
Analysis and comparative evaluation of front-end

technologies for web application development

Frosina Ilievska and Sasho Gramatikov

Faculty of Computer Science and Engineering Ss. Cyril and Methodius, University, Skopje,
North Macedonia

frosina.ilievska@students.finki.ukim.mk

Abstract. In this dynamic, ever-evolving world of web technology, many devel-
opment tools are created. Everyone can agree that the programming language
JavaScript is already in use and will continue to be popular in the future. De-
spite the many great JavaScript technologies over the past decade, Angular,
React.js, and Vue.js remain the most popular.
The construction of a modern single-page application is covered in this study,
with an emphasis on the front-end in each of the technologies and the analysis
of tests relating to the three key areas of performance, modularity, and usabil-
ity where data may be evaluated and compared. By analyzing the test findings
of the three aspects using the analytical hierarchy process approach, a com-
parison was produced. This paper provides a response to the question: Which
JavaScript framework is best for developing single-page applications in terms
of performance, modularity, and usability?
In conclusion, React is the most suitable option for a simple single-page front-
end application in our case.

Keywords: front-end comparison, JavaScript technologies, single-page applica-
tion development, complexity analysis, analytical hierarchy process

1 Introduction

The question “which web development framework should I use?” is one of

the questions every developer asks himself before starting a project. Due to

the intricacy of the application, manually developing program code may pro-

duce inconsistent quality and content. Maintaining applications developed in

this way is more complicated. To fix all these problems, developers started

using frameworks. The industry for JavaScript technologies has experienced

fast growth and change, making it challenging to choose the best framework.

Therefore, by creating a simple web application using the three most popular

front-end web technologies, we aim to make a thorough analysis and com-

parison concerning the mentioned three aspects. One of our main goals is to

2

delve deeper into the area of great interest to increase peoples’ overall

knowledge of JavaScript technologies, so that, in the end, a recommendation

can be made as to which technology would be most appropriate for a given

project. Another goal is being able to compare technologies and outline their

strengths and weaknesses through research and testing. Last but not least,

it's crucial to research and understand the distinctions between various

technologies in order to make recommendations that can be modified for

different users [1][2].

 To achieve all this, despite the analysis of the tests to the performance,

modularity, and usability, we also use a method called the analytical hierar-

chy process, which is a method for organizing and analyzing complex deci-

sions, using math and psychologyIn order to make ranking decisions, it com-

bines various metrics into a single total rating, which typically simplifies a

decision involving several criteria. We rate relative importance on a scale of 1

to 5, having them in a matrix, and at the end, getting the result for the crite-

ria’s importance[1][3][4][5].

𝑎𝑖𝑗
∗ =

𝑎𝑖𝑗

∑ 𝑎𝑖𝑗
𝑛
𝑖=1

 Three phases comprise the fundamental process for rating a collection of

criteria: developing a pairwise comparison matrix for each criterion, normal-

izing the matrix, and determining the average value of each row to deter-

mine the corresponding rating. Then, in order to analyze several prospective

decisions, criteria ratings are applied [6].

The paper aims to indicate how important it is to fully and correctly ana-

lyze the process when starting a new project, in order to accurately select a

technology. A poorly chosen framework can be a big problem, especially for

long-term applications, when software developers realize that the chosen

technology does not meet their needs [2][4][5].

The remainder of the paper is structured as follows: We provide a sum-

mary of the related work in Section 2. We discuss the phases of comparison

in Section 3. In Section 4, we analyze the tests and gather the results from

the analysis. In Section 5, the conclusion is made based on the comparison

results, also giving the recommendations in which fields this research can be

expanded in the future.

3

2 Related work

Before starting the research for this paper, we went through a lot of re-

sources explaining the same or similar problem. Most of them gave an over-

view of the three most popular frameworks we also used. [1] gives an over-

view of multiple page applications. In [2] and [4], the comparison is made on

different frameworks such as Dojo, ExtJS, jQuery, Svetle, and Stencil. [7] fo-

cuses on the pros and cons these frameworks provide, and in [5] and [8], are

explained the main differences in their functionality. [9] gives recommenda-

tions for a better performance score, by only comparing the bundle sizes and

main characteristics of Angular, React.js, and Vue.js. A single-page applica-

tion created in AngularJS, with Node.js on the server and MongoDB as the

database, is elaborated in [10]. The main point of this book is to learn how to

create a web application using these technologies. [11] gives a comparison of

Angular, React.js and Vue.js, when creating a complex single-page applica-

tion.

