
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/230555426

PERFORMANCE COMPARISON OF MULTICORE PROCESSORS USING VARIOUS

SOFTWARE PLATFORMS

Conference Paper · September 2007

CITATIONS

0
READS

575

3 authors:

Some of the authors of this publication are also working on these related projects:

DataGEM: Data Science based Global Economy Modeling and Forecasting View project

Enhancing portfolio management by artificial intelligence View project

Igor Mishkovski

Ss. Cyril and Methodius University in Skopje

71 PUBLICATIONS 402 CITATIONS

SEE PROFILE

Dimitar Trajanov

Ss. Cyril and Methodius University in Skopje

158 PUBLICATIONS 626 CITATIONS

SEE PROFILE

Aksenti Grnarov

Ss. Cyril and Methodius University in Skopje

53 PUBLICATIONS 410 CITATIONS

SEE PROFILE

All content following this page was uploaded by Dimitar Trajanov on 04 June 2014.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/230555426_PERFORMANCE_COMPARISON_OF_MULTICORE_PROCESSORS_USING_VARIOUS_SOFTWARE_PLATFORMS?enrichId=rgreq-87cd39efa9d189e64b9a7a4ce72f52b1-XXX&enrichSource=Y292ZXJQYWdlOzIzMDU1NTQyNjtBUzoxMDQyMTYwODEyMDcyOThAMTQwMTg1ODQ1ODMxNQ%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/230555426_PERFORMANCE_COMPARISON_OF_MULTICORE_PROCESSORS_USING_VARIOUS_SOFTWARE_PLATFORMS?enrichId=rgreq-87cd39efa9d189e64b9a7a4ce72f52b1-XXX&enrichSource=Y292ZXJQYWdlOzIzMDU1NTQyNjtBUzoxMDQyMTYwODEyMDcyOThAMTQwMTg1ODQ1ODMxNQ%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/DataGEM-Data-Science-based-Global-Economy-Modeling-and-Forecasting?enrichId=rgreq-87cd39efa9d189e64b9a7a4ce72f52b1-XXX&enrichSource=Y292ZXJQYWdlOzIzMDU1NTQyNjtBUzoxMDQyMTYwODEyMDcyOThAMTQwMTg1ODQ1ODMxNQ%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/Enhancing-portfolio-management-by-artificial-intelligence?enrichId=rgreq-87cd39efa9d189e64b9a7a4ce72f52b1-XXX&enrichSource=Y292ZXJQYWdlOzIzMDU1NTQyNjtBUzoxMDQyMTYwODEyMDcyOThAMTQwMTg1ODQ1ODMxNQ%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-87cd39efa9d189e64b9a7a4ce72f52b1-XXX&enrichSource=Y292ZXJQYWdlOzIzMDU1NTQyNjtBUzoxMDQyMTYwODEyMDcyOThAMTQwMTg1ODQ1ODMxNQ%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Igor-Mishkovski?enrichId=rgreq-87cd39efa9d189e64b9a7a4ce72f52b1-XXX&enrichSource=Y292ZXJQYWdlOzIzMDU1NTQyNjtBUzoxMDQyMTYwODEyMDcyOThAMTQwMTg1ODQ1ODMxNQ%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Igor-Mishkovski?enrichId=rgreq-87cd39efa9d189e64b9a7a4ce72f52b1-XXX&enrichSource=Y292ZXJQYWdlOzIzMDU1NTQyNjtBUzoxMDQyMTYwODEyMDcyOThAMTQwMTg1ODQ1ODMxNQ%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Ss_Cyril_and_Methodius_University_in_Skopje?enrichId=rgreq-87cd39efa9d189e64b9a7a4ce72f52b1-XXX&enrichSource=Y292ZXJQYWdlOzIzMDU1NTQyNjtBUzoxMDQyMTYwODEyMDcyOThAMTQwMTg1ODQ1ODMxNQ%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Igor-Mishkovski?enrichId=rgreq-87cd39efa9d189e64b9a7a4ce72f52b1-XXX&enrichSource