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Abstract: In this paper, we discuss an improved version of the conventional PID (Proportional–
Integral–Derivative) controller, the Dynamically Updated PID (DUPID) controller. The DUPID is a
control solution which preserves the advantages of the PID controller and tends to improve them
by introducing a quadratic error model in the PID control structure. The quadratic error model
is constructed over a window of past error points. The objective is to use the model to give the
conventional PID controller the awareness needed to battle the effects caused by the variation of
the parameters. The quality of the predictions that the model is able to deliver depends on the
appropriate selection of data used for its construction. In this regard, the paper discusses two
algorithms, named 1D (one dimensional) and 2D (two dimensional) DUPID. Appropriate to their
names, the former selects data based on one coordinate, whereas the latter selects the data based
on two coordinates. Both these versions of the DUPID controller are compared to the conventional
PID controller with respect to their capabilities of controlling a Continuous Stirred Tank Reactor
(CSTR) system with varying parameters in three different scenarios. As a quantifying measure of
the control performance, the integral of absolute error (IAE) metric is used. The results from the
performed simulations indicated that the two versions of the DUPID controller improved the control
performance of the conventional PID controller in all scenarios.

Keywords: dynamically updated PID; conventional PID controller; continuous stirred tank reactor
(CSTR) system; varying parameters; quadratic error model

1. Introduction

To date, the PID (Proportional–Integral–Derivative) controller is the most widely used
controller in industry. Certain sources indicate that it is used in up to∼90% of the industrial
plants at low control level [1,2], mainly because it is a simple, robust and cheap controller
that offers good control performance in most applications. The most challenging task in
PID control design is the determination of its coefficients [3,4]. Moreover, real plants are
subjected to change in their parameters, i.e., parameter drift, as they operate. Hence, if
the PID controller was initially designed to work for a particular operating point, after the
parameters drift, the controller should be adapted to the new operating conditions. If there
is no supervisory system present that automatically ensures that adaptation, one should
track the parameters drift and occasionally retune the PID parameters.

To tackle the problem of changing plant parameters, adaptive control schemes are used.
Among the different adaptive control schemes discussed in the literature, the most widely
used is the model reference adaptive control (MRAC). This algorithm adapts the controller’s
parameters with the aim to force the plant to behave as some given ideal model [5,6]. The
adaptive control schemes fall into two categories [3], (i) indirect methods [5,6], and (ii)
direct methods [7–9]. In the former, at first, a model of the plant being controlled is
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identified, and subsequently the obtained model is used to adjust the parameters of the
PID controller. In the direct methods, the estimation of the controller parameters is carried
out online so that the error between the reference model output and plant output tends
to be zero. In general, these methods face difficulties emanating from two sources; one
of the difficulties arises from the fact that the controlled plants are black boxes and their
identification is a tough and complex task, and the second one stems from the fact that it is
difficult to guarantee that the controller parameters will converge to the desired values,
and achieve the goal of zero error.

Another common approach for countering the consequences of varying plant pa-
rameters found in industry is the robust control approach [10]. The ideas emerging from
the development of the robust control paradigm were specialized for the case of the PID
controllers, resulting in numerous tuning methods for robust PID control [11]. One of
the most often used is the internal-model-based (IMC) PID robust tuning method [11–13].
A novel robust approach is presented in [14], to deal with the negative implications caused
by the inherent feature of the IMC tuning of pole-zero cancelation. Lately, the robust control
community has shifted its attention toward tuning methods based on multi-objective opti-
mization [11,15,16]. The tuning parameters in these methods are obtained as a solution to
an optimization problem which is often non-convex. The discussed robust tuning methods
have proven effective in improving the robustness in a variety of control systems. However,
they have certain downsides, and some of them are pinpointed as follows: firstly, in the
tuning process it is necessary to account for all the parameters that can possibly vary and
the bounds of their variation in advance; secondly, they usually need one or multiple
linearized models of the nonlinear plant to design the controller; lastly, the methods based
on optimization techniques come with a high computational burden as the optimization
problem therein is non-convex.