 The main difference with the other resources is the comparison methods

and the application complexity. We wanted to show that it doesn’t have to

be a complex application, to be able to see the comparison result differences

– even on single-page applications, some of the technologies look better

than others. Another thing that none of the resources have, is to combine

the Lighthouse tool, which is probably the most popular tool for perfor-

mance testing, with the comparison made with the analytical hierarchy pro-

cess [11]. Even though there were resources dedicated to the Lighthouse

tool [2][12], it is important to mention that in our research paper, we use the

newest version, which offers different metrics.

 If a developer wants to start a new project, or, recreate an already existing

one, this research paper can be a perfect guide, giving him the recommenda-

tion of the right technology. It is important to mention that single-page ap-

plications can also differ regarding their performance, so why not use the

best one?

3 Methodology

To answer the research question mentioned above, 3 technologies are in-

volved. The methodology is divided into three phases: preparation phase,

4

followed by a case study, and finally reaching a conclusion using the analysis

phase.

The preparation phase included literary research of the various technolo-

gies and services that would be selected for the preparation of this paper. It

also included choosing which technologies will be used as well as defining

which features of the applications will be compared.

Front-end web applications are created using the frameworks this paper

analyzes. The choice of technologies for hypothesis testing was based on

how popular the technologies at the time were [7]. The three most widely

used technologies, Angular, Vue.js, and React.js, are used to examine the

necessary features. A web application may be created as multiple pages

(MPA) or only one page (SPA), depending on how they are designed. This

research will compare simple single-page applications (SPA).

The next phase is a case study, in which a simple single-page application

was developed and implemented with all three selected technologies in par-

allel. For a feature of the three applications, tests have been performed to

understand how the three technologies differ from each other. Once the

comparisons were made, the data was collected, and a new comparison was

made, until all cases have been completed.

We needed to figure out a way to maintain the bounds of comparing

front-end single-page web applications in order to make sure our study was

headed in the right direction. This was accomplished using a technique called

MoSCoW [11]. This approach helps assignment stays within a range of con-

straints.

Additionally, when comparing performance, the Lighthouse tool was used,

which provides data on several important features: First Contentful Paint

(how long it takes for the browser to display the first DOM element's first

portion), Speed Index, Largest Contentful Paint (the time a website takes to

show the user the largest content on the screen), Cumulative Layout Shift

(CLS), Total Blocking Time and Time to Interactive.

Other comparisons of application performance, modularity, and usability

can be made manually. In this paper we are analyzing: manipulation with

DOM (adding, deleting, and modifying elements), memory allocation (relo-

cating elements), startup time, compile file size (build size), the number of

useful NPM packages (rich package ecosystem), as well as the flexibility, re-

5

usability of the code, usefulness of the documentation and the learning

curve. Equally important features covered by the research are the bundle

size, the use of components and their syntax, and the popularity of the

frameworks.

Once all the comparisons have been made, we’ve come to the analysis

phase. This stage involves taking the case study test findings that have previ-

ously been gathered and using a structured approach classified as the analyt-

ical hierarchy process to examine the data and answer to the research prob-

lem [1][2][4][5][7][10][11].

4 Results

In this section, we will look at the comparison tests that were made on the

single-page application. The application is simple, having the options to add,

delete and update an item.

 Performance refers to the speed at which content is shown to the user,

the amount of time it takes to allocate memory, the amount of time it takes

for it to fully load, and finally, the size of the project that was developed. An

application was created in the frameworks where the criteria could be meas-

ured to collect data. Performance was measured by how quickly the frame-

works handled various DOM changes and how quickly they moved memory

that had been allocated.

 The degree to which the given framework has a robust module ecosystem,

the degree to which the code is reusable, and the degree to which the appli-

cation is flexible may all be indicators of modularity.

The usability aspect revolves around the developer’s perspective. Usability

could be analyzed by measuring the quality of the documentation used for

creating these applications. By creating an application, researching these

criteria, and attempting to form educated conclusions, the measurement

was carried out [2][4][5][9][10][11][12].

6

4.1 Performance - Lighthouse tool

JS bundle size
JavaScript bundle size is the only resource that differs for the application in
each framework. Since we develop applications with the same look and func-
tionality, the images, CSS, and other resources are the same.