=Y292ZXJQYWdlOzIzMDU1NTQyNjtBUzoxMDQyMTYwODEyMDcyOThAMTQwMTg1ODQ1ODMxNQ%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Dimitar-Trajanov?enrichId=rgreq-87cd39efa9d189e64b9a7a4ce72f52b1-XXX&enrichSource=Y292ZXJQYWdlOzIzMDU1NTQyNjtBUzoxMDQyMTYwODEyMDcyOThAMTQwMTg1ODQ1ODMxNQ%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Dimitar-Trajanov?enrichId=rgreq-87cd39efa9d189e64b9a7a4ce72f52b1-XXX&enrichSource=Y292ZXJQYWdlOzIzMDU1NTQyNjtBUzoxMDQyMTYwODEyMDcyOThAMTQwMTg1ODQ1ODMxNQ%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Ss_Cyril_and_Methodius_University_in_Skopje?enrichId=rgreq-87cd39efa9d189e64b9a7a4ce72f52b1-XXX&enrichSource=Y292ZXJQYWdlOzIzMDU1NTQyNjtBUzoxMDQyMTYwODEyMDcyOThAMTQwMTg1ODQ1ODMxNQ%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Dimitar-Trajanov?enrichId=rgreq-87cd39efa9d189e64b9a7a4ce72f52b1-XXX&enrichSource=Y292ZXJQYWdlOzIzMDU1NTQyNjtBUzoxMDQyMTYwODEyMDcyOThAMTQwMTg1ODQ1ODMxNQ%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Aksenti-Grnarov?enrichId=rgreq-87cd39efa9d189e64b9a7a4ce72f52b1-XXX&enrichSource=Y292ZXJQYWdlOzIzMDU1NTQyNjtBUzoxMDQyMTYwODEyMDcyOThAMTQwMTg1ODQ1ODMxNQ%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Aksenti-Grnarov?enrichId=rgreq-87cd39efa9d189e64b9a7a4ce72f52b1-XXX&enrichSource=Y292ZXJQYWdlOzIzMDU1NTQyNjtBUzoxMDQyMTYwODEyMDcyOThAMTQwMTg1ODQ1ODMxNQ%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Ss_Cyril_and_Methodius_University_in_Skopje?enrichId=rgreq-87cd39efa9d189e64b9a7a4ce72f52b1-XXX&enrichSource=Y292ZXJQYWdlOzIzMDU1NTQyNjtBUzoxMDQyMTYwODEyMDcyOThAMTQwMTg1ODQ1ODMxNQ%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Aksenti-Grnarov?enrichId=rgreq-87cd39efa9d189e64b9a7a4ce72f52b1-XXX&enrichSource=Y292ZXJQYWdlOzIzMDU1NTQyNjtBUzoxMDQyMTYwODEyMDcyOThAMTQwMTg1ODQ1ODMxNQ%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Dimitar-Trajanov?enrichId=rgreq-87cd39efa9d189e64b9a7a4ce72f52b1-XXX&enrichSource=Y292ZXJQYWdlOzIzMDU1NTQyNjtBUzoxMDQyMTYwODEyMDcyOThAMTQwMTg1ODQ1ODMxNQ%3D%3D&el=1_x_10&_esc=publicationCoverPdf

PERFORMANCE COMPARISON OF MULTICORE PROCESSORS

USING VARIOUS SOFTWARE PLATFORMS

Igor Miskovski
1
, Dimitar Trajanov

1
, and Aksenti Grnarov

1

1
University SS. Cyril & Methodius, Faculty of Electrical engineering and Information Technologies, Department

of Computer Science, Karpos 2 bb, Skopje, R. Macedonia, igorm@feit.ukim.edu.mk

Abstract—In the last two years, with appearance of

multicore processors, the need of parallel programming

has become essential. Programmers using multicore

processors are forced to deliver the best performance. But

in their effort they must face the selection of the

programming model. We have examined the performance

on multicore processors for most popular languages and

models of parallel programming. For analysis we chose

the C++, C# and Java programming languages and MPI

and OpenMP programming models.

