The 19th International Conference on Informatics and Information Technologies — CIIT 2022

Model Hyper Parameter Tuning using Ant Colony
Optimization

Aleksandar Trajkovski
FCSE, Ss Cyril and Methodius University, Skopje
Elevate Global LLC
Skopje, North Macedonia
aleksandar.trajkovski.2 @students.finki.ukim.mk

Abstract—The process of adjusting the best hyper-parameters
for machine learning models is a complex optimization problem
over the models that in reality are ’black-boxes”. This process
entails several challenges such as the time complexity of finding
optimal results, different types of hyper-parameters (continuous
and categorical hyper-parameters) and model over-fitting. The
main benefits of the hyper-parameter adjustment process are
the improvement of the efficiency and quality of the models.
This paper presents an implementation for adjusting hyper-
parameters of time series prediction regression models, which
is based on pheromone paths of ant colonies used as a way
of finding food in nature. This approach of leaving pheromone
pathways has been used to quickly find values for the hyper-
parameters of the regression models for which they give the
most optimal results.

The proposed implementation for Ant Colony optimization is
compared with three other parameter optimization approaches
(Grid search, Bayesian optimization and Tree Parzen Estima-
tors) on ten different regression datasets according to the time
required to perform the optimization and the quality of the
model prediction. The experimental evaluation shows that the
proposed method needs minimal time to optimize the hyper-
parameters, while preserving very good predictive performance
in comparison to the competing approaches.

Index Terms—hyper-parameter optimization, hyper-
parameters, Ant colony, Grid search, HPO, time series

A. Acronyms

MSE - Mean Squared Error;

ACO - Ant Colony Optimizer;

SVR - Support Vector Regressor;
HGB - Histogram Gradient Boosting;
GS - Grid search;

RS - Random Search;

TPE - Tree Parzen Estimators;

HPO - Hyper Parameter Optimization;
BS - Bayesian Search;

I. INTRODUCTION

Machine learning models use parameters that cannot be
directly deduced from the data. These types of parameters are
called hyper-parameters of a model [1]. The overall work and
behavior of the model in the learning and prediction phases
greatly depend on these parameters. Their optimization is a
difficult and tedious task, which depends on the expertise of
the engineer and the domain of the problem the engineers
are trying to solve with the help of data modeling. The
hyper-parameter tuning is a process of choosing optimal
values of the corresponding hyper-parameters, for which the
model will have the best results for a predefined metric used
for assessing the quality of the forecast. The most well-
known and widely used technique for hyper-parameter tuning

37

Gjorgji Madjarov
FCSE, Ss Cyril and Methodius University, Skopje
Elevate Global LLC
Skopje, North Macedonia
gjorgji.madjarov @finki.ukim.mk

of models is the Grid Search technique, which gives the
best results when searching the entire hyper-parameter space.
However this technique has a high level of time complexity.
To avoid the most common problems with selecting hyper-
parameters values (manual adjustment by the engineer, use of
“recommended” values, use of inadequate metrics to assess
the quality of the forecast and the occurrence of model over
fitting), automatic tools are made that significantly aid in
the tuning process and minimize the prediction error [2].
The purpose of this paper is to describe, review and experi-
mentally compare approaches for hyper-parameter tuning on
regression models which use time series as input data. In this
paper the tools AutoSklearn, Hyper-Opt will be considered
as representatives of Bayesian optimization and Tree Parzen
Estimators respectively. Moreover as third and fourth method
of hyper-parameter tuning evaluation, the method Grid search
and the proposed implementation using the principle of
pheromone paths of ant colonies will be used. The proposed
implementation for the Ant Colony Optimizer can be easily
adapted to any type of problem and model. Furthermore
the same implementation can be used for parallel execution
and skipping of combinations through the pheromone path
system, which significantly increases the speed of parameter
tuning.

II. RELATED WORK

Hyper-parameter optimization (HPO) is the final step in
model design and the initial step in model training [3]. There
are two types of hyper-parameter optimization:

e Manual:

For models that are widely used, the adjustment of
these parameters by the scientist is possible and depends
on the experience of previously solved problems. With
the increasing dimensionality of hyper-parameter space
and its values, this approach becomes very difficult. To
overcome this problem, a second type of optimization
has been proposed.