Fig. 1. Bundle Size

As shown above (Fig. 1), Angular’s bundle size is bigger than the other two,
but even React and Vue’s bundle sizes are close. With Vue having the less
size, Vue is the winner regarding this measurement. The size of Vue apps is
extremely small as the framework itself is very lightweight. Developers can
break the code into smaller parts with lazy loading components and optimize
the load time.

Fig. 2. Performance comparison using the Lighthouse tool

We can see that Angular needs more time than React and Vue regarding all

four metrics shown above (Fig. 2), having a large difference, especially in the

Speed index and Largest Contentful Paint metrics. React and Vue don’t differ

45,5

36,3

30,3

0

10

20

30

40

50

K
ilo

b
yt

es
 (

K
B

)

Angular

React

Vue

0

0,5

1

1,5

2

2,5

3

Angular React Vue

se
co

n
d

s
(s

) First Contentful Paint

Speed Index

Largest Contentful Paint

Time to Interactive

7

a lot comparing the First Contentful Paint and Time to Interactive metrics,

but the Speed index of React is what made him the winner in this perfor-

mance comparison using the Lighthouse tool. Its component-based approach

gives you more speed and flexibility when building web applications.

Fig. 3. Total Blocking Time and Cumulative Layout Shift charts

The second part of this comparison confirms Angular’s bad performance

score. Unlike before, now Vue has the best Total Blocking Time, and React

remains in the first place regarding the Cumulative Layout Shift. Vue uses

templates, which makes the process simpler and faster (Fig. 3).

The Lighthouse tool also gives the overall performance score, which in our

case, doesn’t have a significant difference – React is in the first place with a

score of 92, second is Vue with score of 91 and in the third place we have

Angular with 86. Even though the score is almost identical, the Lighthouse

tool can help the developers by showing them the big picture of the pros and

cons regarding the performance of these frameworks.

4.2 Performance, Modularity & Usability

In this section, we will review all the test results we got from our research.

Using the AHP analysis, the three frameworks received points from 1 (worst)

to 5 (best). If the difference is very small, it means that there are variations

due to several circumstances, so in that case, the points were given equally

(Table 1.) [2][4][5][11][13].

30

20

10

0

10

20

30

40

Total Blocking Time

m
ill

is
ec

o
n

d
s

(m
s) 0,349

0,242
0,278

0

0,1

0,2

0,3

0,4

Cumulative Layout Shift

Angular

React

Vue

8

Table 1. Average score of the frameworks with and without weights

Tests Angular React Vue Weight Angular React Vue

DOM-

Manipulation
4 3 2 4,7% 0,188 0,141 0,094

Memory

Allocation
3 3 3 21,1% 0,634 0,634 0,634

Build Size 4 4 4 3,1% 0,124 0,124 0,124

Startup Time 3 5 3 12,5% 0,376 0,625 0,376

Rich package

ecosystem
3 4 3 12,5% 0,376 0,502 0,376

Flexibility 3 4 4 7,6% 0,227 0,303 0,303

Reusability 4 4 4 4,7% 0,188 0,188 0,188

Documentation 3 4 4 21,1% 0,634 0,845 0,845

Learning curve 3 3 4 12,5% 0,376 0,376 0,502

AVERAGE

SCORE
3,33 3,79 3,44 100% 3,12 3,74 3,44

Performance

DOM-Manipulation
The test for this part was made by adding, deleting, and editing rows in the

application. First, movies were added to the array, then some of them got

edited, and lastly, all of them got removed. We used Google Chrome’s

runtime profiler to gather the results. The test was repeated a few times on

different array size. The number of items tested was 100, 500, 1000, 1500,

and 2000 and the tests were conducted for all the features.

Fig. 4. Dependence of creation time per item on number of items

As shown in Figure. 4, we can see that Vue is the fastest regarding the creat-

ing feature. Anyway, because the difference is very small, and probably it can

0

0,02

0,04

0,06

0,08

0,1

0,12

100 500 1000 1500 2000

Ti
m

e
p

er
 it

em
 (

m
s)

Number of items

Angular

React

Vue

9

differ regarding the number of rows, we can agree that they all have the

same creating time.

Fig. 5. Dependence of editing time per item on number of items

Figure. 5 shows that Angular is the fastest regarding the editing feature,

while Vue has the longest modifying time. We can also see that as the num-

ber of items increase, so does the time per editing of a single item.

Fig. 6. Dependence of deletion time per item on number of items

Figure. 6 shows that Angular is the fastest regarding the deleting feature,

while React and Vue perform much worse and do not differ significantly.

