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Abstract The human gut microbiota is the microbial ecosystem in the small and large intestines of humans. It has been naturally 
preserved and evolved to play an important role in the function of the gastrointestinal tract and the physiology of its 
host, protecting from pathogen colonization, and participating in vitamin synthesis, the functions of the immune system, 
as well as glucose homeostasis and lipid metabolism, among others. Mounting evidence from animal and human studies 
indicates that the composition and metabolic profiles of the gut microbiota are linked to the pathogenesis of cardiovas-
cular disease, particularly arterial hypertension, atherosclerosis, and heart failure. In this review article, we provide an 
overview of the function of the human gut microbiota, summarize, and critically address the evidence linking composition-
al and functional alterations of the gut microbiota with atherosclerosis and coronary artery disease and discuss the po-
tential of strategies for therapeutically targeting the gut microbiota through various interventions.
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Graphical Abstract

The pathophysiology of gut microbial associations with atherosclerosis.
The figure depicts some of the key players at the organ, cellular, and molecular level, regarding the links between the gut microbiota and atheroscler-

osis. Diet has a profound effect on the gut microbiota, as it provides energy sources for bacterial fermentation. Undigested fibre is processed by bac-
teria-producing short-chain fatty acid (SCFA). Lower levels of SCFA have been linked to host inflammation, which aggravates atherosclerosis. Multiple 
bacterial species also produce trimethylamine (TMA) from choline, itself derived from dietary phosphatidylcholine. TMA is absorbed and metabolized to 
trimethylamine N-oxide in the liver and has been linked to the atherosclerotic process. Disruption of intestinal permeability may lead to bacterial lipo-
polysaccharide leaking into the bloodstream, initiating Toll-like receptor–mediated chronic systemic inflammation, and aggravating atherosclerosis. See 
text for details. Black arrows: Microbiota-related metabolites and host responses. Red arrows: Suggested proatherogenic effects.

Keywords Coronary artery disease • Atherosclerosis • Gut microbiota • Trimethylamine N-oxide • Short-chain fatty acids

1. Introduction
Cardiovascular disease (CVD), particularly coronary artery disease (CAD), 
still represents the leading cause of death worldwide1 despite effective pro-
gress in therapeutic interventions, such as early revascularization after acute 

coronary syndromes, lowering blood cholesterol levels, and inhibiting the 
renin-angiotensin-aldosterone system. Therefore, intense effort has been 
put into exploring and identifying new, therapeutically exploitable risk fac-
tors for atherosclerosis, to potentiate primary and secondary CAD preven-
tion. Growing awareness of the influence of the human gut microbiota 
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(GM) in the physiology of its host has led to the suggestion that it could con-
tribute to the occurrence and development of atherosclerosis.2 Indeed, this 
microbial community living in the human intestinal tract can produce numer-
ous metabolites that can enter systemic circulation and affect host health.3

Both metabolism-dependent and independent pathways have been pro-
posed to explain the impact of the GM on atherogenesis.4 For example, 
the GM may exert pro-atherogenic effects via the synthesis of metabolites 
such as trimethylamine (TMA).5 Moreover, bacterial components such as li-
popolysaccharides (LPS), found on the outer membrane of Gram-negative 
bacteria, can cross the host intestinal barrier, leak into the systemic circula-
tion, and under certain circumstances contribute to low-grade chronic sys-
temic inflammation, which by itself is a proatherogenic state.6

In this review, we briefly summarize existing knowledge on the GM 
and the tools developed for its compositional analysis, and we critically 
review the links between the GM and CAD. A glossary of terms is pro-
vided in Table 1.

2. Methods of microbial analysis
Analysing the microbiome of diverse species and environments using 
next generation sequencing (NGS) techniques has significantly enhanced                                      

our understanding of metabolic, physiological, and ecological roles of en-
vironmental microorganisms (Table 2). The elucidation of the micro-
biome is not straightforward and is concerned with experimental 
conditions (i.e. sampling issues, sequencing errors, and genomic repeats) 
and computationally intensive and cumbersome downstream analysis 
(i.e. quality control, assembly, binning, and statistical analyses). 
Thorough reviews on the best practices and pitfalls associated with mi-
crobial analysis have been previously published.7,8

Gut microbial genetic analysis is generally performed by either ampli-
con sequencing or metagenomics.7 The most widely used target gene 
for bacterial identification in amplicon sequencing is the 16S rRNA 
gene, which encodes the 16S RNA component of the 30S small subunit 
of the prokaryotic ribosome. This method is relatively inexpensive and 
easily implemented, yielding genus-level taxonomic and relative abun-
dance information on the GM sample.