Automatic:

As the search space and parameter settings expand,
the demand for computing power grows, as does the
necessity for continuous trial-and-error access. As a
result of that new types of optimizers emerged such
as Grid search (GS), random search (RS), bayesian
search (BS) and ant colony optimization (ACO). For
this kind of HPO, the scientist is expected to set a
starting configuration for the process of optimization.
Afterwards, the best hyper-parameters are automatically

The 19th International Conference on Informatics and Information Technologies — CIIT 2022

chosen after certain time. With this method, the proce-
dure of manually specifying the hyper-parameters and
analyzing the outcomes is no longer necessary [4].

A. Automatic hyper-parameter optimization approaches

There are two primary types of automatic hyper-parameter
tuning approaches, depending on whether they can be adapted
to iterations [5]:

e non-iterative and non-adaptive

« iterative and adaptable

Non-iterative and non-adaptive approaches are represented
by the GS (Grid search) method.

Grid search is one of the most utilized hyper-parameter
tuning approaches. This fundamental approach of parameter
tuning begins by defining a hyper-parameter search space
that must be explored in order to achieve a certain global
optimum. It is the most commonly utilized approach due to its
mathematical simplicity and the ability to adjust parameters
in parallel. The most significant disadvantages of this strategy
are its high time complexity and the so-called curse of
dimensionality. The number of combinations, and thus the
resources required to calculate them, grows exponentially as
the number of parameters to be adjusted grows [6].

Furthermore, Bayesian search (BS) and Tree Parzen Esti-
mators (TPE) are representatives for the iterative and adapt-
able type of approach.

Most of the time, the functions in the models that re-
quire parameters are “black-box” functions. These functions
are difficult to evaluate and demand a substantial amount
of computer resources to identify the global extreme. To
optimize these types of functions, Bayesian optimization
is most typically utilized. With each evaluation and new
sample, it grows more and more accurate over time. The
basic idea behind this strategy is to establish a balance
between exploration and exploitation. By balancing these
two characteristics, the problem of becoming trapped in
a local optimum is avoided. When compared to GS, the
main advantage is that it can be utilized for a wide range
of functions, including convex, non-convex, and stochastic
functions. Bayesian optimization is comprised of two parts:
a surrogate model for modeling a function and a posterior
probability-dependent activation function that seeks to choose
the next sample of the distribution. The surrogate model is
often a Gaussian process that assumes similar inputs will
result in similar outcomes. Unlike GS method, this approach
for hyper-parameter tuning explicitly determines the error
function [4], [6]-[8]. Finally, the Tree Parzen Estimator (TPE)
is utilized as an alternative to a suitable surrogate Bayesian
model source. This approach works with a variety of search
spaces, including values from a uniform distribution, category
spaces, and normally distributed real values represented by a
tree structure. The inability to represent interactions between
hyper-parameters is a significant shortcoming of this method.
The basic method of the Gaussian process outperforms TPE
for hyper-parameters with no interaction.

B. Related work for Ant Colony Optimization

In the literature, the ant colony optimization algorithm is
most commonly used to solve the traveling salesman prob-
lem. This technique has recently been introduced to hyper-
parameter tuning for hyper-parameters in neural network
layers and the construction of complete neural architectures,

38

as well as for improving predictions using fuzzy logic [9],
[12]. The next paragraphs will go over some of the more
noteworthy publications that utilize this concept. The Deep
Swarm system, which is based on flock intelligence, is
presented in [9] To discover the optimum neural network
architectures, the authors apply the Ant Colony Optimizer
(ACO) approach. They have discovered a balance in the
process of exploitation and exploration by using this concept.
The authors are using ACO and cluster intelligence for the
process of NAS (Neuron Architecture Search) due to some
benefits such as decentralization, scalability and the ability to
share already acquired knowledge.