To tackle some of the aforementioned problems, in this paper we discuss a simple
and computationally non-intensive, hands-on control algorithm which is an upgraded
version of the conventional PID controller—a dynamically updated PID (DUPID) control
scheme [17]. This control approach uses a local quadratic model [18,19], of the plant control
error to improve the robustness of the conventional PID against the change of the plant
parameters. Based on this model the PID control value is adapted directly without retuning
its coefficients, to steer the plant output in close proximity of the set point. The DUPID
controller is mainly meant to work well for plants found in the process industry. The
plants encountered there are often monotone (inert), stable and primarily affected by slow
and gradual degradation in their physical components over time. The DUPID control
scheme is made of two parts: a PID controller and a supervisory mechanism (SM). The SM
plays the role of the adaptation mechanism; it detects the change in plant parameters by
locally modelling the recent history of the control errors and uses that model to produce an
incremental value that is added to the PID control value.

The control performance of the DUPID control scheme is dependent on the quality of
the predictions the error model can deliver. To establish a locally precise error model, we
must ensure that the data used for modelling meet certain criteria [18]. In this regard, this
paper discusses two versions of the DUPID algorithm, the 1D DUPID and the 2D DUPID.
The effectiveness of both versions of the DUPID controller was compared against the
conventional PID controller, when each controller was applied to control the CSTR system
with varying parameters [20]. We assumed that the varying parameters in question are: the
heat transfer coefficient h and the feed fluid temperature Tf . Based on this assumption we
defined three different scenarios in which these parameters vary linearly over time. The
observed control performance of each controller was quantified and compared against the
other controllers based on the IAE metric values.

The rest of the paper is structured as follows: Firstly, the mathematical background of
the PID and DUPID are presented, and the DUPID and its two versions are discussed in
more detail. Secondly, the CSTR system with varying parameters is analyzed. Thirdly, the
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PID controller and both versions of the DUPID controller are tested when applied to the
CSTR system. Finally, conclusions and an outlook for future work are given.

2. Methods
2.1. The PID Controller

In industry, more than ten particular forms of PID realizations can be found [4,21].
In this paper, the parallel PID realization is used. The mathematical definition of parallel
PID realization is given with Equation (1). As it can be observed, the control value is
produced in one step and it depends on the current error as well as on previous control
errors. The control error in the current iteration e(i) is defined as the difference between
the current values of the set-point (SP) and the process value (PV), e(i) = SP(i) − PV(i).
The PID tuning parameters are Kp, Ki and Kd, each corresponding to the P, I and D terms
respectively. Finally, u0 is the bias in the control signal and Ti is the simulation time step:

u(i)
PID = u0 + Kpe(i) + Ki

i

∑
m=1

e(m)Ti + Kd
e(i) − e(i−1)

Ti
. (1)

In Figure 1, the feedback control loop consisting of a PID controller and a control
object (CO) is given.
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Figure 1. PID (Proportional–Integral–Derivative) control loop structure.

2.2. The DUPID Control Scheme

The DUPID is composed of two main elements: (i) a PID controller and (ii) a supervi-
sory mechanism (SM) (see Figure 2, dashed rectangular). The former acts as a mechanism
for preserving CO stability, while the latter is responsible for calculating the incremental
value ∆u(j) in the PID control value. The value ∆u(j) plays the role of an additional bias
when the plant parameters are gradually drifting and the integral action produced by the
PID controller is not enough to counter the resulting controller performance degradation
caused by the varying parameters. The DUPID controller tracks the slow variation of the
parameters and calculates ∆u(j) which helps the PID controller to steer the plant in the
direction of smaller control error.
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The DUPID produces the control value in two phases: the first phase is completed
after the PID control value u(i)

PID is calculated and the second is completed after ∆u(j) is
obtained by the SM.