Metagenomics is the direct genetic analysis of all genomes obtained 
from a given sample, without the need for cell cultures.9,10 This ap-
proach comprehensively catalogues all microbial genes, allowing the 
detection of genes that can provide information on molecular func-
tion and the metabolic profiling of a microbial community.7

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 1 Glossary of terms

Term Definition

Amplicon 

sequencing

The identification and amplification of a certain 

genetic sequence, e.g. regions of the 16S ribosomal 
RNA gene of the microorganisms in a human stool 

sample.

Alpha diversity A term referring to individual characteristics of a 
microbial community (e.g. the number of different 

species).

Beta diversity A concept of direct comparison of different microbial 
communities by a certain metric.

Commensalism Co-existence of host and hosted organism, where 

only one of the two benefits.
Dysbiosis A change in microbial composition, relative to an 

arbitrarily defined healthy state.

Metagenomics The genetic analysis and direct identification of all 
genomes in a sample of matter (e.g. a stool sample).

Microbiome All the genomes of all the microorganisms in a specific 

environment.
Microbiota The community of microorganisms living in a specific 

environment.

Mutualism A beneficial relationship for both the host and the 
hosted organism.

NGS Modern DNA sequencing techniques.

Prebiotics Indigestible food compounds that are fermented by 
and stimulate growth/activity of beneficial intestinal 

microorganisms (e.g. components of dietary fibre).

Probiotics An accepted definition is ‘live microorganisms which 
when administered in adequate amounts confer a 

health benefit on the host’.

Synbiotics The official definition is ‘a mixture comprising live 
microorganisms and substrate(s) selectively 

utilized by host microorganisms that confers a 

health benefit on the host’.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 2 Methods of microbial analysis

Method Advantages Disadvantages

Amplicon sequencing 

(marker gene analysis)

• Simple and 

relatively cheap
• Large, publicly 

available datasets

• Provides genus-level 

resolution at most
• No metabolic 

information 

(predictive algorithms 
required on top of 

analysis)

• No discrimination 
between live and 

dead organisms

• Multiple technical 
issues involved 

(choice of primers, 

amplification bias, 
other)

Metagenomics 

(metagenome analysis)

• Species- and 

strain- level 
resolution

• Direct 

inferement of the 
relative 

abundance of 

metabolic genes
• No PCR bias

• Expensive and 

complex
• Sensitive to 

contamination

• No discrimination 
between live and 

dead organisms

Metatranscriptomics 

(metatranscpriptome 
analysis)

• Allows 

estimation of 
actively 

transcribing 

organisms
• Direct evaluation 

of microbial 

activity

• Expensive and 

complex
• Sensitive to 

contamination

• Data skewed towards 
organisms with high 

transcription rates

PCR, polymerase chain reaction.
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Although this technology is more expensive and computationally chal-
lenging, it provides information on genetic diversity and potential mi-
crobial functions rather than simply on the taxonomic diversity of a 
community.9,11,12

Further options for GM analysis include metatranscriptomics, which 
uses RNA sequencing to profile transcription in microbiomes, providing 
information on gene expression and the active functional output of the 
microbiome. Sequencing microbial RNA provides better insight into the 
functional activity of a microbial community, though it is biased towards 
organisms with higher rates of transcription.13 Data from metagenomics 
and metatranscriptomics can be combined and compared by various 
bioinformatics tools.7 The exploration of additional -omics data, such 
as meta-proteomics and metabolomics, can also be performed. 
Newer developments are constantly under way, and long-read sequen-
cing, a promising technique assessing genetic sequences of thousands of 
base pairs,14 has already been applied to canine faecal samples.15

3. Statistical analysis of microbial 
data
The two principal components of sample comparison in gut microbial 
research are alpha and beta diversity. Alpha diversity, often described 
as within-sample diversity, pertains to specific characteristics of a given 
microbial community, such as the number of different species. 
Biodiversity indices like the Shannon index can be calculated to average 
alpha diversity variation and compare it between groups of samples. Beta 
diversity, often described as between-sample diversity, refers to the dir-
ect comparison of different microbial communities. Similarity measures 
between samples are calculated, and the resulting data matrix is pro-
cessed by multivariate mathematical tools, most popular of which are 
ANalysis Of Similarities (ANOSIM) and Permutational multivariate ana-
lysis of variance (PERMANOVA).16,17 These tools test whether micro-
bial variation between a priori selected groups of samples is greater 
than variation within each group, yielding a decision for statistical signifi-
cance. A framework for the analysis of multivariate ecological data has 
been thoroughly described.18