Deep Swarm begins by generating a graph with a single
starting vertex. After a certain number of ants have been
generated, the ACO tuning process begins. Each of these
ants aims to determine what the next layer in neural archi-
tecture will be based on certain selection rules. Following
this selection, each ant makes additional adjustments to the
internal hyper-parameters of each layer, thereby resolving the
HPO problem (Hyper parameter optimization). To a certain
depth, this procedure is repeated for each ant. Following the
completion of this procedure, the pheromone matrix is locally
updated. Only the best ant is capable of updating the global
pheromone matrix. The authors emphasize as an important
point in the evaluation process that by limiting the number of
ants to one, the research and exploitation of the search space
does not show its full potential, but by increasing the number
of ants from four to eight, the time required for evaluation
increases significantly, and model improvement is minimal
(less than 0.13%). Finally, the authors report error rates of
0.46%, 1.79%, and 1.68% when comparing the new system,
RS search, and GS search, respectively.

The authors of [10] present the OpenNAS system, which
generates CNN (convolutional neural networks) for data sets
that contain black and white or colored images. PSO (partial
cluster optimization) and ACO are used to select the layers
for neural networks. The idea for such a system emerged from
the brute force algorithm’s impracticality and the problem’s
complexity. For ACO tuning, this before mentioned system
OpenNAS utilizes an implementation from the previous Deep
Swarm system. According to the authors, as the number of
ants increases, so does the search time. For the configuration
chosen in that paper, PSO outperforms ACO by 3% on one
data set and 1% on the second data set. The authors point
out that the networks generated by ACO are much simpler,
but with relatively well-adjusted parameters, based on their
configuration. The paper concludes that increasing the depth
of an ACO network results in more complex and better
networks, whereas choosing the number of layers in a PSO
network is completely stochastic. Then, in [11], ACO is used
to configure a modular neural architecture for image pattern
recognition. The process of fine-tuning the modular neural
architecture for image pattern recognition begins with the
establishment of a colony of ants in various positions. For
each of these ants, an adjustable graph is created. The offered
implementation makes use of three modules, each with seven
vertices. The final result is 98.82 percent pattern recognition
accuracy. Finally, [12] uses a new heuristic to find a suitable
region in the universe of discourse, which is a region in which
values for certain observable variables are found. ACO, a
widely accepted solution to the graph search problem, has
been used to find such a suitable region. The paper utilizes

The 19th International Conference on Informatics and Information Technologies — CIIT 2022

time series with a high level of data noise. These are known
as fuzzy series. Forecasting is based on TAIEX data and a
special model for predicting this type of series, which is based
on fuzzy logic.

III. ANT COLONY OPTIMIZER
A. Pseudo algorithm for Ant colony optimization

Ant colony optimizer (ACO) is based on and inspired
by ant behavior in the wild in search of food, as well as
their communication via chemical pheromone pathways that
lead from their nest to the food source. With this in mind,
the optimizer’s implementation is based on marking specific
parts of the search space of the algorithm’s hyper-parameters
which will have the greatest contribution to reducing the
prediction error. Initially, this algorithm was designed to solve
the travel salesman problem, but later, specific variants of it
were identified and used to optimize models using categorical,
discrete, or continuous hyper-parameter values.

Algorithm 1 Ant colony optimization pseudo-code

Input: (N No. of ants,E function,max No. of iteration
nmaw)
Configuration selection from the hyper-parameter space P
Creation of matrix Nz P
Evaluation of solution matrix S with function
Saving results into R = E(5)
for i =1,2,3, nymq, do
Selection of new parameter configuration
Creation of new solution matrix S’
Evaluation of the newly created matrix S’
Saving results into R’ = E(S")
Updating S with the best solutions from S and S’
Output: S, R

B. Proposed implementation for Ant Colony Optimization

The algorithm begins by creating a matrix of size NxP,
where NN is the number of selected ants for tuning and P is
the number of hyper-parameters that need to be adjusted. This
matrix is initially initialized with values chosen at random
for the hyper-parameters. Following this step, the matrix is
evaluated, and the results are placed in a new matrix of size
Nx1. The RMSE metric is used to calculate how good the
solution is. After calculating the metric value and storing the
result in a matrix of size Nx1, the solutions of the matrix
NxP are arranged in order of best to worst. The next step
in the algorithm is to assign weights to each of the solutions.
For this purpose, the following formula is used:

1

qn * 2 m

2

—i

e2ra?<N? (@))
where gn = N % q and q is a parameter of the algorithm that
is variable and can be experimented with, and ¢ represents the
ordinal number of each of the solutions after prior ordering
from best to worst.