With the conclusion of the second phase the aggregate control value u(i)
A is applied to

CO, Figure 2.
u(i)

A = u(i)
PID + ∆u(j) (2)
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The term ∆u(j) is generated by the SM at specific moments in time j, defined by the
values found in the vector DV. The values of DV are set a priori by the operator and
are constant during the plant operation. The role of DV is twofold: its values define the
number of simulation time steps that should pass before a regression point is acquired,
and at the same time its values define the frequency of ∆u(j) calculation. The fundamental
component of the SM is the quadratic error model given with Equation (3). The quadratic
model observed here is the simplest one dimensional (one input) quadratic form:

EM

(
∆u(j), p

)
= A

(
∆u(j)

)2
+ B

(
∆u(j)

)
+ C, (3)

where, p = {A, B, C} is the vector of unknown parameters and EM is the expected control
error (the dependent variable). This model locally describes the functional relation between
the ∆u(j) and the plant control error. As new plant data are being gathered, this model is
iteratively updated based on the last Npp point pairs

(
∆u(j), e(j)

s

)
, where e(j)

s is assigned

to the i-th control error point e(i) attained at moment j. The objective is to use this model
in iterative fashion to estimate a sequence of ∆u(j) values for which the error caused by
the parameters drift will be gradually decreased. To achieve this, we assume ∆u(j) to be
the root of the model given with Equation (3). If the roots are complex numbers, then
the incremental value is calculated by differentiating Equation (3), dEM(·)/d(∆u) = 0.
Usually, a minimum of three points is required to obtain the parameters p [22]. The model
based solely on the minimum required number of points has proven to be ineffective,
especially when the regression data are improperly distributed or contaminated with
noise [11]. These downsides can be dealt with, by choosing the number of regression
points to be a compromise between the minimum required number of points and a certain
threshold

(
Npp

)
. The initial model resides on the first Npp points, which are gathered

consecutively in Npp simulation time steps, as the plant is operated. Since ∆u(j) does
not exist at first, informative prior data are needed to establish the first model. Using a
non-informative (poor) prior data can cause the DUPID to fail to converge. Therefore, the
first Npp incremental values are calculated by Equation (4), which is a simple metric that
adds extra integral action and helps to reduce the control error:

∆u(j) = kss

Npp

∑
j=1

e(j)
s . (4)

The tuning knob of this metric is kss, its value is user-defined. The follow-up models
are then constructed iteratively, on a window of past Npp point pairs (∆u(j), e(j)

s ) as new
plant data are acquired. The number of points in the regression set has a large impact on
the capability of the model to adequately describe data. Thus, having in mind that plant
data are acquired with each sampling period, selecting a great value for Npp can cause
the model to become insensitive to the change in data. Contrary to this, constructing a
model based on a small number of points can seriously harm its efficiency to capture the
data’s curvature.

The overall process of ∆u(j) calculation can be divided in the following phases: (i) ini-
tialization, (ii) acquiring data for regression, (iii) calculation of the incremental value.
In the initialization phase the parameters of the DUPID controller and the plant are set;
in the second phase, the points for model construction are acquired. An error point
e(j)

s = SP(i) − PV(i), is acquired every time the simulation time steps counter i is divisible
with the current value of DV; in the third phase, the approach taken for calculation of the
incremental value depends on the number of acquired points. If this number is less than
Npp, then the next incremental value is calculated as given with Equation (4). Otherwise,
if the number of points is equal or greater than Npp, then the next incremental value is
calculated from Equation (3). These steps are repeated until the maximum allowed simu-
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lation time steps imax are met. The complete process of incremental value computation is
modelled by the flow chart diagram shown in Figure 3.
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2.2.1. The 1D DUPID Controller

To ensure the quality of the regression data, this approach partitions the set U com-
posed of Npp points pairs (∆u(j), e(j)