Differential abundance analysis between samples is demanding, with 
key issues being that relative abundance data are compositional (i.e. frac-
tions or percentages, which when added must equal 1 or 100%), sparse, 
and non-normally distributed. Moreover, false-positive results are inev-
itable after hundreds of individual comparisons and must be controlled 
for. Analysis of compositions of microbiome (ANCOM) and its evolu-
tions is one of the methods employed in this analysis.19 A recommended 
approach is to use the isometric log ratio transformation to render 
standard statistical tests valid in differential abundance testing.7 These is-
sues also affect correlational analysis, necessitating specially designed 
statistical software, such as SParse InversE Covariance Estimation for 
Ecological Association Inference (SPIEC-EASI).20

A wide variety of bioinformatics software tools have been used to 
classify microbiota based on sequencing data. A study comparing 11 
software tools for interpreting shotgun metagenomics found that they 
yielded different conclusions, highlighting the need to improve the accur-
acy of results by combining existing bioinformatics tools with different 
classification principles, thus controlling each software tool’s specific lim-
itations and strengths.21 Machine learning algorithms may provide a so-
lution, as these have been utilized to predict sample origin (e.g. patient 
vs. control subject) from microbiome data, among other predictions, 
such as future states of disease.7

4. Physiology and pathophysiology 
of the GM
4.1 Physiology of the microbial ecosystem 
in the human gut
The human GM has been estimated to comprise approximately 100 tril-
lion microorganisms, including archaea, fungi, and viruses, but predom-
inantly anaerobic bacteria belonging to several major bacterial phyla.22

Among a multitude of functions, the GM, with its commensal, symbiotic, 
and mutualistic bacteria, plays a vital role in the dietary nutrient and 
xenobiotic metabolism of its host, participates in the maintenance of 
the physiology and structural integrity of the gut mucosa, as well as in 
bile salt metabolism, vitamin synthesis, and immunomodulation and de-
fence against pathogens.23–25 Importantly, several bacterial species pro-
duce short-chain fatty acids (SCFA), which exert beneficial effects on 
humans, with butyrate being a strong anti-inflammatory molecule and 
the main energy source for enterocytes.26 The GM has also been shown 
to metabolize drugs of cardiovascular interest, including digoxin,27 while 
microbial metabolites correlate with the response to statins.28 Indeed, 
many mechanisms have been proposed by which the GM can affect 
the bioavailability and actions of various cardiovascular drugs and how 
these drugs may affect the GM, although, to date, sufficient knowledge 
of these processes is still lacking.29 Even though the human GM remains 
relatively stable throughout a person’s adult life, compositional intra- 
and inter-individual variability are considerable and can be influenced 
by host genetics, geographic origin, age, early life antibiotic use, as well 
as several other factors, most importantly dietary habits.30–36

Population-level studies have attempted to explain the variation that 
characterizes the human GM. A large metagenomics study from the 
Netherlands associated part of the variation with a total of 126 factors, 
both environmental and host-releated.37 Most of these factors, how-
ever, had a weak effect on microbial composition and diversity. A com-
bination of the database of this study with data from a Belgian population 
described a core GM shared by 95% of all subjects, yielded further in-
sights, and provided evidence that medication received by the host ex-
plains a significant part of the total microbial variation.38 Surprisingly, the 
core GM consisted of less than 20 genera, underscoring the enormous 
inter-individual variation.

Host genetics can affect the composition of the GM, and colonization 
experiments have indicated that some host-microbiota metabolic inter-
actions are transferrable traits. For example, genetic aberration leading 
to absence of the bile acid-sensing Farnesoid X nuclear receptor is re-
sponsible for GM-dependent, diet-induced obesity in germ-free 
mice.39 Likewise, early-life, transient antibiotic therapy may provoke sig-
nificant changes in GM composition, depending on the composition of 
the microbial community and the antimicrobial spectrum of the antibio-
tics used, with prolonged consequences for the host.40–42 However, a 
recent randomized controlled trial in preterm infants contradicts this 
hypothesis.43

Host diet is considered to be one of the primary determinants of GM 
composition.31,36 Western diet has been associated with decreased gut 
microbial diversity, compared to non-Western dietary habits.31 The 
beneficial effects of the Mediterranean diet are partly attributed to 
the fact that consumption of fruits, vegetables, and legumes, rich in fibre 
that is processed by bacteria, has been associated with increased SCFA 
levels. High fibre diets have been proposed to be associated with the lar-
gest benefit, due to their association with higher levels of SCFA and in-
creased bacterial diversity.31
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4.2 The pathophysiological basis of gut 
microbial associations with CAD
Compositional and functional changes of the GM relative to an–arbi-
trary–healthy state constitute what has been called dysbiosis and can 
generate CAD-related risk factors, in what has come to be known as 
the ‘gut-heart axis’. An overview of the pathophysiology will be provided 
here. The evidence from the relevant animal and human studies are pre-
sented in the next section.