The Gaussian distribution is determined by this formula,
which has a mean of 1 and a standard deviation of g¢n.
The values of these weights are unchanged because they
use the ordinal numbers of the solutions from 1 to /N (the
number of ants in the initial configuration). The algorithm
then calculates the standard deviation for each of the param-
eters. A matrix of size Px1 is created for this purpose.This

39

matrix will aid us in the creation of the Gauss kernel and
the determination of hyper-parameter values. Furthermore,
the pheromone evaporation parameter is introduced as a
parameter that controls the solution’s convergence.

Following the creation of the matrix with standard devia-
tion, a new matrix of size NxP is created. To fill the hyper-
parameter values, the previously generated standard deviation
matrix is used in such a way that the value for the standard
deviation corresponding to the parameter for which they are
currently taken is multiplied by a randomly generated variable
from the half-open interval [0,1), and this value is added to
the value for this parameter from the best found solution so
far. To avoid generating parameter values that are outside
the parameter limits, all values that cross the upper or lower
limit for a parameter are assigned the maximum or minimum
value of the limits. The newly generated matrix is sent to
the optimization process in this manner. This procedure runs
all models on a predetermined number of processor cores.
After completing the optimization and obtaining a matrix
with metric values, the new solutions are combined with
the best solutions thus far and sorted from best to worst.
Only N of these solutions are saved, and the procedure is
repeated z times until the maximum number of iterations is
reached or the change in improvement does not exceed the
threshold limit defined at the start. With the selection of N
best solutions from 2%V solutions a balance between research
and exploitation is introduced.

IV. EXPERIMENTAL EVALUATION
A. Model representatives and expectations

For the purpose of experimental evaluation as regression
model representatives SVR (Support Vector Regression) and
HGB (Histogram Gradient Boosting) models were chosen.
SVR, or Support Vector Regression, is a supervised machine
learning method. The primary goal of this type of prediction
method is to locate a hyper plane in space that contains the
greatest number of points used in training. If the problem
cannot be solved linearly, the kernel function is used to
find this plane, which aims to transcend the inputs to a
higher dimension where they can be solved linearly. In the
literature, RBF is most commonly used as a kernel function to
generalize models. During the experiments, the RBF (Radial
basis function) kernel function was used in each model. SVR
differs from other types of regression because it seeks the best
hyperplane with a predetermined limit, rather than focusing
on implicitly minimizing the error between the actual and
predicted values. When there are a large number of samples,
SVR has a significant disadvantage in terms of complexity
and training time. This model has the advantage of being
resistant to anomalous points. In contrast, histogram gradient
boosting is a decision tree ensemble model. It is distinct
from other types of Boosting algorithms in that it discretizes
continuous input values into a set of distinct values. This
accelerates the training of the trees added to the ensembles.
The disadvantage is that if the number of iterations is very
large, over-fitting can occur. Furthermore, this model is not
robust in terms of anomalous points, which are usually the
result of a minor over-fitting. This is due to the fact that each
new tree is updated based on the residuals and prediction
errors of previous trees.

The training time of the SVR model is expected to be
significantly faster for a smaller data set, while the training

The 19th International Conference on Informatics and Information Technologies — CIIT 2022

time of the HGB model is expected to be faster as the number
of training data increases. The experimental evaluation in
this paper consists of setting parameters for the two types
of regressors (SVR and HGB) mentioned above using four
methods: Grid Search, HyperOpt, Auto-Sklearn, and the
proposed Ant Colony optimizer.

B. Data sets

Ten data sets from the UCI Machine learning repository
[13] with varying sampling intervals and observations ranging
from 61 to 69681 samples were chosen for a thorough
evaluation of the proposed optimization algorithm.

Summary results for both types of models will be presented
for each set, sorted by the chosen Mean Squared Error (MSE)
comparison metric and the time required to find a solution.