s ) into two subsets with respect to the last gathered

point (∆u(k), e(k)s ) (red point fitted within triangle). The effect of data segmentation carried
out by the 1D DUPID is shown in Figure 4.
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σtol : (a) σtol = 0.1 and (b) σtol = 0.2. The blue dashed lines in (a,b) are the obtained quadratic fits. The last point fed to the
algorithm is marked with a triangle. The collected data used for testing consist of 20 random integer points drawn on the
interval [0, 50] for ∆u and [−70, 70] for es. The data are normalized before it is fed to the algorithm. The black dashed line is
zero error axis mapped in the normalized search space.
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The last point obtained in the regression set will be addressed as the center point. The
first subset, i.e., the vicinity set Uv, is comprised of all the points encompassed in ±σtol
distance of the center point, measured on the ∆u axis (red points). The point selection in
this version of the algorithm is carried out solely with respect to the coordinate ∆u (hence
its “one-dimensional” nature). The second subset, the outer set Uo, contains the remaining
points that are further from the center point ∆u(k) ± σtol (yellow and green points). The
approach of segmenting the regression data is carried out to ensure the constructed model
compromises between local precision on one hand and robustness on the other hand. The
local precision of the model is guaranteed by the points found in the vicinity set Uv whereas
the robustness is established by the points found in the outer set Uo. In this paper, the
robustness of the fit is guaranteed by considering two anchor points (the green points) from
the outer set. The anchor points are regarded as points whose distance with respect to ∆u(k)

is greatest. After the regression set Ur = {Uv, Uo} is constructed, the model parameters
p = {A, B, C} are calculated from the optimization problem defined as:

min
p

nr

∑
r=1

(
e(r)s − EM

(
∆u(r), p

))2
, (5)

where, nr is the number of points in the regression set, ∆u(r) are the points found in Ur, the
set of the past control error values is defined as es =

{
e(1)s , . . . , e(nr)

s

}
, and EM

(
∆u(r), p

)
describes the quadratic model given with Equation (3). Next, ∆u(j+1) is calculated as:

∆u(j+1) = argmin
∆ui

∣∣∣∆ui − ∆u(k)
∣∣∣, (6)

where ∆ui represent, the roots of Equation (3):

∆ui = {∆ui| EM = 0}. (7)

However, there might be a situation where the constructed fit does not intersect
with the zero error axis. In such occasions ∆u(j+1) is calculated by differentiation of the
constructed model:

∆u(j+1) = − B
2A

. (8)

Afterwards, ∆u(j+1) is applied to the plant, and as a new error point e(j+1)
s is obtained,

the array of past Npp points is moved with center at (∆u(j+1), e(j+1)
s ) and the procedure for

calculation of the next incremental value is repeated.

2.2.2. The 2D DUPID Controller

The process of selection of regression data in 2D DUPID is given in Figure 5. The 2D
DUPID uses two coordinates, ∆u and es, in the process of points selection. This is carried
out by calculating the Euclidian distances of each of the Npp − 1 points with respect to the

center point
(

∆u(k), e(k)s

)
. As a result, a local coordinate system around the last point is

placed (see Figure 5a):

Dm =

√(
∆u(m) − ∆u(k)

)2
+
(

e(m)
s − e(k)s

)2
; m = 1, . . . , Npp − 1. (9)
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At first, the vicinity set Uv consists of all the points encompassed by the circle centered
at
(

∆u(k), e(k)s

)
with radius σtol (red points):

(
∆u(m) − ∆u(k)

)2
+
(

e(m)
s − e(k)s

)2
≤ (σtol)

2. (10)

The outer set Uo includes the points with distance greater than σtol . (green and yellow
points). Those points are additionally sorted based on the angles they form with the center
point. If the number of points present in the outer set is larger than four, then the algorithm
proceeds with the segmentation of the outer set until a point is found in each local quadrant
with the smallest distance Dm (green points). If the number of points is less than four, then
all points are considered for regression. Finally, if the number of points found is exactly
four, then two outer subsets are formed, each comprised of two points. The first outer
subset U1

o contains the points found in the local quadrants 1 and 2, and the second outer
subset U2

o contains the points found in the local quadrants 3 and 4. The major downside of
this approach is that it may suffer in terms of time and computer resources needed for those
four points to be found. The underlying idea of splitting the outer set into two subsets is to
ensure that the data are fitted by two quadratic models (red and blue dashed lines), where
at least one of them intersects with the zero error axis (black dashed line).