Index terms—Performance Measurement, Multicore

processors, MPI, OpenMP, Java, C#, Threading

1. INTRODUCTION

Concurrent programming is difficult [1], yet many

technologists predict the end of Moore’s law will be answered

with increasingly parallel computer architectures—multicore

or chip multiprocessors (CMPs) [2]. If we hope to achieve

continued performance gains, programs must be able to

exploit this parallelism.

Because of the big explosion of the multicore processors for

home use and the need of parallelizing the existing software

sequential applications, in order to help the programmer, we

present a performance comparison of the message passing

paradigm MPI and shared memory paradigms (OpenMP,

multithreading with system calls, C#.NET and Java).

Nowadays widely accepted programming languages like

C/C++ offer the opportunity to use functions from MPI

libraries, OpenMP directives and integrated multithreading,

resulting in decreasing the overall execution time of the

today’s application. For our analysis we used two parallel

algorithms, the first one for calculation the PI number and the

second one for matrix multiplication. We have chosen these

two algorithms because the first one is only computational

intensive and there is no input data, whereas on the other hand

multiplication of square matrices is algorithm both

computational and data intensive. Thus, this paper provides

two contributions: the comparison of performance of different

multicore processors and comparison of performance of

different programming languages and parallel programming

models.

The paper is organized in the following way. The second

section describes the multicore platform by explaining

multicore processors from top industry multicore processor

manufacturers: Intel and AMD. It also gives an overview of

used processors in our simulation. Section 3 describes the

software solutions for parallel programming on multicore

processors, while section 4 defines the problems and

algorithm implementation in a certain model. Section 5

presents performance comparison results. Section 6

concludes.

2. MULTICORE PLATFORM

Multicore is the hot topic in the latest round of CPUs from

Intel, AMD and Sun. As clock speed increases becoming

more and more difficult to achieve, vendors have turned to

multicore CPUs as the best way to gain additional

performance. Even though the concept of using concurrent

CPUs to increase overall software performance has been

around for at least 35 years, remarkably little in the way of

development tools has made it to the commercial marketplace.

As a result, the vast majority of applications are single-

threaded [3]. Today, multicore architectures are an inflection

point in mainstream software development because they force

developers to write parallel programs [4]. Intel and AMD, the

top industry rivals, have already introduced dual-core and

quad-core chips for desktop PCs. And that’s just the start of a

trend that could bring an important change to PCs: multicore

processing [5].

Intel currently uses Core Duo (based on Pentium M), Core 2

Duo and Xeon (based on Core) microprocessors with dual-

core technology for low-end computers. Besides increased

processor speed, one of the primary differences between the

Intel’s Core Duo and the Core 2 Duo is an increase in the

amount of the shared Level 2 cache. The Core 2 Duo has

doubled the amount of on-board cache to 4 MiB. Both chips

have 65 nm process technology architecture and support a

667-1066 MHz front-side-bus (FSB).

The AMD’s first desktop-based dual core processor family —

the Athlon 64 X2 can be distinguished from Intel's early dual-

core design, as the X2 mated two cores into a single chip,

rather than two chips on a single package. Intel's method with

the Pentium D may have had theoretical yield advantages, but

it gave up some performance advantage since interprocessor

communication still happened over external pins, rather than

internally. The X2 improved upon the performance of the

original Athlon 64, especially for multi-threaded software

applications.

2.1 Used microprocessors

For the purpose of our simulation we have used three different

dual-core processors and a single-core processor. A machine

has been used with two AMD Opteron model 275 Dual

Core 2.2GHz processors with a 2 x 1024 KB L2 cache,

64KB L1 Data Cache, 64KB L1 Code Cache and

HyperTransport Technology Speed of 1GHz.