TABLE I
DATASET NAME AND REFERENCE

Reference
[14]
[15]
[16]
[17]
[18]
[19]
[20]
[21]
[22]
[23]

Dataset Name
21412020
Istanbul Stock Exchange
Garments worker productivity
Air Quality UCI
Energy Data
PRSA
Daily Demand Forecasting Orders
Metro Interstate Traffic Volume
ETT
Household Power Consumption

C. Metrics and hyper-parameters

For the purpose of model comparison Mean Squared Error
(MSE) and time required to find a solution are used. Mean
Squared Error (MSE) is the mean root value of the difference
between the actual and the predicted value. A lower value
with this metric determines a better model. The formula for
this metric is:

1 n
MSE = —

OOk

i=1

2

where MSE is M eanSquaredEﬁror, n is the number of
samples, Y are the true values and Y are the predicted values.

MSE error minimization is accomplished by calculating
the MSE metric in regards to 80% of the total data without
shuffling from each data set (due to the problem of continuous
data in time series) and determining the mean value of the two
trainings obtained through 2-fold cross validation. Following
the tuning process on the training data sets, the value for
the previously mentioned metric MSE, is calculated on the
leftover 20% of the data sets.

SVR parameters C (regulatory parameter) and epsilon (a
parameter that determines the extent to which no error is
provided in the training function for observations provided in
the interval from epsilon to the real value for that observation)
are used as hyper-parameters for tuning. In all experiments
for SVR, the kernel function is set to RBF (radial basis
function). In contrast, the following parameters are chosen
for Histogram Gradient Boosting (HGB): learning rate (pa-
rameter that controls the model’s learning), maximum leaf
nodes (minimum number of sheets in each tree), minimum
sample leaf (minimum number of samples per sheet in wood),
and max depth (maximum depth of each tree).

40

V. RESULTS AND DISCUSSION
A. Results

According to Table II, the proposed implementation ACO
method is the most accurate in six of the ten data sets. On
the other hand, the proposed implementation ACO for the
HGB model (Histogram Gradient boosting) is the best when
compared by MSE in three out of ten cases, equating with
Grid search and Auto-Sklearn.

According to Table III, the proposed implementation ACO
method is the fastest in six of the ten data sets. On the other
hand, the proposed implementation ACO for the HGB model
(Histogram Gradient boosting) is fastest when compared by
time needed for tuning in nine out of ten cases.

Finally, whether using the SVR or HGB model, the pro-
posed ACO implementation is always among the top three
best methods.

B. Discussion

After evaluating the approaches made over the ten data
sets that differ in the number of samples and the number
of features they possess, as well as the size of the values
in the predicted variable, it can be concluded that in seven
of the ten SVR models the fastest solution is the proposed
architecture. For the MSE metric ranking in many cases
where ACO is in second place, it is preceded by GS, which
is an expected result because the implementation of ACO
generates approximate values for the parameters that in the
experimental phase were set to have the above limit of 1000
for parameter C and 1 for epsilon parameter in SVR models.
With that in mind, ACO is most accurate by MSE in six out
of ten experiments, and Grid Search is most accurate in two
out of ten cases. In one case, because no data preprocessing
was performed, only Auto-Sklearn produced good results
with a budget of 100 seconds and utilization of the frame’s
internal preprocessor. In the final experiment, the HyperOpt
framework produces an MSE that differs from the ACO
solution by one decimal place.

In nine out of ten experiments, ACO produces significantly
faster results for the second type of model, HGB (Histogram
Gradient Boosting). The results for this model are very close
to MSE (differ by a third decimal place).

Another finding is that GS is the slowest of all models.
When experimenting with Auto-Sklearn and HyperOpt, it is
necessary to set a budget, which in Auto-Sklearn is fully
utilized, whereas in HyperOpt it is possible but not always
fully utilized. Determining the exact budget is difficult, which
is why in this experiment, it is set to 500 and 100 seconds
in Auto-Sklearn and 500 seconds in HyperOpt, respectively,
and these numbers are chosen arbitrarily.

VI. CONCLUSION AND FURTHER WORK

In this paper we presented an implementation for Ant
Colony Optimizer for hyper-parameter tuning. This imple-
mentation was compared with three different benchmark
methods (Grid Search, Bayesian Optimization and Tree
Parzen Estimators) on ten different datasets and on two
different types of models (SVR and HGB).