The subsets constructed from the outer set are defined as: U1
o =

{
∆u(1)

o , ∆u(2)
o

}
and U2

o =
{

∆u(3)
o , ∆u(4)

o

}
. The values contained in both regression sets U1

r =
{

Uv, U1
o
}

and U2
r =

{
Uv, U2

o
}

are related to the entries found in the error sets, e(1)(r)s and e(2)(r)s ,
respectively. The model parameters, p(1) = {A1, B1, C1} and p(2) = {A2, B2, C2} for both
models are calculated from two optimizations problems, each defined as:

min
p(i)

nr

∑
r=1

(
e(i)(r)s − E(i)

M

(
∆u(i)(r), p(i)

))2
, i = 1, 2; (11)

where nr is the number of points in the regression set, ∆u(i)(r) are the points found in
U(i)

r , E1
M

(
∆u(1)(r), p(1)

)
is the quadratic model constructed from the

(
U1

r , e(1)(r)s

)
set, and

E2
M

(
∆u(2)(r), p(2)

)
is the model constructed based on the

(
U2

r , e(2)(r)s

)
set. Next, ∆u(j+1) is

calculated in a similar fashion as given with Equation (6), but the number of roots can vary
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depending on, whether the constructed models intersect with the zero error value axis or
not. As a result, there might be three cases:

• Both constructed models intersect with the zero error axis. The total number of roots,
in this case, is i = 4;

• Just one of the constructed models intersects with the zero error axis. The total number
of roots, in this case, is i = 2;

• None of the constructed models intersects with the zero error value. Consequently,
the next incremental value ∆u(j+1) is chosen as the minimum value of the model that
predicts the smallest error.

After ∆u(j+1) is calculated, it is applied to the plant and a new error point e(j+1)
s is

attained. The procedure of calculating the next incremental value is repeated by moving
the coordinate system at (∆u(j+1), e(j+1)

s ).

3. Results
3.1. Case Study

In this paper, as a benchmark plant model for the controllers the highly nonlinear
continuous stirred tank reactor (CSTR) system, Figure 6, with varying parameters is con-
sidered.
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Figure 6. Graphical representation of the Continuous Stirred Tank Reactor (CSTR) system.

The model equations were taken from [20]. The CSTR system is a second-order control
system which is modelled by the Equations (12) and (13). In spite of the simplicity of this
model, it is well known by its strong nonlinear dynamics which is often manifested by:
strong dependence of particular parameters, steady-state multiplicity, limit cycle etc. [23].

dT
dt

=
q
V

(
Tf − T

)
+

∆H
ρCp

k0CAe−
E

RT +
hAta

VρCp
(Tc − T), (12)

dCA
dt

=
q
V

(
CA f − CA

)
− k0CAe−

E
RT . (13)

The parameters of the model are defined as: q—Volumetric flow-rate; V—Volume
of the CSTR; ρ—Density of the mixture; Cp—Heat capacity; ∆H—Heat of the reaction;
E—Activation energy; R—Universal gas constant; k0—Pre-exponential factor; h—Overall
heat transfer coefficient; Ata—Heat transfer area; Tf —Feed fluid temperature; CA f —Feed
concentration of reactant A; Tc—Temperature of the cooling jacket; CA—Concentration
of reactant A; T—Temperature in the CSTR. The nominal values assumed for the plant
parameters are given in Table 1. The manipulated variable is assumed to be the cooling
jacket fluid temperature Tc, which is operated in the interval [250, 350] K, and the reactor
temperature T is assumed to be the controlled variable, and the only measured state.
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Table 1. The considered nominal values for the parameters of the CSTR plant.

Parameter Value Parameter Value

q 100 L/min hAta 5·104 J/min K
V 100 L Tf 350 K
ρ 1000 g/L CA f 0.5 mol/L

Cp 0.239 J/g K Tc(0) 300 K
∆H 5·104 J/mol CA(0) ≈0.46 mol/L
E/R 8750 K T(0) ≈318.9 K

k0 7.2·1010 1/min [Tc, min, Tc, max] [250, 350] K

For relevant comparison between the discussed control algorithms, it is assumed
that the heat transfer coefficient h and the feed fluid temperature Tf change over time.
These changes are realistic in practice as they often occur as a result of material deposition
(fouling film) on the heat transfer surfaces, over the period of the plant operation. The
process of fouling film development on the heat transfer surfaces is a slow and gradual
process, which as a consequence adds resistance to the flow of heat. There are two types of
fouling film build-up: asymptotic and linear. In the former, the resistance due to the fouling
film increases very quickly at the beginning of the operation and becomes asymptotic to a
steady-state value at the end. In the latter, the fouling film develops linearly over the entire
period of plant operation [24].

