
An efficient architecture for edge data center
networks

Pedro Juan Roig1[0000−0002−8391−8946], Salvador Alcaraz1[0000−0003−3701−5583],
Katja Gilly1[0000−0002−8985−0639], Cristina Bernad1[0000−0001−9537−415X], and

Sonja Filiposka2[0000−0003−0034−2855]

1 Miguel Hernández University (Elche), Spain
{proig,salcaraz,katya,cbernad}@umh.es

2 Ss. Cyril and Methodius University (Skopje), North Macedonia
sonja.filiposka@finki.ukim.mk

Abstract. Edge AI environments are ever increasing as the amount of
IoT-connected devices grow, thus rising the level of carbon emissions
of such ecosystems. Therefore, sustainable AI cloud/edge systems are a
must in order to minimize all those emissions, where AI plays its part in
gaining efficiency. In this paper, a scheme to easily organize and optimize
the computing resources in an edge data center is going to be proposed,
based on a specific toroidal grid topology which minimizes distance be-
tween any pair of hosts being part of it, thus reducing energy needs. That
architecture may be dynamically adjusted according to the current traf-
fic conditions and their expected variations so as to further save power
consumption by using just the necessary computing assets.

Keywords: data center design · edge AI · internet of things · resource
migration · toroidal topology.

1 Introduction

Edge AI may be seen as a new paradigm when dealing with IoT deployments in
order to optimize performance [1]. However, the widespread deployments of edge
AI domains may also produce a hype in carbon emissions, which may negatively
impact the environment [2]. In fact, there are estimations about the absolute
carbon footprint related to it exceeding 1000 MtCO2-eq/year [3], which might
need to be tackled so as to lower it as much as possible.

In this context, the design of data centers need to take that into consideration
in order to reduce the amount of carbon emissions [4]. In this sense, it has
been reported that 2% of the global carbon emissions are generated by the ICT
sector [5], with data centers being estimated to have the fastest growing carbon
footprint within such a sector. It is to be noted that data centers efficiency is
ever improving, thus making average rates of Power Usage Effectiveness (PUE)
or Water Usage Effectiveness (WUE) decline by the year, although the sheer
amount of new deployments makes the overall carbon emissions to considerably
rise every year [6].

2 Roig, P.J. et al.

It is to be noted that the greatest percentage of costs in data centers are
related to cooling infrastructures and energy consumption, and such a percent-
age keeps growing year after year, whereas the percentage of costs regarding
IT equipment keeps falling, that being hardware, software and network infras-
tructure. Those are the current trends regarding incurred costs in data centers
despite the continuous advances in virtualization, cooling and power supply [7].

Still, there are some rules out of common sense in order to make computing
more environmentally sustainable [8], such as trying to extend the useful life of
devices, choosing the hardware and software carefully, locating remote servers
where the carbon footprint of producing energy is low, where all those initiatives
may be combined by offsetting your carbon footprint in order to compensate for
the necessary carbon emissions [9].

Focusing on data center network architectures, they used to be built up by
a backbone of physical switches and a bunch of physical hosts playing the role
of servers. However, with the rise of virtualized services several years ago, each
physical server runs an hypervisor whose role is to manage a bunch of virtual
servers, whereas virtual switches may play the role of physical switches [10]. In
any way, traffic flows within a data center are forwarded from a source host to a
destination host through the switching infrastructure, either physical or virtual,
although virtualized data centers contribute to reduce green-house gas (GHG)
emissions as less hardware equipment is needed [11].

In this paper, an interesting strategy to organize and optimize in a simple
manner the computing resources in an edge data center is proposed. This topol-
ogy makes use of the properties of toroidal grids and could be adjusted in a
dynamic fashion. Hence, all necessary hosts at a given time are all connected to
a bunch of active switches, thus leaving the rest of them in an idle state, thus
saving power consumption and lowering the carbon footprint.

The efficiency cited in the title may be seen as twofold. First of all, it is
referred to the minimal distance between any pair of nodes within the toroidal
grid proposed. This is achieved by building up a specific grid topology where the
node identifiers of any pair of neighbors differ in just one symbol.

That way, it is possible to travel from any source node to any destination node
within the topology by taking just as many hops as the number of discordant
symbols between both nodes, allowing for redundant paths when it is greater
than 1. The feature of having all pair of nodes at a minimal distance does not
occur in other toroidal topologies, such as de Bruijn tori or k-ary n-cubes (k ≥ 4).