The second PC we have used is equipped with Athlon 64 X2

Dual Core Processor 4200+, that runs at 2.2GHz with 2 x

512 KiB L2 Cache, 64KB L1 Data Cache, 64KB L1 Code

Cache and HyperTransport Technology Speed of 1GHz.

We used another dual core processor, Pentium D 805 Dual

Core processor, that runs at 2.66GHz with a 533MHz FSB

and shares two separate 1MB L2 caches that are located on

the processor. This processor fully supports 64-bit computing

via the Intel EM64T technology.

We have also used PC with AMD Sempron 2600+ processor

that runs on 1.6 GHz with a 200.9 MHz FSB. The cache

memory consists of 64KB L1 Data Cache, 64KB L1 Code

Cache and 128KB L2 Cache.

3. PROGRAMMING MODELS

Throughout the years, many different parallel programming

techniques were implemented. Through the development of

parallel application most dominant alternatives have become

message passing and multithreading programming. These two

approaches differ in how the concurrent segments of the

application share the data and how they synchronize their

work.

3.1 Message Passing Interface

The Message Passing Interface (MPI) [6] is a specification for

a set of functions for managing the movement of data among

sets of communicating processes. MPI defines functions for

point-to-point communication between two processes,

collective operations among processes, parallel I/O and

process management. In addition, MPI’s support for

communicators facilitates the creation of modular programs

and reusable libraries. Communication in MPI specifies the

types and layout of data being communicated, allowing MPI

implementations to both optimize for noncontiguous data in

memory and support clusters of heterogeneous systems.

One implementation of MPI is MPICH2, whose goal is to

provide an MPI implementation for important platforms,

including clusters, SMPs and massively parallel processors. It

also provides a good start for developing new and better

parallel programming environments.

3.2 Multithreaded Programming in C++

C++ does not contain any built-in support for multithreaded

application [7]. Instead it relies entirely upon the operating

system to provide this feature. In this way, C++ allows

directly to utilize the multithreading features provided by the

operating system. The operating system defines a rich set of

thread related functions that enable finely grained control over

the creation and management of a thread. There are several

ways to control access to shared resource, including

semaphores, mutexes, event objects, waitable timers and

critical regions. With C++, one can gain access to all the

features that the operating system provides. This is a major

advantage when writing high-performance code.

3.3 OpenMP

OpenMP [8] provides three kinds of directives:

parallelism/work sharing, data environment, and

synchronization.

OpenMP uses the fork-join model of parallel execution. An

OpenMP program begins execution as a single process, called

the master thread of execution. The fundamental directive for

expressing parallelism is the parallel directive. It defines a

parallel region of the program, which is executed by multiple

threads. When the master thread enters a parallel region, it

forks a team of threads (one of them being the master thread),

and work is continued in parallel among these threads. Upon

exiting the parallel construct, the threads in the team

synchronize (join the master), and only the master continues

execution. The statements in the parallel region, including

functions called from within the enclosed statements, are

executed in parallel by each thread in the team. The

statements enclosed lexically within a construct define the

static extent of the construct. The dynamic extent further

includes the functions called from within the construct.

3.4 Multithreading in .NET

By nature and architecture .NET is a multi-threaded

environment. This environment has been chosen because of

the popularity of the programming language C#.NET [9].

Today, most applications tend to be written in C#.NET and

because this paper is intended for measuring performance on

multicore processors, processors for future low-end

computers, we decided to include multithreading in .NET.

There are two main ways of multi-threading which .NET

encourages: starting own threads and using the pool either

directly or indirectly using asynchronous methods. In general,

one should create a new thread "manually" for long-running

tasks, whereas for short-running tasks, particularly those

created often, the thread pool is an excellent choice. The

thread pool can run many jobs at once, and uses framework

classes internally. In case of synchronization as there is

limited amount of recourses, there can be a restriction on the

access to the resource by one thread at a time. In these

situations one can consider implementing locking on the

thread.

