phase of feature extrac-
tion with the phase of the creation of graph representation for
logs, as feature extraction is a stage that belongs to a more
general terminology related to traditional machine learning
processes.

III. LOG MESSAGE SOURCES

A. BGL

BGL represents a log message source that contains
logs collected from the Blue Gene/L Supercomputer made
by IBM. The supercomputer has 131072 processors and
32768GB of memory. This source has around 4.8 million

alert and non-alert messages identified by category tags, col-
lected between 03.06.2005 and 04.01.2006 (nearly 6 months).
Details about the Blue Gene/L System, methods of log
collection, and alert identification can be found in [1].

B. HDFS

The logs were already published online from [5]. There are
24 million lines of logs. Most of the events in logs indicate
run-time performance problems that have been confirmed by
Hadoop developers. All errors, warnings, and information are
collected between 09.11.2008 and 11.11.2008 (about 3 days).

The log message source is generated in a private cloud
environment using benchmark workloads. The logs are sliced
into traces according to block ids.

C. OpenStack Nova

OpenStack is an open-source cloud operating system that
can control large pools of compute, storage, and network-
ing resources throughout a data center, all managed and
provisioned through APIs. Because it is a complex system,
OpenStack is divided into 3 subsystems: Nova (for instances
management), Cinder (for volumes management), and Neu-
tron (for virtual networks management). [9] introduced the
concept of fault-injection in order to generate anomalies
(bugs) in the logs. The fault-injections are done based on the
bugs that were most reported on StackOverflow and are done
with surrounding buggy lines of codes with if statements.

A total of 911 tests (with IDs from 1-911) with fault
injections were conducted on testbeds. In each test the system
first starts with the bug disabled, then the bug is enabled and
finally, the bug is disabled again. In this paper, for the purpose
of simplicity, we only use the logs obtained from the NOVA
subsystem of OpenStack.

IV. SYSTEM IMPLEMENTATION

Logs2graphs is a platform that enables multiple different
representations of log message sequences from time and
session windows. These representations are created upon user
request where the user specifies the type of the graph, the log
messages’ source, and the configuration of the windows. The
logs collected in the specified type and length of the window
are represented as graphs and are served in a stream environ-
ment for further automated processing and extensive analysis.
Also, the created logs representations are presented on a rich
interactive graphical user interface, so the user can manually
inspect, monitor, and analyze the log messages relationships.
The current implementation supports the representation of the
log message sequences into different graph structures that
emphasize the relationships that exist between the individual
log events in a given time or session window.

Fig. 2. Diagram of the main system components

87

The 19th International Conference on Informatics and Information Technologies – CIIT 2022



A. Software architecture
The software architecture of logs2graphs as shown in

Figure 2 is composed of three main components:
• core - The core of the system is a Python library

(published as logs2graphs on pypi 1) that is used for the
purpose of log message sources initialization (loading
and parsing of the log messages), creation of windows
(time and session windows) and graphs from the aggre-
gated logs in the windows. The creation of the windows
and graphs is entirely dynamic i.e it is performed on
each user request. The core library uses the libraries
networkX and pyviz for the representation of graphs and
their visualization accordingly.

• API - The API is built in the Flask (Python) frame-
work and it has several endpoints (creating and listing
experiments, listing created windows per experiments,
generating data for graph visualizations). The API uses
the logs2graphs core library for initialization of the
log message sources and dynamical creation of the log
representations.

• web - The User Interface for the application is created
in the .NET Blazor framework and it provides several
forms that are used to display the data (including graphs
visualizations) obtained from the API or send data to the
API when creating experiments.

B. Core library
1) Design of the core library
The core library logs2graphs is a Python package that

provides the possibility to download, parse and process all
of the 3 log message sources defined in Section 3. This is
achieved by the usage of the Template Method software

design pattern as shown in Figure 3. We have defined

Fig. 3. UML class diagram of the classes used for the representation of the
different log message sources in the core library

an abstract class Dataset for the representation of a log
message source with the possibility to extend the library
by deriving classes for other sources. The class Dataset
has a method initialize_dataset which is actually
the template method participant in the design pattern. This
method includes three steps for initialization of the log
message sources:

• load_logs - used to download the logs locally
• load_event_templates - used to perform the log

parsing and extraction of event templates with the
DRAIN algorithm.

• assign_event_id_to_logs - used to assign event
template ID to each of the logs, via matching them with
the extracted event templates. This is a very important
step in the system as it provides a mapping of millions of

1https://pypi.org/project/logs2graphs/0.0.6/

logs into several important categories (templates) which
will be used for creation of a more understandable graph
representation.