Here, linear deposit contamination was assumed, and the parameters h and Tf were
assumed to be subjected to linear change. The heat transfer coefficient h is replaced in
Equation (12) by hd, which is defined as:

hd = φh(t)h = (1− αht)h, (14)

where t is time, h is the value of the heat transfer coefficient, hd is the scaled version of
the heat transfer coefficient, φh(t) ∈ (0, 1) is the fouling coefficient (the scaling coefficient),
and αh is the fouling constant. The feed fluid temperature Tf was assumed to be constant
for a certain period of time, before changing into a ramp function in a negative direction.
To broaden the discussion further, it was assumed that Tf changes as ramp function in
positive direction also:

Tf =

{
Tf const; 1 ≤ i < lb

±Td
i−lb

imax−lb + Tf const; lb ≤ i ≤ imax
, (15)

where Tf const is the initial value of the feed temperature, lb defines the interval of simulation
time steps i while Tf is kept constant, Td defines how much Tf changes in the positive or
negative direction, and imax is the maximal number of simulation time steps. The model
equations are numerically solved in MATLAB by the function ode23t with simulation time
step Ti = 0.1 min.

3.2. Simulation Results and Discussion

In this section, the control performances of the 1D and 2D DUPID controllers are
compared against a benchmark PID controller. The benchmark PID controller is tuned
by trial and error, as it is carried out in numerous industrial plants. To support this fact,
in [25] the authors are referring to a statistic indicating that 30% of the PID controllers in the
industry operate in manual mode and require continuous fine-tuning and supervising by
the process technologist. Additionally, in [26], it is reported that 25% of the PID applications
use coefficients that are pre-set by the manufacturer with no update of their values with
respect to the particular process. Therefore, to showcase a realistic scenario, the parameters
of the PID controller are tuned by trial and error assuming non-varying plant parameters.
The PID controller parameters were assumed to be constant over the plant operation and
they were selected so that the plant output achieves smooth transient response and zero
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steady-state error, without breaching the bounds of the interval of admissible control values.
As a quantifying measure for the performance assessment of the controllers, the Integral of
Absolute Error (IAE) metric is used (Equation (16)).

IAE =
1

imax

imax

∑
i=1

∣∣∣e(i)∣∣∣. (16)

For the sake of relevant comparison, three scenarios were addressed when the con-
trollers were applied to control the CSTR system. These three scenarios are defined as
follows:

• In the first scenario (Scenario 1), it is assumed that the heat transfer coefficient linearly
drops to 50% of its initial value. Therefore, the value of αh was assumed to be 0.0167.

• In the second scenario (Scenario 2), it is assumed that the feed temperature Tf linearly
increases for Td = +40 K of its initial value, Tf const = 350 K. The value of lb is 30.

• In the third scenario (Scenario 3), it is assumed that the feed temperature Tf linearly
drops for Td = −40 K of its initial value Tf const = 350 K. The value of lb is 30.

The PID parameters were tuned to be Kp = 4.5, Ki = 3.31 and Kd = 0.01. All
DUPID parameters are pre-set and are constant in all scenarios. The DUPID parameters
in both versions are assumed to be constant in all scenarios, Npp = 12 and σtol = 0.1. The
simplest guideline for tuning these two parameters would be to select the value of the first
parameter (Npp) to be at least three times larger (we used here four times larger number)
than the minimum needed points for establishing the model given with Equation (3), while
selecting the value of 0.1 for the latter parameter (σtol) will be suitable in most of the cases.
Regarding the rest of the DUPID parameters, the kss value is set to be 1 and DV is given as:

DV =

{
DV(i) = 10; i ∈ [1, 10]

DV(i) = 1; i ∈ [11, imax]
. (17)

The SM calculates the first incremental value after ten simulation time steps (one
minute), whereas the other incremental values are calculated in each simulation time step.
The idea behind the calculation of the first incremental value after ten simulation time
steps is to start adding bias after the plant is settled in the steady-state. Adding bias during
the transient state can provoke an unwanted overshoot in the plant response, or in the
extreme case, it can destabilize the plant. The possible downside of calculating the other
incremental values in each simulation time steps is having the added computational time
burden. On the other hand, this can be justified by achieving a smaller IAE value and a
better overall control performance.