3.4 Multithreading in Java

Java is a programming language which has been designed to

support concurrent programming [10], and all execution in the

language takes place in the context of a thread. It is important

for a Java programmer to understand both the power and

limitations of Java threads.

In the JVM (Java Virtual Machine) [11], objects and

resources can be accessed by many separate threads; each

thread has its own path of execution but can potentially access

any object in the program. The programmer must ensure that

threads do not interfere with each other, and that resources are

properly coordinated (or "synchronized") during both read

and write access. The Java language has built-in constructs to

support this coordination. When the object resources are

being used by multiple threads produced by the re-entrant-

capable process i.e. object, each of these threads are

competing. The Java environment handles the competition on

the object resources by these threads by providing the monitor

mechanism, similar to the semaphores in other languages.

While the monitors are being acquired or released for

implementing the synchronization, the threads enter into the

waiting pool, internal to the Java environment.

The Java Language Specification does not say how the JVM

designer should implement the multithreading primitives

specified, because there is so much variation among the

various operating systems and hardware on which the JVM is

expected to run.

4. IMPLEMENTATION ISSUE

4.1 Used algorithms

For the purpose of this paper we used two algorithms:

calculation of PI and dense matrix multiplication.

The value of PI can be calculated with integration of non-

negative function in given interval (1).

1

2

0

4

1
dx

x+
∫ (1)

The integration is approximately done by dividing the region

in regular geometric forms and summation of the area of these

forms. In our simulation we divided the region in 500 millions

forms and obtained the value of PI by summation of the

calculated area.

For matrix multiplication we have used the well-known

sequential algorithm. In our simulation we have multiplied

two square matrices with dimension 1000 x 1000.

4.2 From sequential to parallel programming

Given the sequential algorithms we used manual method for

developing parallel code. The parallel solution is

computationally intensive with minimum communication.

Each parallel task works on a portion of the data, which is

block partitioned. When parallelizing the given algorithm we

have used coarse-grain parallelism with high computational to

communication ratio which implied more opportunity for

performance increase. The following text gives a short

description of the parallel algorithms.

OpenMP has many utility functions, but the most of the work

is done with #pragma commands. We use the parallel for

directive for creating concurrent threads and for statement for

delivering the work. The private clause means that every

thread has its own local copy of the x variable (fig. 1).

Fig. 1 Calculating PI number using OpenMP

Implementation with MPI required set of function for

managing the movement of data among sets of

communication processes (fig. 2). The programmer must

foresee the decomposition of the problem.

Fig. 2 Calculating PI number using MPI

With multithreading in C++ program developers face the race

conditions, deadlocks, mutexes. It’s very hard for the

programmer to isolate the defects and debug the program. The

program code becomes unreadable and uncommon for the

way the programmers’ mind works (fig. 3).

Fig. 3 Calculating PI number using Multithreading in C++

In our implementation of multithreading with C#.NET we

used the Thread class from the System.Threading namespace.

We manually created threads from the current thread and each

of these threads used different portion of data (fig. 4). Also

we used the thread pool but the results in either case were the

same.

Fig. 4 Calculating PI number using Multithreading in .NET

The Java environment handles race conditions by providing

monitor mechanism. While the synchronization is

implemented, the threads enter into the waiting pool, internal

to the Java environment (fig. 5).

Fig. 5 Calculating PI number using Multithreading in Java

5. PERFORMANCE COMPARISON RESULTS

All the measurements were carried out after all unnecessary

processes were stopped and the network was unplugged, thus

lowering to minimum CPU load. In order to analyze the

influence of multiple threads we ran the parallelized

applications with different number of threads (from 1 to 8

threads). For each run we make 10 measurements and then we

get the average value.

So as to notice the possible performance decrease of the

parallelized applications when they run on single-core

processors, we measure performance on single-core AMD

Sempron 2600+ processor. Fig.6 shows the speedup of PI

calculation relative to sequential application depending on the

number of threads for MPI, OpenMP, C++, Java and C#. The

speedups of all applications are near 1 except for Java which

has smaller speedup of around 0.8. In addition the speedup is

not dependent on the number of threads. Fig. 7 shows the

speedup of the matrix multiplication relative to sequential

application depending on the number of threads for MPI,

OpenMP, C++, Java and C#. The best result shows the MPI,

second is OpenMP and third is C++. The C# and Java

implementations have the poorest performance, because their

execution is on virtual machines.