Interactions between the GM and components of the cardiovascular 
system are mainly mediated by bacterial metabolites absorbed by the 
gut, bacterial molecular signals that can affect host cellular functions, 
and GM-derived compounds that leak into the systemic circulation 
(Table 3).44,45 GM-mediated systemic inflammation may be the main dri-
ver of the influence that gut bacteria exert on atherosclerosis and sub-
sequent CAD.45,46 Inflammatory pathways are partly mediated by 
Toll-like receptor (TLR) activity, but although convincing data causally 
linking inflammation with atherosclerosis exist in rodents, the evidence 
in humans is scarce.45

Metabolites produced by the GM have emerged as pivotal regulators 
of signalling pathways directly involved in atherosclerosis and arterial 
thrombosis. TMAO, produced by the liver from gut microbial TMA, 
has received considerable attention as a potential key player in the 
‘gut-heart axis’, mechanistically linked to atherosclerosis progression 
by potentially promoting foam cell production and accumulation.5

Tryptophan metabolism by gut bacteria has been linked to CVD, 
through GM-mediated production of indole derivatives. These mole-
cules are mostly beneficial, stimulating production of IL-22 in the gut 
and possibly strengthening the epithelial barrier.47,48 A reduced capacity 
of the GM to metabolize tryptophan has been associated with host 
metabolic dysregulation.49 Certain conditions, including obesity, inhibit 
GM-mediated production of indole metabolites, by enhancing trypto-
phan metabolism towards kynurenine, through increased activity of in-
doleamine 2,3-dioxygenase (IDO).50 Moreover, SCFAs are very 

important molecules with multiple links to human physiological func-
tions. In general, they are considered beneficial metabolites, associated, 
among others, with energy production that benefits the host, lipid regu-
lation, immune system modulation, and cardioprotective effects such as 
beneficial effects of against hypertension-induced cardiac injury and vas-
cular remodelling and atheroprotective properties;51–56 these are 
mediated either directly or via signalling pathways involving G protein- 
coupled receptors, such as GPR41and GPR43, and the peroxisome 
proliferator-activated receptors. Lower levels of SCFA are thus likely 
implicated in aberrations of host physiology.

Other studies have also highlighted the modulation of host lipid me-
tabolism by the GM.57–59 Existing evidence links this modulation not only 
to SCFA but to bile acid signalling as well,60 through the bile acid recep-
tor, alternatively known as the Farnesoid X receptor. Bile acid deconju-
gation in the intestines is known to be mediated by gut bacteria, which 
also generate secondary bile acids.

The impact of the GM on CAD is not likely restricted to metabolic 
profiles, as studies have revealed the presence of bacterial DNA in ath-
erosclerotic plaques, implying that gut bacteria could translocate to such 
lesions to potentially influence plaque inflammatory status and 
stability.61,62

Finally, gut microbial components can trigger low-grade inflammation 
in humans.63–65 LPS from Gram-negative bacteria can leak into the cir-
culation via a disrupted or even intact intestinal barrier, induce inflamma-
tion, and contribute to atherosclerosis. The evidence linking LPS to 
atherosclerosis has been accumulating for more than two decades, high-
lighting the detrimental role of endotoxins to human health.6,66

5. Animal and human studies on the 
association between GM and CAD
5.1 Animal studies
Studies in mice have revealed that genetically linked or diet-induced 
obesity is accompanied by changes in GM composition as well as by in-
duction of systemic inflammation and vascular dysfunction67,68 that 
could be prevented by intermittent fasting.67 Dysregulation of 
GM-related microRNA functions has been shown to induce obesity in 
mice and inflammation in white adipose tissue.69 Similarly, in swine trea-
ted with deoxycorticosterone acetate and fed a diet high in fat, salt, and 
sugar, the diversity of the GM was reduced and its composition shifted 
towards bacteria associated with host inflammation that was linked with 
increased circulating levels of tumour necrosis factor-α.70 Such studies 
reveal the links between GM aberrations and host inflammation, a 
powerful driver of atherosclerosis and, ultimately, CAD.