On the other hand, efficiency is also related to the fact that this design
offers up to five different layouts, each of them with a specific number of nodes
activated, whereas the rest of them remain in idle state, thus allowing for the
establishment of energy-saving policies so as to minimize the waste of energy.

Therefore, the main goal of the paper is to achieve optimization due to taking
advantage of both types of efficiency described, this is, by reducing network
traffic due to the shorter distance among nodes, and also by reducing energy
consumption thanks to setting unnecessary nodes in idle state, which will further
impact on a reduction of carbon emissions.

An efficient architecture for edge data center networks 3

The rest of the paper is organized as follows: first, section 2 presents the basics
of the topology model proposed, in turn, section 3 exposes how the model works,
afterwards, section 4 outlines the paths for resource migration to dynamically
adapt the topology, and eventually, section 5 draws the final conclusions.

2 Basics of the topology proposed

The data center architecture proposed is made of a backbone of virtual switches
whose interconnection has the shape of a toroidal topology [12], where virtual
hosts are connected to those virtual switches. This way, virtual devices may go
to idle state whenever they are not being used, thus saving energy and reducing
the carbon footprint as much as possible, whilst being ready to go active again
whenever they are needed.

The shape of toroidal topologies is established by 2 variables, where k states
the number of values available in the alphabet, whilst n has a different meaning
depending on the type of design selected [13]. Furthermore, the overall number
of nodes within a toroidal topology is kn, where both variables happen to be
natural numbers. As an example, Figure 1 depicts a toroidal topology with 2
dimensions and 4 nodes per dimension, accounting for a total of 24 = 16 nodes.

Fig. 1. Toroidal topology with dimensions 4 × 4.

On the one hand, toroidal topologies are employed in de Bruijn sequences
with a k-alphabet and unique patterns of n-length [14], as well as their extension
to higher dimensions, where a given shape portrays all available patterns of
a determined size exactly once. Each node within a de Bruijn sequence gets
identified by a string of n symbols from the k-alphabet, whilst it is done by a
single symbol for de Bruijn tori and hypertori, where the association with the
symbols of neighboring nodes portrays those different patterns [15]. This point
may be appreciated in Figure 2, where the mapping of a de Bruijn torus is
depicted, which happens to be the smallest possible one, namely (4, 4; 2, 2)2.

On the other hand, toroidal topologies are also used in k-ary n-cubes, where
nodes are identified with a string of n symbols, one for each dimension, taken

4 Roig, P.J. et al.

0
0
1
0

1
1
1
0

0
1
1
1

0
1
0
0

map

0
1
1
1
1
1
1
1
1
1
1
0
1
0
0
1

0
0
1
1
1
1
0
1
0
1
0
1
0
1
0
0

1
0
1
0
1
0
1
1
1
1
0
0
0
0
1
0

0
0
0
1
0
1
1
0
1
0
0
0
0
0
0
0

Fig. 2. Nodes and mapping of a square de Bruijn torus (4, 4; 2, 2)2.

from a k-alphabet, where each of those may have any of the k values available in
the alphabet considered [16]. One of the nodes located in a corner is considered
to be the origin, such that all its digits are set to 0, and then, each symbol
belonging to the nodes along the same dimension, going from 0 to n − 1, is
labeled in a sequential order, from 0 up to k − 1, which is done for every single
dimension [17], as it may be observed in Figure 3.

30 31 32 33

20 21 22 23

02 030100

13121110

Fig. 3. Nodes of a k-ary n-cube where k = 4 and n = 2 (4-ary 2-cube).

However, an additional toroidal topology is going to be studied herein, stick-
ing to the requirement that all pair of nodes with only one discordant symbol
must be neighboring nodes, which is not the case for k-ary n-cubes where k ≥ 4.
Such a layout is going to be called binary grid in case k = 2, where symbols are
indeed bits, as their values are either 0 or 1, or otherwise, k-ary grid if k > 2.

In both cases, n indicates the length of the node identifiers, as well as the
number of dimensions being involved. In spite of that, those designs may also
be expressed in the form of bidimensional layouts, where each node has degree
n, thus making easier its representation and visualization, as well as pattern
spotting. Furthermore, the path between any pair of nodes within this toroidal
grid may get minimized by following the discordant symbols between them.