The three steps are abstract methods in the base class
Dataset and each of them is overridden in the derived
classes in a corresponding way.
For the purposes of event extraction from logs, we used
Drain [7] which is an online log parsing method that parses
logs in a streaming manner. Drain uses a fixed depth parse
tree which encodes specially designed rules in its tree nodes,
while the leaves contain log groups. When a new raw log
message arrives Drain preprocesses it using simple regular
expressions based on domain knowledge. Then the tree is
searched by using the specially designed rules encoded in
the tree nodes for a suitable log group for the given log
message, if a suitable log group is not found then a new log
group is created.
The graph creation is done in the method create_graphs
where based on the window_type argument,
we are creating a corresponding object from class
GraphsCreator.
We have utilized the Template Method design pattern again
in the definition of the classes GraphsCreator and
WindowsCreator as shown in Figure 4 and Figure 5
accordingly.
In the class GraphsCreator the template method is the

Fig. 4. UML class diagram of the classes used for the creation of graphs

method create_graphs while the step that varies in the
different graph creators is the WindowsCreator object
that is used for creation of windows. Therefore, the method
get_window_creator is overridden differently in all
types of graph creator. In the class WindowsCreator the
template method is the method create_windows while
the steps that vary in the different windows creators are
the start and the frequency (applicable only for the time
windows). The creation of the time windows (tumbling and

Fig. 5. UML class diagram of the classes used for creation of windows

sliding) depends on the minimal timestamp detected in the
logs, as well as on the maximal timestamp.

2) Graph creation
We will explain the process of graph creation for a window

of logs through an example. For example, we have obtained
a window of 10 logs. We map that sequence of logs to a
sequence of the event IDs of the template that was matched

88

The 19th International Conference on Informatics and Information Technologies – CIIT 2022



Including last event ID Excluding last event ID
Edge Weight Normalized weight Weight Normalized weight
A-B 3 0.33 3 0.375
B-A 1 0.11 1 0.125
B-B 2 0.22 2 0.25
B-C 2 0.22 1 0.125
C-A 1 0.11 1 0.125

TABLE I
WEIGHTS OF THE GRAPH FOR THE EXAMPLE SEQUENCE

with each log in the sequence. Let the sequence of event IDs
be [A, B, A, B, B, B, C, A, B, C], which means that the
first log corresponds to the event template whose id is ’A’,
the second log corresponds to the event template whose id is
’B’ and so forth.
We create graph nodes for each of the unique event IDs
present in the sequence. Regarding our example, the graph
will have 3 nodes - one for event ID ’A’, another for event
ID ’B’, and the third one for event ID ’C’.
Furthermore, we add directed edges between the nodes. The
criteria we use for edge extraction from the log window are
the following: if a log corresponding to event ID ’B’ came
after a log corresponding to event ID ’A’ and a directed
edge from node ’A’ to node ’B’ does not exist yet, we add
a directed edge from node ’A’ to node ’B’ with weight 1.
Otherwise, if a log corresponding to event ID ’B’ came after
a log corresponding to event ID ’A’ and a directed edge from
node ’A’ to node ’B’ already exists, then we only add 1 to
the current weight of the edge. The final step we perform is
weight normalization. In this step, we compute the sum of
the weights of all edges present in the graph and then we
normalize (divide) the weight of each edge with this sum.
The logs2graphs core library allows the users to create graphs
from windows with or without the last event ID. As shown
in Table I, if we exclude the last event ID we have a smaller
weight in the edge B-C. This also causes the normalized
weights of the graph to be different.

V. RESULTS

In this section, we will present the user interface of the
system with some interesting graphs visualization created and
displayed by our system. On Figure 6 a form to submit a
new experiment is demonstrated. The user can choose the log
messages source (HDFS/BGL/NOVA), the windowing type
(tumbling/sliding/session), and other relevant parameters. In
this case, the user is submitting an experiment for the creation
of graph representation for the BGL log message source
which should create sliding windows with a size of 2 hours
and a slide of 1 hour. Also, the user wants to exclude the
last event ID from the windows when generating the graph
representations.
After the request is submitted, the user can open the list of

Fig. 6. Form to submit a request for new graph representation

submitted requests for graph representations. When the graph
representation creation is completed, the user can open the
list of windows created for the requested graph representation
as shown in Figure 7. The user on this page can download
the full generated graphs data for this graph representation
in JSON format, or can select a window and visualize it.
In Figure 8, the visualization of the graph created from a
selected window is shown.