The performance of the same applications for Intel Pentium D

Dual Core processor is shown in fig. 8 (PI calculation) and

fig. 9 (matrix multiplication). When applications are running

with more than one thread the gained speedup for PI

calculation is near 2 for all applications except for Java which

has very bad speedup (around 0.5 for one thread and 1 for two

threads). For matrix multiplication the performances are

similar. The best speedup is achieved with OpenMP

application only when even number of threads is used and this

is the only case where OpenMP is better than MPI.

The measured performance on AMD AthlonX2 procesoor is

similar to that on the Intel Dual Core processor. The only

difference is that the Java application has better speedup than

that achieved on the Intel Dual Core processor. The results are

shown in fig. 10 (PI calculation) and fig. 11 (matrix

multiplication).

When using AMD Opteron 275 one can see the linear

increase of the speedup relative to the number of execution

threads (until the number oft threads reach the number of

processors), for both the PI calculation and the matrix

multiplication (fig. 12 and fig. 13). It is noticeable that using

five threads gives the worst performances and what is more

the speedup is almost the same as when three threads are used.

C# performances with matrix multiplication are worse than

the ones with PI calculation. Yet still Java is the worst

solution.

Fig. 14 shows that all software platforms have nearly the same

average speedup of multithreaded version of PI calculation

relative to single threaded version, whereas fig. 15 shows that

in general Java has the best average speedup of multithreaded

version of matrix calculation relative to single threaded

version for all test processors.

6. CONCLUDING REMARKS

Every programmer chooses certain platform for parallel

programming depending on the algorithm that he uses. He

must predict the performance drawback when his parallel

application will be used on a machine with a single core. The

ideal speedup is very rarely achieved. When parallelizing

loops, OpenMP seems the easiest way and also gives very

good results. Programmers must allow dynamic change of the

number of threads depending on the number of cores in the

processor. Our conclusion is that parallel programming with

OpenMP is the easiest solution for the programmer to choose.