An efficient architecture for edge data center networks 5

2.1 Binary grid

Sticking to the binary case (k = 2), it is to be said that the designs obtained are
just n-hypercubes, as it may be shown in Figure 4, where one particular node
is considered to be the origin. That node has all its digits set to zero, and in
turn, a given digit of any other node are set to 0 if the value in that dimension,
referred to the bit position, is the same as the origin, or otherwise, it is set to 1
if such a value is different.

000 100

101

111

110
010

011

001

00 10

1101

1000 1001

1011

1111

1101

1110

1100

1010

0110
0111

01010100

0011

00010000

0010

Fig. 4. Node identifiers for n-hypercube when n = {2, 3, 4}.

Taking the cases where n is even, all nodes may be redesigned as a planar
square binary grid, which keeps the toroidal topology, where all elements are
arranged to meet the condition that the difference between a particular node
identifier with any of its neighboring nodes, those being located only one row
away or one column apart, is just in one bit, which differs for each single neighbor.
It is to be said that this new layout establishes definite patterns to be spotted
along every row and column.

Those patterns along a given line covered by a row or a column may consist
in fixing the value of some particular bits, those being either 0 or 1, whereas the
rest of bits along that line may be seen as undetermined because they may vary
its value, and that is why they are expressed as x in the patterns.

It is to be noted that the position of the fixed bits in the rows and in the
columns are different, thus making possible that any particular binary number
composed by n bits may be easily spotted by getting its corresponding bits out
of crossing the fixed bits related to its corresponding horizontal and vertical pat-
terns. Besides, the redundant paths between a given source node and a particular
destination node may be easily viewed within the binary grid, even though they
may also be obtained by means of arithmetic or logical operations.

On the contrary, when n is odd, all nodes may not be redesigned as a planar
grid, even though an alternative bidimensional diagram is achieved by sorting all
values in groups according to the overall amount of zeros in each node identifier
and linking together nodes with just one discordant bit, which results in a sort
of grid not being square, where the toroidal shape is not maintained. However,

6 Roig, P.J. et al.

it is worth noting that toroidal n-dimensional grids, are indeed found if a set of
n sequentially connected planar layers are used. Anyway, the redundant paths
between a particular source and a given destination may simply be observed
within the diagram, although they may also be achieved by applying arithmetic
or logical means.

Therefore, Figure 5 depicts the planar square grid for n = 2, Figure 6 exposes
the planar diagram for n = 3, whilst Figure 7 portrays a cubic grid for n = 3, and
Figure 8 shows the planar square grid for n = 4. In those cases, the different bit
patterns found in rows and columns for even values of n are displayed, whereas
the patterns related to the amount of bits set to zero in the node identifiers for
odd values of n are exhibited, along with the composition of the row, column
and layer patterns in its counterpart non-planar scheme. Moreover, higher values
of n will present analogous designs, depending whether n is even or odd.

00 01

10 11

x0 x1
0x

1x

Patterns
-in rows
-in columns

Fig. 5. Binary grid with n = 2 (toroidal).

000

010

011 101

100

111

110

001

three

two

one

zeroN
um

be
r

of
 n

ou
gh

ts
 (

0s
)

Fig. 6. Binary bidimensional diagram with n = 3 (non-toroidal).

2.2 k-ary grid

Moving on to the k-ary case, it is to be considered that the designs attained are k-
ary n-cubes, as it may be shown in Figure 9, where one given node is considered
as the origin, which bears all its digits set to zero, and then, moving along a

An efficient architecture for edge data center networks 7

000 001

010 011

0x0 0x1
00x

01x

Patterns
-in rows
-in columns
-in layers

0xx
100 101

110 111

1x0 1x1
10x

11x
1xx

Fig. 7. Binary cubic grid with n = 3 (toroidal).

Patterns
-in rows
-in columns

0000 0100 0101

0110

0001

0010

1001

1110 1111

11011100

10111010

0111

1000

0011

x0x0 x1x0 x1x1 x0x1

0x0x

0x1x

1x1x

1x0x

Fig. 8. Binary grid with n = 4 (toroidal).

certain dimension, its corresponding value increases sequentially up to reach
k− 1, whilst keeping the rest of digits unchanged along that specific dimension.