The ant colonies optimization strategy for hyper-parameter
tuning showed minimal time to tune the hyper parameters
while providing competitive results for prediction accuracy
compared with the other method mentioned above. It also has
the potential for a lot of parallelism as well. Its accuracy is

The 19th International Conference on Informatics and Information Technologies — CIIT 2022

TABLE 1T
RESULTS FOR MSE METRIC FOR MODELS SVR AND HGB FOR EACH OF THE TEN DATASETS

Dataset SVR MSE HGB MSE

Method ACO Grid search | AutoSklearn | HyperOpt ACO Grid search | AutoSklearn | HyperOpt
Data set 1 84.41 67.75 71.95 94.66 2.17 1.55 2.76 3.94
Data set 2 0.06 0.07 0.06 0.069 0.05 0.051 0.05 0.05
Data set 3 0.02 0.43 0.13 0.43 0.01 0.01 0.01 0.01
Data set 4 0.24 0.32 0.23 0.22 0.29 0.29 0.28 0.29
Data set 5 2.95 2.17 0.27 3.50 0.37 0.36 0.48 0.35
Data set 6 6612.90 6612.86 8889.93 6616.26 6183.95 6133.22 6202.17 6212.68
Data set 7 555.61 574.62 989.49 573.82 1622.55 1669.85 1069.75 1669.85
Data set 8 | 3658869.40 | 3660087.39 3871753.23 3660049.28 | 3543492.39 | 3536480.03 3533824.67 3547464.79
Data set 9 61.13 61.37 60.90%* 2225.12 67.94 63.97 68.66 67.94
Data set 10 564.97 565.82 72533.10 612.22 2111.98 2862.77 1163.81%* 3079.90

* DummyRegressor used Ieading to not valid results.

TABLE III

RESULTS FOR TIME NEEDED FOR HYPER-PARAMETER TUNENING FOR MODELS SVR AND HGB FOR EACH OF THE TEN DATASETS

Dataset SVR Time HGB Time

Method ACO Grid search | AutoSklearn | HyperOpt ACO Grid search | AutoSklearn | HyperOpt
Data set 1 | 88.12726 263.16185 500 350 4.67375 524.975 100 90
Data set 2 | 0.46472 4.19407 100 340 2.204 268.064 100 100
Data set 3 | 0.68046 0.89757 100 340 2.83316 328.047 500 100
Data set 4 | 16.147 57.844 100 344 4.37914 506.48 100 100
Data set 5 | 357.07076 2049.26036 500 400 60.26691 858.13465 100 100
Data set 6 | 898.712 3348.097 100 357 6.81851 649.3429 100 100
Data set 7 1.63201 2.24134 100 340 5.48762 144.80978 100 100
Data set 8 | 553.03885 4077.37868 500 354 5.16121 396.8439 100 101
Data set 9 | 3353.06297 | 17669.359 500 409* 6.21469 955.67905 100 102
Data set 10 | 1218.08134 | 2804.524 500 340 384.21429 | 592.46702 500 100

* Ends on first iteration due to the big number of samples

heavily reliant on the parameter boundaries. These boundaries
are arbitrarily chosen and set in all experiments without
taking into account problem modeling knowledge. In practice,

(9]

[10]
these boundaries would be precisely defined based on the set,
model, and the domain knowledge. (1]

Moreover in this paper only the concept of parameter
tuning is applied to two previously selected models in the [12]
domain of time series regression. In addition to this paper,
it is possible to implement an AutoML (Automated Machine
Learning) system, which is a system for searching algorithms [13]
and setting hyper-parameters for them without any human [14]
intervention [24]. Such systems consist of several processes,
such as preparing the dataset, generating key features from
that set, generating machine learning models, optimizing [1°]
them, and finally evaluating them. In the literature, the
part of the selection of machine learning models and their [16]
optimization is known as the Combined Algorithm Selection
and Hyperparameter Optimization, or CASH for short. [17]