 These results make it clear why Angular has the best point score for DOM-

Manipulation in Table 1. React and Vue use virtual DOM, but every time a

state changes, it needs to be rendered again. However, Angular does change

detection against the model earlier and does not require an additional step

for rendering virtual DOM.

0

0,02

0,04

0,06

0,08

100 500 1000 1500 2000Ti
m

e
p

er
 it

em
 (

m
s)

Number of items

Angular
React
Vue

0

0,01

0,02

0,03

0,04

0,05

100 500 1000 1500 2000

Ti
m

e
p

er
 it

em
 (

m
s)

Number of items

Angular

React

Vue

10

Memory Allocation
We test the memory allocation by filling arrays with data and then moving

the data to a new array. Google Chrome’s runtime profiler is also used. The

test was repeated a few times on different array size.

Fig. 7. Dependence of relocation time per item on number of items

On smaller size arrays, React and Vue have better times, due to a well-

built structure, while Angular is the fastest as much as the size of the array

grows (Fig. 7). Regarding the point score (Table 1.), we can see that all of

them perform well in separate fields.

Build Size
The smaller the size of the application is, the faster it is expected that it will

run. Logically, this will be the case. But the tests showed us that an applica-

tion can run fast enough, despite the big size before build. Even if Angular

had the biggest size before the build, after the build, the size of all of them is

almost identical (Fig. 8).

0

0,005

0,01

0,015

0,02

0,025

0,03

100 500 1000 1500 2000

Ti
m

e
p

er
 it

em
 (

m
s)

Number of items

Angular

React

Vue

0

50

100

150

200

250

300

Before Build After Build

P
ro

ej
ct

 S
iz

e
(M

B
)

Angular

React

Vue

11

Fig. 8. Dependence of the project size – before and after build

Startup Time
The startup time is the time needed for the page to be fully loaded and ready

to use. It is similar to the Speed Index that we observed with the Lighthouse

tool. We can get this info on Google Chrome’s DevTools, under Network

Analysis. In order to get more realistic results, we disabled caching content

for this test. As we have seen in the previous test, React has the slowest

build size, and yet has the best startup time. Angular and Vue didn’t differ a

lot, so we give them the same number of points.

Modularity

Rich Package Ecosystem
We can conclude from a comparison of the number of NPM packages availa-

ble for our frameworks that each of them had packages for every possible

web application functionality. If we take that as a point, they should all get

the same score regarding this feature. Anyway, React has three times more

available NPM packages, so we can say that everything one needs – React

has it.

Flexibility
Flexibility can be defined as the possibility to add new functionalities to an

already created application. This was made by following the documentation

for the frameworks in order to create the application. React and Vue are

flexible technologies since it is simple to add their features to an existing

project and scale them up later if needed. On the other hand, Angular is not

very supportive of flexibility.

Reusability
Reusability is a very important metric of the frameworks for front-end web

developments since we are using component-based frameworks. The best

way is to create as many as possible independent components, so they can

be reused over the project, which is achievable with all the frameworks we

tested. In the end, it all depends how the developer will structure his applica-

tion.

Documentation
The usefulness of the documentation and its ease of use is of crucial im-

portance for a framework, both for starting basic projects and developing

advanced features. As they are a long time on the market, the three of them

12

have excellent documentation, deeply explained and with a lot of examples.

One thing worth to be mentioned is that code can be tried on the same page

while reading the documentation on Vue. That would save a lot of time and

you always know if you are on the right track. Another feature of React’s

documentation that makes it stand out from the others is that it is available

in many languages making it accessible to almost every user all around the

world.

Learning Curve
The learning curve analyzes If the structure of the framework was like any

other, so it would be easy for new developers to learn it.

Angular uses a template-syntax, having additional functionalities which

makes the code more compact. It also uses TypeScript, which for many de-

velopers, it’s a better language than plain JavaScript, but it can be strange

and difficult to adapt if the developer is used to JavaScript. Of these three,

Angular has the most complex structure and it is harder to be learned [14].

React uses JSX syntax, which is not as readable as the other two. React

handles components usually by dividing them into separate folders [15].

Vue also uses template-syntax, making the code more compact. The addi-

tional features that come with it, give us the opportunity to remove the un-

necessary code and increase the readability. Every component has its own

file, which gives a better structure [16].

We can say that developers have a pretty bad experience with Angular,

feel comfortable with React and find Vue easy to learn and handle.