000 100

202

222

220020

022

001

00 20

2202

10

01 21

12

11

200

002

010
210

120
110

012
212

221
211

201

122

112
102

011
021

101

121
111

Fig. 9. Node identifiers for k-ary n-cube when k = 3 and n = {2, 3}.

Analogously as it happens with the binary grid case, k-ary n-cubes may also
be redesigned to achieve planar k-ary grids, by replicating a similar methodology
according to the parity of n, where neighbor nodes share all k-symbols but a
discordant one. Hence, if n is even, then a toroidal planar square grid is obtained,
resulting in definite patterns being associated to rows and columns with fixed
values (ranging from 0 to k−1) for some digits and undetermined values for other

8 Roig, P.J. et al.

ones. On the other hand, if n is odd, then a kind of non toroidal planar grid is
attained, with a non square shape, by sorting all values in groups regarding the
total quantity of zeros in each node identifier and linking together nodes with
only one discordant symbol. However, toroidal non-planar grids are still achieved
when a set of n planar layers connected in a sequential manner are employed.

Therefore, Figure 10 exhibits the planar square grid for k = 3 and n = 2,
whereas Figure 11 exposes the cubic grid for k = 3 and n = 3 and Figure 12
depicts the planar diagram for k = 3 and n = 3. The diverse symbol patterns
located in rows and columns for even values of n are shown, whilst the patterns
related to the quantity of symbols set to zero in the node identifiers for odd
values of n are displayed, along with the composition of the row, column and
layer patterns in its counterpart non-planar scheme. Also, the parity of n lead
to analogous designs for its higher values.

Patterns
-in rows
-in columns

00 02 01

1210

22 2120

11

x0 x2 x1

0x

1x

2x

Fig. 10. k-ary grid for k = 3 with n = 2 (toroidal).

Patterns
-in rows
-in columns
-in layers

000 002 001

012010

022 021020

011

0x0 0x2 0x1

00x

01x

02x

0xx

100 102 101

112110

122 121120

111

1x0 1x2 1x1

10x

11x

12x

1xx
200 202 201

12210

222 221220

211

2x0 2x2 2x1

20x

21x

22x

2xx

Fig. 11. K-ary cubic grid for k = 3 with n = 3 (toroidal).

3 How the model works

After having presented the basics of the topology proposed, related to undi-
rected graphs being regular, connected, simple and Hamiltonian, where different

An efficient architecture for edge data center networks 9

three

two

one

zero

N
um

be
r

of
 n

ou
gh

ts
 (

0s
)

000

100 200 010 020 001 002

110 120 210 220 101 102 201 202 011 012 021 022

111 112 121 211 122 212 221 222

Fig. 12. K-ary bidimensional diagram for k = 3 with n = 3 (non-toroidal).

examples have been exposed, it is time to explain its behavior. First of all, it is
to be considered that this paper is aimed at presenting an efficient architecture
in data center networks for edge systems, hence the number of virtual switches
making for the backbone is going to be small to medium size. Hence, the in-
stances shown above may be sufficient to deal with the needs imposed by diverse
traffic conditions within the edge ecosystem, as the number of virtual switches
ranges from small to medium, but not going too high.

In this sense, Table 1 exposes the number of active virtual switches estab-
lished for each of the instances proposed above, whose amount is given by kn, as
well as the degree of each virtual switch, which states the number of neighbors
of every single node, considering that it is given by 2n when k > 2, or otherwise,
n when k = 2, which may be summarized by the expression n ·dk/2e if k = {2, 3}.

Table 1. Active virtual switches and their degrees for the instances proposed.

k = 2 k = 3
n = 2 n = 3 n = 4 n = 2 n = 3

Active 4 8 16 9 27

Degree 2 3 4 4 6

In view of those results, it may be seem clear that the most interesting solu-
tion for power saving is k = 2 with n = 2, because it keeps just 4 virtual switches
on, whilst the rest of them are in idle state, thus being ideal for situations with
low amounts of network traffic, leading to notably reduce carbon emissions.

On the other hand, when network traffic grows, two different strategic lines
may be followed, such as increasing the value of n, which is suitable for situations
with higher traffic rates, or otherwise, rising the value of k, which better suits

10 Roig, P.J. et al.

scenarios with much higher levels of traffic, as the number of virtual switches
available in the latter overcomes that in the former. Hence, the former may be
called n-line and the latter, k-line.