Fig. 7. List of windows generated for the graph representation created in
Figure 6

Fig. 8. Graph of the BGL logs in the interval [2005-06-16 18:00:00,2005-
06-16 20:00:00) from the graph representation requests in Figure 6

VI. FUTURE WORK

Furthermore, this graph representation of log data can be
used for training and testing graph neural networks (GNNs)
in order to detect anomalies in logs, predict future logs
or perform root cause analysis. Therefore, the future work
includes different architectures like GCN (Graph Convolution
Networks), GGSNN (Gated Graph Sequence Neural Net-
work), GAT (Graph Attention Networks).

VII. CONCLUSION

The amount of log data created by supercomputers, dis-
tributed systems, cloud systems, etc. is massive and cannot
possibly be processed by humans, but because the uninter-
rupted work of these computer systems is crucial for many
businesses, hospitals, governments, etc., ways of automated
processing and anomaly detection/prediction must be devel-
oped. In this paper, we gave an introduction to AIOps as a
field, logs and graphs, and an overview of relevant work in
those fields. We presented a way to connect the log messages
into a graph representation and provided a system with several

89

The 19th International Conference on Informatics and Information Technologies – CIIT 2022



components that can be used to create and visualize the graph
representations. Finally, we have defined the need for this
system in the actions that we plan on taking in our future
research.

ACKNOWLEDGEMENTS

This research was partially funded by the Faculty of
computer science and engineering, Ss. Cyril and Methodius
University in Skopje.

REFERENCES

[1] Adam Oliner and Jon Stearley. “What supercomputers
say: A study of five system logs”. In: 37th annual
IEEE/IFIP international conference on dependable
systems and networks (DSN’07). IEEE. 2007, pp. 575–
584.

[2] Sivan Sabato et al. “Analyzing system logs: A new
view of what’s important”. In: 2nd USENIX workshop
on Tackling Computer Systems Problems with Machine
Learning Techniques. 2007.

[3] Michal Aharon et al. “One graph is worth a thousand
logs: Uncovering hidden structures in massive system
event logs”. In: Joint European Conference on Machine
Learning and Knowledge Discovery in Databases.
Springer. 2009, pp. 227–243.

[4] Weihang Jiang et al. “Understanding customer prob-
lem troubleshooting from storage system logs”. In:
Proccedings of the 7th conference on File and storage
technologies. 2009, pp. 43–56.

[5] Wei Xu et al. “Detecting large-scale system problems
by mining console logs”. In: Proceedings of the ACM
SIGOPS 22nd symposium on Operating systems prin-
ciples. 2009, pp. 117–132.

[6] Shilin He et al. “Experience report: System log analy-
sis for anomaly detection”. In: 2016 IEEE 27th inter-
national symposium on software reliability engineering
(ISSRE). IEEE. 2016, pp. 207–218.

[7] Pinjia He et al. “Drain: An online log parsing approach
with fixed depth tree”. In: 2017 IEEE international
conference on web services (ICWS). IEEE. 2017,
pp. 33–40.

[8] Andrew Lerner. AIOps Platforms—Gartner. https : / /
blogs.gartner.com/andrew- lerner/2017/08/09/aiops-
platforms/. [Online; accessed 15-April-2022]. 2017.

[9] Domenico Cotroneo et al. “How bad can a bug get? an
empirical analysis of software failures in the openstack
cloud computing platform”. In: Proceedings of the
2019 27th ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foun-
dations of Software Engineering. 2019, pp. 200–211.

[10] Sasho Nedelkoski, Jorge Cardoso, and Odej Kao.
“Anomaly Detection and Classification using Dis-
tributed Tracing and Deep Learning”. In: 2019 19th
IEEE/ACM International Symposium on Cluster, Cloud
and Grid Computing (CCGRID). 2019, pp. 241–250.
DOI: 10.1109/CCGRID.2019.00038.

[11] Paolo Notaro, Jorge Cardoso, and Michael Gerndt. “A
Survey of AIOps Methods for Failure Management”.
In: ACM Transactions on Intelligent Systems and Tech-
nology (TIST) 12.6 (2021), pp. 1–45.

[12] Yi Wan et al. “GLAD-PAW: Graph-Based Log
Anomaly Detection by Position Aware Weighted Graph
Attention Network”. In: Pacific-Asia Conference on
Knowledge Discovery and Data Mining. Springer.
2021, pp. 66–77.

90

The 19th International Conference on Informatics and Information Technologies – CIIT 2022