When building a simple single-page front-end application, React received

the greatest average score in both the non-weighted and weighted results,

as shown by the compiled result (Table 1.).

As a support to our research, we compared Angular, React and Vue using

Google trends, and, we can see that React is dominating the market now,

even though, looking at the past few years, we shouldn’t underestimate Vue

(Fig. 9) [8][13][17][18].

13

Fig. 9. Google trends’ ranking during the past 12 months

5 Conclusion

Developers frequently concentrate on qualities like popularity, documenta-

tion, talent availability, or community when selecting a framework to adopt

in their projects. Even if these factors are significant, we are aware that in

the case of modern front-ends, the user experience is the key consideration.

And a critical part of it is website speed [13][18].

 In our paper, we had 3 main measures, comparing a single-page applica-

tion created with Angular, React.js and Vue.js, which were crucial to getting

the answer to our questions at the end. While using the Lighthouse tool, An-

gular proved to be the slowest, while React and Vue had impressive scores.

Talking about performance, React was considered best, mostly because of

the good startup time, which is important in this case. Angular and Vue were

not bad in the performance area too. Regarding modularity, React once

again got the first place, having a very widespread NPM packages system,

which made the difference between React and Vue. Angular was stuck in the

last place. And lastly, usability, where Vue took the first place, having very

good documentation and being easy to learn.

From our analysis we concluded that React tends to be the most suitable

option for a simple single-page front-end application in our case, Vue comes

second being the most friendly for the developers, while Angular is in the

third place, having the best score only in the DOM-Manipulation tests. Re-

act’s popularity is also shown on the Google trends chart (Fig 9.), which

proves the comfortability it provides to the developers.

14

This paper can be a helpful guide to every developer, novice, or expert,

aiming to start a new project, or recreate an old one, giving him the right

recommendation depending on the type of the application. It is important to

understand that it gives a better user experience using the right technology,

even when the application is simple, having a good performance application

is crucial.

As future work, in order to get a better picture of the front-end web appli-

cations, our analysis can be extended to other frameworks on the market

that may be not as popular as the considered ones but may compete or out-

perform them in certain features. Furthermore, we could also create much

complex applications and try to apply other tests criteria such as server per-

formance and use different methods for the analysis. If possible, we can try

to answer questions regarding the reasons why a certain framework per-

formed best in a concrete field and get the idea what happens behind the

scenes.

References

1. M. Kaluža, K. Troskot, B. Vukelić: Comparison of Front-End Frameworks for Web Applica-
tions, Zbornik Veleučilišta u Rijeci, Vol. 6 (2018), No. 1, pp. 261-282

2. Jacek Schae, “A RealWorld Comparison of Front-End Frameworks 2020”,
https://medium.com/dailyjs/a-realworld-comparison-of-front-end-frameworks-2020-
4e50655fe4c1, last accessed on 30/08/2022

3. Hamed Taherdoost, “Decision Making Using the Analytic Hierarchy Process (AHP); A Step
by Step Approach”
https://hal.archives-ouvertes.fr/hal-
02557320/document#:~:text=In%20the%20next%20step%2C%20in,be%20extracted%20f
rom%20Table%203, last accessed on 30/08/2022

4. Andreas B. Gizas, Sotiris P. Christodoulou, Theodore S. Papatheodorou, “Comparative
Evaluation of JavaScript Frameworks”,
https://www.researchgate.net/publication/254008963_Comparative_evaluation_of_Java
Script_frameworks, last accessed on 30/08/2022

5. YongKang Xing, JiaPeng Huang, YongYao Lai, “Research and Analysis of the Front-end
Frameworks and Libraries in E-Business Development”,
https://www.researchgate.net/publication/332456776_Research_and_Analysis_of_the_F
ront-end_Frameworks_and_Libraries_in_E-Business_Development, last accessed on
30/08/2022