Specifically, in case of taking the n-line, then the case when k = 2 and n = 3
leads to get 8 virtual switches on, whilst that of k = 2 and n = 4 results in
16 virtual switches on. On the contrary, in case of choosing the k-line, then the
scenario when k = 3 and n = 2 makes use of 9 virtual switches on, whereas that
of k = 3 and n = 3 employs 27 virtual switches on. Those results show that
the first step up in both cases lead to a similar number of virtual switches on,
although the second step up in both cases really makes a difference, proving that
the k-line is better fit to undertake much higher workloads.

It is to be remarked that power consumption will be lower for the n-line
than for the k-line, as the number of active virtual switches is higher in the
latter, thus a greater number of virtual switches in idle state will be found in the
former. As a consequence, a certain type of tradeoff between resource availability
and energy saving may be necessary, thus the topology proposed may take into
account both criteria.

This way, the ideal topology may change according to the network traffic
conditions, thus it makes necessary a dynamic layout, where virtual switches
may go active or idle at discretion, so as to fit the most convenient topology
instance at any given time out of those designs proposed above.

Hence, accurate network traffic forecast becomes a key player when dealing
with sustainable computing in the topology proposed, as it may allow a more
adjusted number of virtual switches being in idle state, thus permitting to shrink
the carbon footprint due to the edge data center operations, without reaching
the point of having constraint resources.

The rate of accuracy related to the forecast depends on the information
available about the current network conditions, although other types of network
intelligence may well be useful so as to predict future behavior, which indicates
that the use of AI may help analyze all relevant information, thus leading to
a more realistic projection of network traffic in the near future, which leads to
predict the most convenient values of k and n.

Therefore, AI makes the perfect tool to swing from one topology to another
in the right moment according to present traffic data, along with historical data,
recent baseline measurements and network intelligence about other convenient
factors, where all of those will be the input of AI calculations in order to find out
the best values for parameters k and n so as to get the expected performance
with the minimal carbon footprint.

The AI techniques being necessary to undertake the task of predicting the
most convenient topology in a dynamic way must be first trained according to
any of the most common strategies available, such as centralized learning (CL),
federated learning (FL) or hybrid federated and centralized learning (HFCL)
[18]. Once the necessary training is done, AI techniques may help analyze the
situation by considering the current, past and expected conditions, as well as
network intelligence information [19], where all relevant parameters get combined

An efficient architecture for edge data center networks 11

in the appropriate way in order to predict the expected behavior of the network
traffic conditions [20].

Regarding the ideal AI algorithms, it is to be said that ANN (Artificial Neural
Networks) are able to deal with high flows of incoming data, and among them,
CNN (Convolutional Neural Networks) are fitter to deal with greater amounts of
data than RNN (Recurrent Neural Networks) or MLP (Multi Layer Perceptron).
On the other hand, those AI algorithms may apply to as many nodes as necessary,
even though the scenarios available for the toroidal grid proposed herein just have
4, 8, 9, 16 and 27 nodes, respectively.

In summary, the predictions made by AI techniques will lead to forecast the
most convenient values for k and n. This way, n will increase when network
traffic is predicted to get higher and k will grow when it is forecast to get much
higher. On the other hand, the decreasing patterns will go the other way around.

Furthermore, it is to be noted that when the value of n increases, then all
active node identifiers at that point need to be prepended an extra zero to adapt
to the new context, whilst at the same time, the necessary nodes to construct the
new layout swap from idle to active state are identified with their first symbol of
node id not being zero. Also, virtual links among nodes are managed by means
of AI so as to achieve the desired toroidal topology.

Similarly, when the value of n decreases, then only active nodes with their
first symbol to zero keep in active state, whilst the rest of active nodes go to
idle state, and in that case, all computing resources being located thereon must
be migrated to the remaining nodes before going idle. Also, virtual links among
nodes are dealt with by AI so as to obtain the expected topology.

The behavior of increases and decreases of variable k result in expanding or
compressing the range of possible values of each symbol being part of a node
identifier, even though their behavior is analogous to the changes of variable n.