To investigate causality between gut dysbiosis and CAD, experimen-
tal studies have explored the effects of faecal microbiota transplantation 
to mice from animals that received a high caloric diet71 or from patients 
with CAD.72 Such interventions led to alterations in glucose and bile acid 
metabolism, immune activation, and vascular dysfunction.71,72 In 
LDL-receptor deficient mice, the presence of GM (as opposed to germ- 
free counterparts) promoted atherothrombosis in a model of 
ultrasound-induced plaque rupture.73 Similarly, microbiota with 
pro-inflammatory potential transplanted to germ-depleted, 
LDL-receptor deficient mice accelerated the atherosclerotic process 
and reduced SCFA concentrations.74 Such studies imply that the GM 
and its dysbiotic states may contribute to CVD, by promoting inflamma-
tion and atherosclerosis.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 3 Pathophysiological links between the gut 
microbiota and CAD

Process Molecules

Infections cause inflammation that 
may affect atherosclerotic plaque 

stability.

Cytokines, including tumour 
necrosis factor-α (TNF-α).

Lipopolysaccharides leaking into the 
bloodstream trigger low-grade 

systemic inflammation.

Lipopolysaccharides, TLRs.

Bacterial metabolites may affect 
proatherogenic celullar functions 

through foam cell formation and 

accumulation.

Trimethylamine N-Oxide 
(TMAO).

Reduced production of 

anti-inflammatory short-chain fatty 

acids or indole derivatives may 
promote systemic inflammation or 

metabolic dysregulation.

Propionate, acetate, butyrate, 

tryptophan, indole, indole 

derivatives.

GM-mediated aberrations in lipid 
metabolism might influence 

atherosclerosis.

Bile acids, cholesterol.
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Importantly, in rats suffering a mechanically induced myocardial in-
farction, alterations in the GM were paralleled by impairment of the in-
testinal barrier.75 These observations suggest that not only intestinal 
dysbiosis might lead to CAD, but that in turn CAD could perpetuate in-
testinal dysbiosis, thereby creating a vicious cycle.

Regarding GM-mediated bile salt metabolism and its role in athero-
sclerosis, FXR-deficient mice have been shown to develop hypercholes-
terolaemia.76 Apoe and Fxr double-knockout mice develop larger 
atherosclerotic lesions than ApoE− /− mice.77 However, evidence in hu-
mans for a role of bile salt metabolism in atherosclerosis is limited.

In a landmark study, TMAO was causally linked to atherosclerosis in 
rodents.5 Susceptibility to atherosclerosis in mice can even be transmit-
ted from high TMAO-producing, atherosclerosis-prone mice to low 
TMAO-producing, atherosclerosis-resistant mice via the faecal micro-
biota.78 GM-derived TMA can also directly contribute to platelet hyper- 
reactivity in a number of platelet agonists to enhance a prothrombotic 
potential.79

Finally, in an elegant study, inhibition or deletion of IDO1 in mice fed 
with a high fat diet resulted in significant differences in gut microbial 
composition and shifted host tryptophan metabolism away from the ky-
nurenine pathway and towards GM-mediated generation of indole deri-
vatives, resulting in the production of anti-inflammatory IL-22 and 
decreased endotoxemia.50

5.2 Human studies
A growing body of clinical evidence also indicates an important role of 
the GM in CAD (Table 4). Although earlier characterization of athero-
sclerotic plaque microbial communities had been attempted,61,80

Koren et al.62 were the first to examine both the GM and plaque micro-
bial colonies in atherosclerotic patients. They found that microbial col-
onies of atherosclerotic plaques and gut bacterial communities have 
distinct compositional differences. They also reported that the GM of 
atherosclerotic patients was not significantly different from that of con-
trols, although it is unclear how detailed this comparison was. Other 
studies, however, have found significant differences in beta diversity or 
individual taxa between patients and controls.81–88 Moreover, metabolic 
features of the GM have been shown to differ between atherosclerotic 
patients and controls.81,84 Metabolic alterations of the GM in individuals 
with atherosclerosis suggest a microbiota with a higher inflammatory 
potential.84 Studies have demonstrated a decreased abundance of mi-
crobes with capacity for producing butyrate and increased circulating le-
vels of TMAO in atherosclerotic patients.84,86