In a real case scenario, the number of time steps needed to pass for the SM to start
calculating the incremental value will be determined based on the plant itself, and on the
experience of the process technician (the operator) on how much time is needed for the plant
output to settle in steady-state. However, to omit the possible subjective human decision,
in future modifications of the DUPID algorithm the moment of the first incremental value
calculation should be determined automatically by accounting for the proximity of the PV
with respect to the SP over time.

The simulation time step is assumed to be Ti = 0.1 min. In the first ten simulation time
steps (until minute 1) the value of ∆u is kept on zero since the first calculated incremental
value by SM is carried out at the tenth time step. The termination criterion was defined
with respect to the maximum permitted time steps imax = 300. The total time of the plant
operation is imax·Ti = 30 min.

In Figure 7, the resulting plant response under PID control in all three scenarios is
given. It is indicative that the error area increases over time in all scenarios, (d), (e) and
(f). This is a consequence of the changing plant parameters over time. Since the PID
controller coefficients are kept constant the controller is unable to adapt to the change in
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plant operating conditions and is therefore unable to steer the controlled variable (T) to the
set point.
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The 1D and 2D DUPID controllers proved to be more agile in detecting and countering
the effects caused by the time-varying parameters. From the Figures 8d–f and 9d–f, it can
be seen that the DUPID anticipates the change in plant parameters and pushes the PID
control value in the right direction to compensate for its stationary coefficients.
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Figure 8. The plant response under 1D DUPID control in all three scenarios. The figure is structured in three rows of three
pictures, in the first row (a–c) the plant output (blue line) and the set point (red dashed line) are plotted; in the second row
(d–f) the incremental value is given (blue markers); in the third row (g–i) the resultant control error (blue markers) is plotted
against the zero error line (black dashed line).
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The control performance of each controller was quantified by the IAE metric, Table 2b.
The relative differences (The relative difference is calculated as dr = |x− y|/max(|x|, |y|))
of the obtained IAE values, Table 2c, were calculated for each scenario. On average, the 1D
DUPID and 2D DUPID controllers achieved improvement over PID control performance
of around 62% and 59%, respectively. The direct comparison between 1D and 2D DUPID
controllers showed that 1D DUPID is performing slightly better, on average of around 7%
(Table 2c) first column). Moreover, we compared 1D and 2D DUPID in terms of how much
time is needed on average for each controller to calculate the incremental value in each
scenario, Table 1. From the values of the calculated relative differences, it is clear that 2D
DUPID needs around twice as much time on average to produce the next incremental value
compared to the 1D DUPID. This is an expected result having in mind that the 2D DUPID
has an added computational burden which comes from its design to search for a point in
each of the four quadrants of the local coordinate system placed around the centre point.
Overall, the two controllers 1D and 2D DUPID showed that they can steer the controlled
variable toward the set point with satisfactory precision.

Table 2. Table (a) contains the average time needed for calculating the incremental value by each
DUPID controller in the considered scenarios (Scen.). In the last column of this table, the relative
differences (RD) are given. In table (b), the integral of absolute error (IAE) values obtained by the
controllers in each scenario are given, and in the last table, (c), the relative differences of the obtained
IAE values by the controllers are given.

(a) Time in sec.

Scen. 1D 2D RD

1 0.0436 0.1007 0.5670

2 0.0497 0.1105 0.5502

3 0.0514 0.1070 0.5196



Algorithms 2021, 14, 31 13 of 15

Table 2. Cont.