4 Resource migration to dinamically adapt the topology

The use of a dynamic topology may make necessary to apply resource migration
among virtual hosts through the active virtual switches. Such a virtual host
migration process is mainly necessary because virtual switches may swap from
active to idle, or the other way around, as virtual hosts need to be connected
to active virtual switches at all times in order to be able to communicate with
both their peers and the exterior network. Besides, virtual host migration may
also be needed for managing purposes, such as load balancing virtual resources
on physical hosts, or on the contrary, consolidating them.

In order to carry out such migration processes, routing or forwarding tech-
niques are usually employed to get the proper interfaces along the way from the
virtual source host to the virtual destination host, which require the fulfillment of
routing tables or forwarding tables, respectively, both implying some processing
time when undertaking the searching tasks through the corresponding table.

However, the specific layout of the topologies presented above allows for an
alternative way to routing and forwarding processing by taking advantage of the

12 Roig, P.J. et al.

fact that there is just one discordant symbol between any pair of neighboring
virtual switches. Hence, the distance between a given source and a particular
destination is given by the number of discordant symbols between them both,
accounting for bits in the binary case, which allows for easily discovering redun-
dant paths by just making permutations among the elements belonging to the
set of those discordant symbols.

It may seem clear that the time intervals employed in spotting the discordant
symbols are faster than those used in looking up routing and forwarding tables.
With regards to the former, it is done through either applying the logical XOR
operator between the symbols defining a pair of node identifiers, quoted in k-ary
format, or otherwise, applying arithmetic operations, such as integer divisions
and modular arithmetic, between those node identifiers, cited in decimal format.

With respect to the latter, it is done through applying the logical AND
operator between the destination address and all addresses within the table so
as to spot a match, which appears to be more time consuming. Moreover, IP and
MAC addresses are far larger than the nomenclature for node identifiers proposed
herein (just a handful of symbols), resulting in even longer time intervals.

Regarding the evaluation of both methods, it happens that building up the
former with NAND gates requires 4 of them, whilst the latter does just 2 of
them, meaning that the former requires twice as much gates as the latter.

On the one hand, as the XOR operations are undertaken between a pair of
nodes, the number of symbols composing those node IDs within the toroidal grid
proposed is up to 3, where the scenario with more nodes employs of up to 27 of
them, which may be expressed by using just 5 binary digits, as 25 = 32. Hence,
XOR operations in this context involve up to 5 bits in the worst case scenario.

On the contrary, the AND operations are to be carried out between either IP
addresses or MAC addresses, where the former involve 32 bits and the latter, 64
bits. Hence, AND operations in this context employ either 32 or 64 bits, which
is far more than double the XOR case. Moreover, finding the right entry on just
the first try is the best case scenario, which is not usually the case, thus more
searches need to be done, resulting in further operations.

In summary, it results that XOR operations with the node identifiers pro-
posed herein occurs to be more efficient than AND operations through routing
and forwarding tables in terms of the necessary operations, hence the latter loses
out in network efficiency. Besides, a well-trained AI tool may raise energy saving
efficiency by turning unnecessary active nodes into idle or the other way around.

Therefore, if i is the source, j is the destination, k is the size of the alphabet
and p is the symbol position, ranging from the least significative, which is 0, to
the most signficative, which is k − 1, then the arithmetic way checks all symbol
positions in both i and j by using (1) so as to first calculate each symbol out of
its decimal format, and in turn, look for pairs of discordant symbols occupying
the same position, which are spotted for each value of p where the inequality
condition is met.

On the other hand, the logical way does it by using (2) so as to extract
each symbol from its k-ary format, and then, search for pairs of discordant

An efficient architecture for edge data center networks 13

symbols, which are found for positions where XOR operation yields 1, as 0
implies matching symbols.∨k−1

p=0

{ ⌊
i
kp

⌋
|k 6=

⌊
j
kp

⌋
|k

}
(1)

∨k−1
p=0

{
i[p] XOR j[p]

}
(2)

Regarding the migration path, the list of movements through intermediate
virtual switches to get from a source one to a destination one, both expressed in
k-ary format, may require to confront the values assigned to the same symbol
positions in both node identifiers so as to search all discordant symbols.

Obviously, if there are more than one discordant symbol, then redundant
paths are available by making permutations on them, resulting in as many re-
dundant paths as the factorial of the amount of those discordant symbols.