The performance loss at a single-core machine when using

parallel application for PI calculation is relatively small. For

0

0,2

0,4

0,6

0,8

1

1,2

1 2 3 4 5 6 7 8

Number of threads

S
p

e
e

d
u

p

OpenMP

C++

MPI

C#

Java

Fig. 6 Speedup of PI calculation relative to sequential

application depending on the number of threads for AMD

Sempron 2600+

0

0,2

0,4

0,6

0,8

1

1,2

1 2 3 4 5 6 7 8

Number of threads

S
p

e
e

d
u

p

OpenMP

C++
MPI

C#
Java

Fig. 7 Speedup of matrix multiplication relative to sequential

application depending on the number of threads for AMD

Sempron 2600+

0

0,2

0,4

0,6

0,8

1

1,2

1,4

1,6

1,8

2

1 2 3 4 5 6 7 8

Number of threads

S
p

e
e

d
u

p

OpenMP

C++

MPI

C#

Java

Fig. 8 Speedup of PI calculation relative to sequential

application depending on the number of threads for Intel

Pentium D Dual Core

0

0,2

0,4

0,6

0,8

1

1,2

1,4

1,6

1,8

2

1 2 3 4 5 6 7 8

Number of threads

S
p

e
e

d
u

p

OpenMP

C++

MPI

C#

Java

Fig. 9 Speedup of matrix multiplication relative to sequential

application depending on the number of threads for Intel

Pentium D Dual Core

0

0,2

0,4

0,6

0,8

1

1,2

1,4

1,6

1,8

2

1 2 3 4 5 6 7 8

Number of threads

S
p

e
e

d
u

p

OpenMP

C++

MPI

C#

Java

Fig. 10 Speedup of PI calculation relative to sequential

application depending on the number of threads for AMD

Athlon X2

0

0,2

0,4

0,6

0,8

1

1,2

1,4

1,6

1,8

2

1 2 3 4 5 6 7 8

Number of threads

S
p

e
e
d

u
p

OpenMP

C++

MPI

C#

Java

Fig. 11 Speedup of matrix multiplication relative to sequential

application depending on the number of threads for AMD

Athlon X2

matrix multiplication the loss of the performance is

significant, about 2% for MPI, 6% for OpenMP, 17.5% for

C++, 70% for C# and 140% for Java. Thus when we have

application similar to Matrix multiplications it might be better

to have two versions, one parallel and one sequential.

The Java and C# have poor performance. Their two-threaded

versions when run on multicore processors have similar

performance like C++ version with a single thread. Thus

writing parallel application in C# and Java does not mean

performance increase, and it might be better and easier to

rewrite the application in C++ rather than parallelizing the

original application. It is interesting to note that Java has the

worst performances, but it has the best speedup relatively to

his single threaded version, which indicates good

implementation of multithreading subsystem.

For future work, parallelizing open source programs will take

part in our simulation and this parallelization will be also

done with other parallel languages like JavaPP, HPF, Parallel

C and C++.

7. REFERENCES

[1] H. Sutter and J. Larus, “Software and the Concurrency

Revolution”, ACM Queue, vol. 3, no. 7, 2005, pp. 54-62.

[2] Hesham El-Rewini and Mostafa Abd-El-Barr, Advanced

Computer Architecture and Parallel Processing, Wiley-

Interscience, 2005

[3] Mache Creeger „Multicore CPUs for the Masses”, ACM

Queue vol. 3, no. 7 - September 2005

[4] Ali-Reza Adl-Tabatabai, Christos Kozyrakis, Bratin

Saha, “Unlocking Concurrency”, ACM Queue vol. 4, no.

10 - December 2006 / January 2007

[5] Laurianne McLaughlin, “Multicore mania”, december

2005

[6] J. Dongarra et al, Morgan “Sourcebook of parallel

computing”, Elsevier, 2003

[7] http://www.devarticles.com/c/a/Cplusplus/Multithreading

-in-C/

[8] OpenMP ARB, “OpenMP API”, http://www.openmp.org/

[9] Mark Strawmyer, “Multithreading in .NET

Applications”,http://www.codeguru.com/columns/dotnet/

article.php/c4611/, July 2003

[10] http://en.wikipedia.org/wiki/Java_concurrency

[11] http://java.ittoolbox.com/documents/popular-q-and-

a/multithreading-fundamentals-2185

0

0,5

1

1,5

2

2,5

3

3,5

4

1 2 3 4 5 6 7 8

Number of threads

S
p

e
e

d
u

p

OpenMP

C++

MPI

C#

Java

Fig. 12 Speedup of PI calculation relative to sequential

application depending on the number of threads for AMD

Opteron 275

0

0,5

1

1,5

2

2,5

3

3,5

4

1 2 3 4 5 6 7 8

Number of threads

S
p

e
e
d

u
p

OpenMP

C++

MPI

C#

Java

Fig. 13 Speedup of matrix multiplication relative to

sequential application depending on the number of threads for

AMD Opteron 275

0

0,5

1

1,5

2

2,5

3

3,5

Sempron Intel Opteron AthlonX2

CPU

S
p

e
e

d
u

p

JAVA

MPI

OpenMP

C#

C++

Fig. 14 Average speedup of multithreaded version of PI

calculation relative to single threaded version

0

0,5

1

1,5

2

2,5

3

3,5

Sempron Intel Opteron AthlonX2

CPU

S
p

e
e

d
u

p

Java

MPI

OMP

C#

C++

Fig. 15 Average speedup of multithreaded version of matrix

calculation relative to single threaded version

View publication stats

https://www.researchgate.net/publication/230555426