6. V. Gonzalez-Prida, L. Barbera, P. Viveros, A.Crespo “Dynamic Analytic Hierarchy Process:
AHP method adapted to a changing environment”

https://medium.com/dailyjs/a-realworld-comparison-of-front-end-frameworks-2020-4e50655fe4c1
https://medium.com/dailyjs/a-realworld-comparison-of-front-end-frameworks-2020-4e50655fe4c1
https://hal.archives-ouvertes.fr/hal-02557320/document#:~:text=In%20the%20next%20step%2C%20in,be%20extracted%20from%20Table%203
https://hal.archives-ouvertes.fr/hal-02557320/document#:~:text=In%20the%20next%20step%2C%20in,be%20extracted%20from%20Table%203
https://hal.archives-ouvertes.fr/hal-02557320/document#:~:text=In%20the%20next%20step%2C%20in,be%20extracted%20from%20Table%203
https://www.researchgate.net/publication/254008963_Comparative_evaluation_of_JavaScript_frameworks
https://www.researchgate.net/publication/254008963_Comparative_evaluation_of_JavaScript_frameworks
https://www.researchgate.net/publication/332456776_Research_and_Analysis_of_the_Front-end_Frameworks_and_Libraries_in_E-Business_Development
https://www.researchgate.net/publication/332456776_Research_and_Analysis_of_the_Front-end_Frameworks_and_Libraries_in_E-Business_Development

15

https://reader.elsevier.com/reader/sd/pii/S1474667015338908, last accessed on
30/08/2022

7. Piero Borrelli, “Angular vs. Vue vs. React: Comparing frameworks by performance”,
https://blog.logrocket.com/angular-vs-react-vs-vue-a-performance-comparison/, last ac-
cessed on 30/08/2022

8. Codeinwp, “Angular vs React vs Vue: Which Framework to Choose”,
https://www.codeinwp.com/blog/angular-vs-vue-vs-react/, last accessed on 30/08/2022

9. Layer0, “Optimizing React, Angular or Vue Single-Page Applications for Performance”,
https://www.layer0.co/post/optimizing-react-angular-vue-single-page-applications-
performance, last accessed on 30/08/2022

10. F. Monteiro, Learning Single-page Web Application Development, 1st ed. Packt Publish-
ing, 2014.

11. N. Ockelberg, N. Olsson, Performance, Modularity and Usability, a Comparison of JavaS-
cript Frameworks,
https://www.diva-portal.org/smash/get/diva2:1424374/FULLTEXT01.pdf, last accessed
on 30/08/2022

12. Layer0, “Optimizing Your Website for Lighthouse v6.0”,
https://www.layer0.co/post/lighthouse6-website-frontend-optimization, last accessed on
30/08/2022

13. Tech Magic, “React vs Angular vs Vue.js — What Is the Best Choice in 2022?”,
https://www.techmagic.co/blog/reactjs-vs-angular-vs-vuejs-what-to-choose-in-2020/,
last accessed on 30/08/2022

14. Angular, official documentation, https://angular.io/docs, last accessed on 30/08/2022

15. React, official documentation, https://reactjs.org/, last accessed on 30/08/2022

16. Vue, official documentation, https://vuejs.org/guide/introduction.html, last accessed on
30/08/2022

17. Star History, https://star-history.com/#facebook/react&vuejs/vue&angular/angular, last
accessed on 30/06/2022

18. Google trends, https://trends.google.com/trends/explore?cat=31&date=today%2012-
m,today%2012-m,today%2012-m&geo=,,&q=Vue%20jobs,React%20jobs,Angular%20jobs,
last accessed on 30/06/2022

https://reader.elsevier.com/reader/sd/pii/S1474667015338908?token=94CCD0C7A36B625D47601C7B6C8005574C909B3F1A4A36DA6D7082868DABB20E9A3D9EFF95F54C23116320C1A1C14673&originRegion=eu-west-1&originCreation=20220830190513
https://blog.logrocket.com/angular-vs-react-vs-vue-a-performance-comparison/
https://www.codeinwp.com/blog/angular-vs-vue-vs-react/
https://www.layer0.co/post/optimizing-react-angular-vue-single-page-applications-performance
https://www.layer0.co/post/optimizing-react-angular-vue-single-page-applications-performance
https://www.diva-portal.org/smash/get/diva2:1424374/FULLTEXT01.pdf
https://www.layer0.co/post/lighthouse6-website-frontend-optimization
https://www.techmagic.co/blog/reactjs-vs-angular-vs-vuejs-what-to-choose-in-2020/
https://angular.io/docs
https://reactjs.org/
https://vuejs.org/guide/introduction.html
https://star-history.com/#facebook/react&vuejs/vue&angular/angular
https://trends.google.com/trends/explore?cat=31&date=today%2012-m,today%2012-m,today%2012-m&geo=,,&q=Vue%20jobs,React%20jobs,Angular%20jobs
https://trends.google.com/trends/explore?cat=31&date=today%2012-m,today%2012-m,today%2012-m&geo=,,&q=Vue%20jobs,React%20jobs,Angular%20jobs