In summary, the system may start up with its lower number of virtual
switches available, thus resulting from parameter k = 2 and n = 2, whereas
AI is monitoring the network traffic and analyzing diverse pieces of information
in order to predict when the traffic will rise and how much, so as to extend the
available virtual switches as a first step by growing the value of n for higher
traffic density, or otherwise, the value of k for even higher. Analogously, if the
traffic keeps growing, an extra increase is obtained by getting n up an additional
unit as a second step, thus a greater number of virtual switches are available.
Obviously, if the first step consisted of growing k, then the second step will
provide a higher amount of virtual switches.

Otherwise, if the traffic decreases, the value of n is taken back, thus reversing
the second step, and if traffic keeps going down, then the first step is reversed,
such as either n or k comes back to its initial value, thus reducing the number
of active virtual switches. In case of any change of parameters n or k, resource
migration may need to be undertaken accordingly so as to load balance such
resources if the values increase, or to consolidate them if the values decrease.
Hence, AI plays a crucial role in controlling the size of this topology and adapting
to the network traffic conditions, and as a consequence, AI optimizes the tradeoff
between performance and carbon emissions [21].

5 Conclusions

In this paper, an adaptive topology design for edge data centers has been pro-
posed in order to reduce the carbon emissions by swapping virtual switches from
active to idle state according to the predictions based on AI, where network traf-
fic conditions are evaluated, as well as other parameters, such as historical data
or network intelligence.

To start with, a kind of planar grid topology has been studied where any pair
of nodes whose identifiers differ in just one symbol are linked together. Such a
topology has been identified as a binary grid when used with binary values, or
otherwise, a k-ary grid if used with values of an alphabet of size k. Five scenarios

14 Roig, P.J. et al.

have been proposed for being used in edge data centers, where the number of
necessary virtual hosts attached to virtual switches are relatively small.

Each node within those topologies is identified by a string of length n, result-
ing in regular patterns of symbols in both rows and columns where n is even,
achieving bidimensional toroidal designs. However, that condition is not met
when n is odd, although the nodes have been sorted in groups according to the
number of zeros within their identifiers, resulting in bidimensional designs not
being toroidal, even though polydimensional toroidal grids may also be obtained.

In this context, five designs have been shown, where the one with k and n
bearing their lower values may be seen as the basic layout, leading to its con-
sideration as the initial one, as it engages the lower amount of virtual switches,
thus being the one achieving a lower carbon footprint. On the other hand, AI
techniques are continuously monitoring current network traffic and analyzing it
along with other relevant information, such as historical data and network in-
telligence information, so as to predict when the traffic will increase in order to
extend the topology when it gets necessary.

That extension may be done through growing n for higher rates of traffic, or
otherwise, through rising k for even higher rates, where the more virtual switches
are active, the more will increase the carbon emissions. Hence, monitoring ought
to keep on so as to find out when the values of n or k may decrease again, thus
lowering the carbon footprint as much as possible without affecting performance.

Eventually, an interesting method to forward traffic among those virtual
switches has been exposed, taking advantage of the fact that neighboring nodes
just has a discordant symbol, thus making possible to easily spot the redundant
paths between a source and a destination by just searching for the positions
where those discordant symbols are located, which may also account for redun-
dant paths by making combinations with the set of discordant symbols found.

References

1. Vukobratović, M. et al.: A Survey on Computational Intelligence Applications
in Distribution Network Optimization. Electronics 2021, 10(11):1247 (2021).
https://doi.org/10.3390/electronics10111247

2. El-Mawla, N.A., Badawy, M., Arafat, H.: IoT for the Failure of Climate-Change
Mitigation and Adaptation and IIoT as a Future Solution. World Journal of Envi-
ronmental Engineering, 6(1), 7–16 (2019). https://doi.org/10.12691/wjee-6-1-2

3. Pirson, T., Bol, D.: Assessing the embodied carbon footprint of IoT edge devices
with a bottom-up life-cycle approach. Journal of Cleaner Production, 322:128966
(2021). https://doi.org/10.1016/j.jclepro.2021.128966

4. Siddik, A.B., Shehabi, A., Marston, L.: The environmental footprint of data cen-
ters in the United States. Environmental Research Letters, 16(6):064017 (2021).
https://iopscience.iop.org/article/10.1088/1748-9326/abfba1

5. Bertoldi, P., Avgerinou, M., Castellazzi, L.: Trends in data centre energy con-
sumption under the European Code of Conduct for Data Centre Energy Efficiency.
EUR 28874 EN, Publications Office of the European Union, Luxembourg (2017).
https://doi.org/10.2760/358256