As previously mentioned,6,64,65 endotoxins are known causative fac-
tors of low-grade systemic inflammation, a crucial step in the pathway 
of atherosclerosis. In an important prospective study, patients who 
smoked and had LPS levels above the 90th percentile faced a three-fold 
increase of the risk for incident atherosclerosis, independently of vascu-
lar risk factors.6 In high-risk patients for CVD, increased circulating mar-
kers of gut-related inflammation, including LPS-binding protein, carried a 
two-fold increased risk of adverse cardiovascular outcomes.89

Circulating levels of LPS have also been associated with a higher risk 
of major adverse cardiovascular events in a large cohort of patients 
with atrial fibrillation.90

In a seminal study, Wang et al.5 reported that intestinal microbes par-
ticipate in phosphatidylcholine metabolism to produce TMA, which is 
converted to TMAO by the liver, and that TMAO levels predicted major 
adverse cardiovascular events over a 3-year follow-up. Much research 
on TMAO followed that pioneering work. Two recent meta-analyses 
made a systematic evaluation of the relationship between TMAO plasma 

levels, mortality, and major adverse cardio- and cerebrovascular 
events.91,92 These studies suggested a direct and concentration- 
dependent association between TMAO levels and all-cause mortality, 
regardless of conventional risk factors. Fasting plasma TMAO levels 
were an independent predictor of a high atherosclerotic burden, as es-
timated with the SYNTAX score in patients with CAD, and of subclin-
ical myocardial injury as quantified by high sensitivity cardiac troponin 
T (hs-cTnT).93 Further, a study in patients presenting with an acute 
coronary syndrome showed that rapid quantification of trimethyllysine 
and TMAO at presentation may provide added prognostic value for 
identifying patients at risk for either short- or long-term adverse car-
diovascular events, including in patients with negative hs-cTnT levels 
at baseline.94 However, many other studies have failed to show an as-
sociation of TMAO with CAD or CVD in general.3,95–99 Most import-
antly, a Mendelian randomization analysis has not shown any 
relation.100

6. Therapeutic options
6.1 Probiotics
Probiotics are ingestible microorganisms that reach the intestinal lumen, 
where they can play functional roles in host physiology.101 The oral ad-
ministration of adequate amounts of probiotics has been reported to 
provide cardiovascular benefit.102 Potential mechanisms include the 
strengthening of gut epithelial tight junctions to reduce LPS leakage 
and the induction of bile acid deconjugation; this will increase bile acid 
excretion and force the host to use more cholesterol to counter this 
effect.

A summary of studies on the antiatherogenic properties of probio-
tics can be found elsewhere.103 As examples, oral administration of the 
probiotic Lactobacillus rhamnosus GR-1 ameliorated cardiac remodel-
ling and pump failure in rats with an acute myocardial infarction pro-
duced by a permanent coronary artery occlusion.104 Moreover, 
treating ApoE-deficient mice with Bacteroides vulgatus and B. dorei, 
two species that may have a lower abundance in CAD patients, inhib-
ited the formation of atherosclerotic plaques.105 Consumption of L. 
acidophilus preparations may have a greater effect in lowering choles-
terol than other probiotics.106 Lactobacillus plantarum ZDY04 signifi-
cantly reduced plasma TMAO in mice, possibly via remodelling of 
the GM.107

Although preliminary, these studies highlight the therapeutic potential 
of some probiotic products. However, most positive health claims for 
probiotics rely on poor evidence, and there are as yet no strong data 
that probiotic use can prevent CVD. Evidence in humans is scarce and 
strain-specific effects remain largely unclear.108

6.2 Prebiotics
Prebiotics are defined as indigestible food components, such as inulins, 
that promote the growth and/or activity of specific microorganisms 
within the GM. Conceivably, enhancing the metabolic potential of 
beneficial bacteria will confer some benefit to host physiology. A sum-
mary of animal and human studies of prebiotics can be found else-
where.109 The enhanced production of SCFA and a strengthening of 
gut epithelial tight junctions are among the potential mechanisms of 
benefit, although the evidence is less clear in humans. Notably, bacterial 
metabolite-based interventions (‘postbiotics’) have also been de-
scribed in the context of intestinal disease, holding promise for broad-
er use.110
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6.3 Synbiotics
Synbiotics are ingestible combinations of probiotics and prebiotics (see 
definition in the Glossary). A few studies have shown some benefit of 
synbiotic use in cardiovascular disorders. A summary of human trials 
can be found in Sáez-Lara et al.111 As examples, in diabetic patients 
with CAD, a 12-week intervention with a synbiotic mixture improved 
glycemic status and HDL levels, but did not alter other cardiovascular 
risk factors.112 Similar studies aimed at reducing hyperglycemia in dia-
betes had variable results.113 In a small randomized, placebo-controlled 
human trial, the 12-week use of a synbiotic showed a modest reduction 
in both total cholesterol and low density lipoprotein.114 Another rando-
mized controlled trial has also shown benefits in lipid metabolism.115

However, the definition of the administered compounds as synbiotics 
in some trials has been challenged.116 Although such results are prom-
ising, the most effective synbiotic mixture for reduction of cardiovascu-
lar risk has yet to be identified.