18

REFERENCES sl
[19]
[1] M. Kuhn and K. Johnson, Applied Predictive Modeling. Springer
Science Business Media, 2013. [20]
[2] “objective function.” https://xlinux.nist.gov/dads/HTML/objective.html
[3] T. Yu and H. Zhu, “Hyper-Parameter Optimization: A Review of
Algorithms and Applications,” arXiv.org, Mar. 12, 2020. [21]
[4] “Hyperparameter Optimization for Machine Learning Models Based on
Bayesian Optimization,” Journal of Electronic Science and Technology,
vol. 17, no. 1, pp. 26-40, doi: 10.11989/JEST.1674-862X.80904120. [22]
[5] “Best Practices for Hyperparameter Tuning with MLflow,” Databricks,
May 06, 2019. https:/databricks.com/session/best-practices-for- [23]
hyperparameter- tuning- with-mlflow
[6] “Hyperparameter Optimization With Random Search and Grid Search,” [24]

Machine Learning Mastery, Sep. 13, 2020.

P. I. Frazier, “A Tutorial on Bayesian Optimization,” arXiv.org, Jul. 08,
2018. https://arxiv.org/abs/1807.02811.pdf

A. Agnihotri and N. Batra, “Exploring Bayesian Optimization,” Distill,
vol. 5, no. 5, May 2020, doi: 10.23915/distill.00026

41

in the dataset.

E. Byla and W. Pang, “DeepSwarm: Optimising Convolutional Neural
Networks using Swarm Intelligence,” arXiv.org, May 17, 2019. https:
/farxiv.org/abs/1905.07350.pdf

S. Lankford and D. Grimes, “[PDF] Neural Architecture Search using
Particle Swarm and Ant Colony Optimization”.

“Ant colony optimization for the design of Modular Neural Net-
works in pattern recognition,” IEEE Xplore.https://ieeexplore.ieee.org/
document/7727194

Q. Cai, D. Zhang, W. Zheng, and S. C. H. Leung, “A new fuzzy time
series forecasting model combined with ant colony optimization and
auto-regression,” Knowledge-Based Systems, vol. 74, pp. 61-68, Jan.
2015, doi: 10.1016/j.knosys.2014.11.003.

“UCI Machine Learning Repository.” https://archive.ics.uci.edu/ml/
index.php

“UCI Machine Learning Repository: AI4I 2020 Predictive Maintenance
Dataset Data Set.” https://archive.ics.uci.edu/ml/datasets/AI41+2020+
Predictive+Maintenance+Dataset

“UCI Machine Learning Repository: ISTANBUL STOCK
EXCHANGE Data Set” https://archive.ics.uci.edu/ml/datasets/
ISTANBUL+STOCK+EXCHANGE

“UCI MLR: Productivity Prediction of Garment Employees Data
Set” https://archive.ics.uci.edu/ml/datasets/Productivity+Prediction+
of+Garment+Employees

“UCI Machine Learning Repository: Air Quality Data Set.” https://
archive.ics.uci.edu/ml/datasets/Air+Quality

“Appliances energy prediction,” data.world, https://data.world/uci/
appliances-energy-prediction

“UCI Machine Learning Repository: Beijing PM2.5 Data Data Set.”
https://archive.ics.uci.edu/ml/datasets/Beijing+PM2.5+Data

“UCI Machine Learning Repository: Daily Demand Forecasting Or-
ders Data Set.” https://archive.ics.uci.edu/ml/datasets/Daily+Demand+
Forecasting+Orders

“UCI Machine Learning Repository: Metro Interstate Traffic Volume

Data Set” https://archive.ics.uci.edu/ml/datasets/Metro+Interstate+
Traffic+Volume
zhouhaoyi, “GitHub - zhouhaoyi/ETDataset:” GitHub.

https://github.com/zhouhaoyi/ETDataset
“Household power consumption.”
machine-learning-databases/00235/

I. Guyon et al., “A Brief Review of the Chalearn AutoML Chal-
lenge: Any-time Any-dataset Learning Without Human Interven-
tion,” PMLR, Dec. 04, 2016. https://proceedings.mlr.press/v64/guyon_
review_2016.html https://arxiv.org/abs/2003.05689.pdf

https://archive.ics.uci.edu/ml/