An efficient architecture for edge data center networks 15

6. Liu, Y. et al.: Energy consumption and emission mitigation prediction based on
data center traffic and PUE for global data centers. Global Energy Interconnection,
3(3), 272–282 (2020). https://doi.org/10.1016/j.gloei.2020.07.008

7. Guitart, J.: Toward sustainable data centers: a comprehensive energy management
strategy. Computing, 99(6), 597–615 (2017). https://doi.org/10.1007/s00607-016-
0501-1

8. Lannelongue, L., Grealey, J., Bateman, A., Inouye, M.: Ten simple rules to make
your computing more environmentally sustainable. PLoS Comput Biol, 17(9):
e1009324 (2021). https://doi.org/10.1371/journal.pcbi.1009324

9. El Geneidy, S. et al: The carbon footprint of a knowledge organization and emission
scenarios for a post-COVID-19 world. Environmental Impact Assessment Review,
91:106645 (2021). https://doi.org/10.1016/j.eiar.2021.106645

10. Bari, F. et al.: Data Center Network Virtualization: A Survey. In:
IEEE Communications Surveys & Tutorials, 15(2), 909–928 (2013).
https://doi.org/10.1109/SURV.2012.090512.00043

11. Lee, H. et al.: COVID19 Led Virtualization: Green Data Center for Informa-
tion Systems Research. Information Systems Management, 37(4), 272–276 (2020).
https://doi.org/10.1080/10580530.2020.1818901

12. Kitayama, K.I. et al.: Torus-Topology Data Center Network Based
on Optical Packet/Agile Circuit Switching with Intelligent Flow Man-
agement. Journal of Lightwave Technology, 33(5), 1063–1071 (2015).
https://doi.org/10.1109/JLT.2015.2394384

13. Gardner, R.J. et al.: Toroidal topology of population activity in grid cells. Nature
602, 123–128 (2022). https://doi.org/10.1038/s41586-021-04268-7

14. de Bruijn, N.G.: A combinatorial problem. In: Proceedings of the Sec-
tion of Sciences of the Koninklijke Nederlandse Akademie van Weten-
schappen te Amsterdam, the Netherlads, Vol. 49(7), pp. 758–764 (1946).
https://research.tue.nl/files/4442708/597473.pdf

15. Roig, P.J., Alcaraz, S., Gilly, K., Bernad, C., Juiz, C.: Review on de Bruijn shapes
in one, two and three dimensions. Journal of Physics: Conference Series, 2090:012047
(2021). https://doi.org/10.1088/1742-6596/2090/1/012047

16. Xie, Y., Liang, J., Yin, W., Li, C.: The properties and t/s-diagnosability of
k-ary n-cube networks. Journal of Supercomputing, 78(5), 7038–7057 (2022).
https://doi.org/10.1007/s11227-021-04155-y

17. Roig, P.J., Alcaraz, S., Gilly, K., Bernad, C., Filiposka, S.: De Bruijn-based and
k-ary n-cube-based algebraic models in fog environments. Communications in Com-
puter and Information Science, 1521, 126–141 (2022). https://doi.org/10.1007/978-
3-031-04206-5 10

18. Elbir, A.M., Papazafeiropoulos, A.K., Chatzinotas, S.: Federated Learning for
Physical Layer Design. In: IEEE Communications Magazine, 59(11), 81–87 (2021).
https://doi.org/0.1109/MCOM.101.2100138

19. Abreha, H.G., Hayajneh, M., Serhani, M.A.: Federated Learning in
Edge Computing: A Systematic Survey. Sensors 22(2):450, 1–45 (2022).
https://doi.org/10.3390/s22020450

20. Lotfi, I., El Bouhadi, A.: Artificial Intelligence Methods: Toward a New
Decision Making Tool. Applied Artificial Intelligence 2021(10), 1–16 (2021).
https://doi.org/10.1080/08839514.2021.1992141

21. Cowls, J., Tsamados, A., Taddeo, M., Floridi, L.: The AI gambit:
leveraging artificial intelligence to combat climate change—opportunities,
challenges, and recommendations. AI & Society, 2021:01294, 1–25 (2021).
https://doi.org/10.1007/s00146-021-01294-x