6.4 Antibiotics
Given the nature of the subject and the abundance of antimicrobial com-
pounds in the medical arsenal, the use of antibiotics has been tested in 
the context of CAD. However, all relevant trials in the field failed to 
show any benefit,117 and the detrimental effect of broad-spectrum anti-
biotics to beneficial gut bacteria severely limits this approach.

6.5 Dietary interventions
The relationship between diet and human health is well established. A 
diet characterized by a very low consumption of fibres and a high intake 
of red meat (or animal proteins), saturated fats, and simple sugars, such 
as that of Western industrialized societies, has been associated with a 
high risk of CVD.118,119 On the contrary, a nutritional regime character-
ized by a high consumption of cereals, legumes, nuts, vegetables and 
fruits, consumption of fish, white meat and eggs, and a low intake of 
wine, like that of some Mediterranean countries, has been related to a 
low risk of CVD.120–124

As mentioned above, diet has a fast and considerable effect on the 
composition of the GM.36 A summary of the effects that dietary inter-
ventions have on the human GM can be found in the studies by 
Santos-Marcos et al.109 and Gerdes et al.125 A dietary pattern rich in fi-
bres may lead to beneficial compositional changes of the GM and higher 
production of SCFA and may partly explain the benefit derived from the 
Mediterranean diet.126,127 Butyrate in particular has strong anti- 
inflammatory properties and is considered highly beneficial for human 
health, providing the main energy source for colonocytes, as already 
mentioned. Low fibre intake leads not only to a reduction in GM com-
position and diversity but may also lead to a reduction in the production 
of SCFA.128 At least in rodents, diet rich in saturated fat can increase gut 
permeability and result in local increase of inflammatory cytokines.129

Thus, targeting the interactions between the host and gut microorgan-
isms through change of dietary patterns may lead to prevention of CVD.

6.6 Additional interventions that modulate 
GM–host interactions
Multiple interventions aimed at skewing the profile of the GM towards a 
more host-beneficial state have been tested. These range from untar-
geted approaches, such as physical exercise and faecal transplantation, 
to targeted approaches that include bacterial engineering and drugs af-
fecting bacterial metabolism.3 Most of these interventions remain far 
from reaching clinical practice.

Increased physical activity in humans has been linked to an enhanced 
bacterial potential for production of SCFA.130 The influence of exercise 
has been reviewed elsewhere.125 Faecal transplantation to human reci-
pients, although of medical value in certain pathological conditions like 
Clostridioides difficile infection,131 currently lacks robust evidence for a 
connection to cardiovascular health.3 There are however hints of a 
benefit, as one small study showed that the transfer of GM from lean 
donors to subjects with metabolic syndrome improved insulin sensitivity 
and increased GM diversity.132 Moreover, in animal models, genetically 
modified microorganisms may have a therapeutic effect regarding the 
spectrum of CVD.133

Given the numerous studies mentioned above that link elevated 
TMAO levels with CVD, efforts have been made to inhibit TMAO pro-
duction.134–137 Non-lethal (to microbes) small molecule drugs have 
been developed to inhibit bacterial trimethylamine lyase systems and 
have been experimentally tested in animal models, with promising 
results.

Finally, preliminary approaches in the field of nanomedicine have been 
conceptualized for future use, to modulate the GM composition, e.g. by 
using nanoparticles to deliver to the host specific microorganisms asso-
ciated with favourable metabolic profiles.30

7. Critical interpretation of 
published data and methodological 
challenges
Understanding the role of the GM in cardiovascular risk and CAD has 
several diagnostic as well as therapeutic implications. Efforts to explore 
the GM and develop significant clinical applications depend on accurate 
analyses of microbial communities. Unfortunately, GM studies are con-
founded by the complexity of microbiome measurements11 and are very 
heterogenous in study design, employed methods, sampling, preserva-
tion, measured parameters, and study populations. Such differences limit 
the ability to reproduce and compare study results, as well as to ex-
trapolate findings to other patient populations. Most importantly, there 
is yet no universally accepted consensus on what constitutes a healthy 
GM, and interindividual variability is enormous. Hence, the presence 
of control subjects in any given study is an a priori necessity.