(b) IAE values

Scen. 1D 2D PID

1 0.1002 0.1005 0.2529

2 0.1066 0.1084 0.2781

3 0.1097 0.1337 0.2960

(c) RD values

Scen. 1D/2D 1D/PID 2D/PID

1 0.0030 0.6038 0.6026

2 0.0166 0.6167 0.6102

3 0.1795 0.6294 0.5483

Avg. 0.0664 0.6166 0.5870

4. Conclusions

In this paper, we discussed an improved version of the PID controller, the Dynamically
Updated PID controller. The DUPID controller is constructed based on the assumption that
the parameters in the plant vary with time in a smooth and gradual fashion. Its objective is
to track the variation of the parameters and to intervene in the PID control value to reduce
the increasing control error, which is a direct consequence of their variation. This controller
resides on the paradigm of using recent history error data to construct a quadratic model
that models the error caused by the varying parameters. This model is then exploited for
the iterative calculation of a sequence of incremental values, which are applied directly
to the PID control value, without changing the controller parameters, for the purpose of
lessening the effect caused by the varying parameters in plant’s output.

The control performance of the DUPID controller is dependent on the precision of the
quadratic model. To ensure the quadratic model describes the data well, the regression
data used for its construction must fulfil certain criteria. In this regard, we discussed two
versions of DUPID, the 1D and 2D DUPID. These versions differ in the approach of how
the data are selected before the model coefficients are determined: the 1D DUPID uses only
one coordinate in the process of regression data selection, whereas the 2D DUPID uses two
coordinates for data selection.

We compared the control performances of the conventional parallel-form PID con-
troller and the DUPID controllers (1D and 2D DUPID). Both controllers were applied to
the CSTR system with varying parameters. We observed the control performance of the
controllers in three scenarios which were derived from the assumption that the parameters
h and Tf vary linearly over the time the plant is controlled. The results showed that the
DUPID controller was capable of reducing the control error to a satisfactory level, whereas
the PID control performance dropped with time. Finally, we performed a direct compar-
ison between 1D and 2D DUPID controllers, and the results showed that their control
performances do not differ by much.

To illustrate that the DUPID controller has the potential of broader use, different than
the one discussed here, a meaningful control scenario is pinpointed in the Supplementary
Materials. Namely, the DUPID controller is used to attribute the problem of the poorly
tuned integral term in the PID controller. In this scenario, it was assumed that the integral
term (Ki) of the PID controller is seriously mistuned and the set-point is changing as a
ramp function. The results indicated that the DUPID controller accomplished set-point
tracking with satisfactory steady-state error, and therefore it was able to make up for the
mistuned integral term. To show that the improvement is genuine, we simulated the plant
for 10 different uniformly distributed values of Ki drawn from the interval [0.01, 1]. For
all the realizations of Ki the DUPID showed superior performance with respect to the
mistuned PID controller.
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There are few open questions that will be addressed in the future versions of the
DUPID controller:

First of all, to prove that the DUPID controller is multifaceted, it should be tested
on the same plant discussed here, but when the concentration of the reactant A (CA f ) or
the volumetric flow rate (q) are subject to change. Moreover, it will be tested on more
complex high-order nonlinear processes of practical importance. In the next modifications,
the DUPID algorithm will be adapted to be able also to detect and tackle step changes in
the plant parameters.

In addition, a trust-region based on covariance analysis around the centre point will be
included. The importance of the trust-region will be twofold; it will constrain the algorithm
to calculate an incremental value in the direction of poor level data spread and, at the same
time, it will define bounds of the validity of the model.

Lastly, after the aforementioned improvements are implemented, the DUPID controller
will be tested based on its ability to average out the noise that is omnipresent in real plants.

Furthermore, one should note that in this paper, the focal point was set on discussing
the hands-on implementation of the DUPID controller without elaborating on the stability
margins of the proposed algorithm. However, the topic of stability is a significant issue in
control engineering, so further investigations will be conducted on establishing a formal
mathematical proof of the asymptotical stability of the plant around a given set-point when
DUPID is used as controller. This discussion is motivated by the result reported in [27],
where the authors proved that for CSTRs that are isothermal and asymptotically stable, a
classical PI compensator can yield to global asymptotic stabilization about a prescribed
operating point [23].

Supplementary Materials: A broader elaboration on the control scenario discussed in Section 4
(Conclusions), paragraph 4, is available online at https://www.mdpi.com/1999-4893/14/2/31/s1.
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