Studies on GM are also often underpowered to capture the substan-
tial variation in the gut microbiome, lack positive and negative controls, 
and parallel plasma and/or serum samples, making it difficult to translate 
the functional alterations of the GM to a final impact on health that is 
reflected in circulating, microbiota-dependent metabolites.11,12

Moreover, in most studies, the composition of the GM is typically de-
termined by amplicon sequencing (marker gene analysis), but this ap-
proach only yields genus level taxonomic profiles,9 lacking any data on 
bacterial metabolic genes, and is no longer the method of choice.11

Various procedural steps in the microbial analysis pipeline of such stud-
ies can also be responsible for divergent results between them, as there 
is no detailed consensus on how to analyse the gut microbiome. A re-
cent study comparing six different approaches reported that DNA ex-
traction methods had the highest impact on observed microbiome 
variability.138 Similarly, a study comparing the European Metagenomics 
of the Human Intestinal Tract and the American Human Microbiome 
Project reported significant differences in distribution of bacterial taxa 
depending on the DNA extraction method.139 These results emphasize 
the risks of comparing data across studies that apply different method-
ologies and reinforce the need for well-designed longitudinal studies and 
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randomized clinical trials that provide parallel microbiota and plasma/ 
serum samples and are controlled for critical covariates.

Indeed, many studies on the human GM lack the incorporation or 
statistical handling of key covariates, such as sex, age, body mass index, 
diet, lifestyle, ethnicity, geographical region, comorbidities, and medica-
tion, that could contribute to CVD development and progression, as 
well as affect the composition of the GM itself.12,34,35,140–142 Of note, 
the use of commonly prescribed drugs such as metformin or proton 
pump inhibitors leads to changes in the GM,140,143,144 and their contri-
bution to compositional variance must be disentangled and accounted 
for.

Furthermore, the differences between gut microbial communities in 
humans and rodents hinder the extrapolation of animal study results 
to human subjects.145 Thus, while the analysis of gut microbial compos-
ition is a powerful research tool, it remains a complicated process, being 
relatively far from the point of clinical implementation.

The use of GM metabolites as biomarkers to identify high- and low- 
risk populations can be more easily implemented.146 This may be applic-
able to widely studied markers such as TMAO, uremic toxins (p-cresol 
sulphate; indoxyl sulphate—which are particularly significant in the con-
text of chronic kidney disease), bile acids and SCFAs, as well as LPS and 
other bacterial wall constituents.147,148 Nevertheless, integrating 
multi-omics data is inherently difficult and identifying a metabolite 
from the microbiome is particularly challenging, as is identifying which 
microorganism or group of microorganisms is linked to alterations of 
the levels of a particular metabolite.

Interest in TMAO as a biomarker seems justified given that in healthy 
subjects, it was associated with a risk of myocardial infarction, stroke and 
death over a 3-year follow-up.149 Also, increased TMAO predicted out-
comes even in the presence of other cardiovascular syndromes, such as 
peripheral artery disease,150 and heart failure.151,152 TMAO also has 
prothrombotic and proatherogenic effects,5,153 that are not avoided 
by the platelet aggregation inhibitor ticagrelor.154 However, TMAO as 
a biomarker remains controversial and debated,95–99 as conflicting re-
sults exist and clear-cut causality in humans has not been proven.

Lastly, as described in the related sections, a number of studies have 
focused on discerning the effects of GM modulation on cardiovascular 
health. Although promising evidence exists from research on probiotics 
and related compounds, this field is still far away from clinical implemen-
tation, and more, large, randomized controlled trials are required.

8. Conclusion
In a famous philosophical assay published in 1862, Ludwig Feuerbach 
wrote that we are what we eat. This extreme statement has since 
been challenged by many other philosophers. While what we eat cer-
tainly influences health, it is also not entirely correct, as we are also in-
fluenced by GM-dependent interpretation of our diet, which in turn 
affects various aspects of human physiology and plays a role in different 
human diseases, spanning from Parkinson’s disease to cancer. Ample evi-
dence suggests a link between the GM and CAD, and while experimental 
investigations and association studies in human patients suggest that the 
link may be causal, interventional studies that alter the composition or 
function of the GM to influence the risk of disease are still lacking. 
Nevertheless, the information already available indicates that markers 
of gut bacterial dysbiosis may improve the risk stratification for CAD. 
The interest in this new human ‘organ’ and our ‘second genome’ is es-
calating fast.

Conflict of interest: This manuscript was handled by Associate 
Editor Dominik N Müller.
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