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Abstract—In the last two years, with appearance of 

multicore processors, the need of parallel programming 

has become essential. Programmers using multicore 

processors are forced to deliver the best performance. But 

in their effort they must face the selection of the 

programming model. We have examined the performance 

on multicore processors for most popular languages and 

models of parallel programming. For analysis we chose 

the C++, C# and Java programming languages and MPI 

and OpenMP programming models. 

Index terms—Performance Measurement, Multicore 

processors, MPI, OpenMP, Java, C#, Threading  

1. INTRODUCTION 

Concurrent programming is difficult [1], yet many 

technologists predict the end of Moore’s law will be answered 

with increasingly parallel computer architectures—multicore 

or chip multiprocessors (CMPs) [2]. If we hope to achieve 

continued performance gains, programs must be able to 

exploit this parallelism. 

Because of the big explosion of the multicore processors for 

home use and the need of parallelizing the existing software 

sequential applications, in order to help the programmer, we 

present a performance comparison of the message passing 

paradigm MPI and shared memory paradigms (OpenMP, 

multithreading with system calls, C#.NET and Java). 

Nowadays widely accepted programming languages like 

C/C++ offer the opportunity to use functions from MPI 

libraries, OpenMP directives and integrated multithreading, 

resulting in decreasing the overall execution time of the 

today’s application. For our analysis we used two parallel 

algorithms, the first one for calculation the PI number and the 

second one for matrix multiplication. We have chosen these 

two algorithms because the first one is only computational 

intensive and there is no input data, whereas on the other hand 

multiplication of square matrices is algorithm both 

computational and data intensive. Thus, this paper provides 

two contributions: the comparison of performance of different 

multicore processors and comparison of performance of 

different programming languages and parallel programming 

models. 

The paper is organized in the following way. The second 

section describes the multicore platform by explaining 

multicore processors from top industry multicore processor 

manufacturers: Intel and AMD. It also gives an overview of 

used processors in our simulation. Section 3 describes the 

software solutions for parallel programming on multicore 

processors, while section 4 defines the problems and 

algorithm implementation in a certain model. Section 5 

presents performance comparison results. Section 6 

concludes. 

2. MULTICORE PLATFORM 

Multicore is the hot topic in the latest round of CPUs from 

Intel, AMD and Sun. As clock speed increases becoming 

more and more difficult to achieve, vendors have turned to 

multicore CPUs as the best way to gain additional 

performance. Even though the concept of using concurrent 

CPUs to increase overall software performance has been 

around for at least 35 years, remarkably little in the way of 

development tools has made it to the commercial marketplace. 

As a result, the vast majority of applications are single-

threaded [3]. Today, multicore architectures are an inflection 

point in mainstream software development because they force 

developers to write parallel programs [4]. Intel and AMD, the 

top industry rivals, have already introduced dual-core and 



quad-core chips for desktop PCs. And that’s just the start of a 

trend that could bring an important change to PCs: multicore 

processing [5]. 

Intel currently uses Core Duo (based on Pentium M), Core 2 

Duo and Xeon (based on Core) microprocessors with dual-

core technology for low-end computers. Besides increased 

processor speed, one of the primary differences between the 

Intel’s Core Duo and the Core 2 Duo is an increase in the 

amount of the shared Level 2 cache. The Core 2 Duo has 

doubled the amount of on-board cache to 4 MiB. Both chips 

have 65 nm process technology architecture and support a 

667-1066 MHz front-side-bus (FSB). 

The AMD’s first desktop-based dual core processor family — 

the Athlon 64 X2 can be distinguished from Intel's early dual-

core design, as the X2 mated two cores into a single chip, 

rather than two chips on a single package. Intel's method with 

the Pentium D may have had theoretical yield advantages, but 

it gave up some performance advantage since interprocessor 

communication still happened over external pins, rather than 

internally. The X2 improved upon the performance of the 

original Athlon 64, especially for multi-threaded software 

applications.  

2.1 Used microprocessors 

For the purpose of our simulation we have used three different 

dual-core processors and a single-core processor. A machine 

has been used with two AMD Opteron model 275 Dual 

Core 2.2GHz processors with a 2 x 1024 KB L2 cache, 

64KB L1 Data Cache, 64KB L1 Code Cache and 

HyperTransport Technology Speed of 1GHz. 

The second PC we have used is equipped with Athlon 64 X2 

Dual Core Processor 4200+, that runs at 2.2GHz with 2 x 

512 KiB L2 Cache, 64KB L1 Data Cache, 64KB L1 Code 

Cache and HyperTransport Technology Speed of 1GHz. 

We used another dual core processor, Pentium D 805 Dual 

Core processor, that runs at 2.66GHz with a 533MHz FSB 

and shares two separate 1MB L2 caches that are located on 

the processor.  This processor fully supports 64-bit computing 

via the Intel EM64T technology.  

We have also used PC with AMD Sempron 2600+ processor 

that runs on 1.6 GHz with a 200.9 MHz FSB. The cache 

memory consists of 64KB L1 Data Cache, 64KB L1 Code 

Cache and 128KB L2 Cache. 

3. PROGRAMMING MODELS 

Throughout the years, many different parallel programming 

techniques were implemented. Through the development of 

parallel application most dominant alternatives have become 

message passing and multithreading programming. These two 

approaches differ in how the concurrent segments of the 

application share the data and how they synchronize their 

work. 

3.1 Message Passing Interface 

The Message Passing Interface (MPI) [6] is a specification for 

a set of functions for managing the movement of data among 

sets of communicating processes. MPI defines functions for 

point-to-point communication between two processes, 

collective operations among processes, parallel I/O and 

process management. In addition, MPI’s support for 

communicators facilitates the creation of modular programs 

and reusable libraries. Communication in MPI specifies the 

types and layout of data being communicated, allowing MPI 

implementations to both optimize for noncontiguous data in 

memory and support clusters of heterogeneous systems. 

One implementation of MPI is MPICH2, whose goal is to 

provide an MPI implementation for important platforms, 

including clusters, SMPs and massively parallel processors. It 

also provides a good start for developing new and better 

parallel programming environments. 

3.2 Multithreaded Programming in C++ 

C++ does not contain any built-in support for multithreaded 

application [7]. Instead it relies entirely upon the operating 

system to provide this feature. In this way, C++ allows 

directly to utilize the multithreading features provided by the 

operating system. The operating system defines a rich set of 

thread related functions that enable finely grained control over 

the creation and management of a thread. There are several 

ways to control access to shared resource, including 

semaphores, mutexes, event objects, waitable timers and 

critical regions. With C++, one can gain access to all the 

features that the operating system provides. This is a major 

advantage when writing high-performance code. 

3.3 OpenMP 

OpenMP [8] provides three kinds of directives: 

parallelism/work sharing, data environment, and 

synchronization. 

OpenMP uses the fork-join model of parallel execution. An 

OpenMP program begins execution as a single process, called 

the master thread of execution. The fundamental directive for 

expressing parallelism is the parallel directive. It defines a 

parallel region of the program, which is executed by multiple 

threads. When the master thread enters a parallel region, it 

forks a team of threads (one of them being the master thread), 

and work is continued in parallel among these threads. Upon 

exiting the parallel construct, the threads in the team 

synchronize (join the master), and only the master continues 

execution. The statements in the parallel region, including 

functions called from within the enclosed statements, are 

executed in parallel by each thread in the team. The 

statements enclosed lexically within a construct define the 

static extent of the construct. The dynamic extent further 

includes the functions called from within the construct. 



3.4 Multithreading in .NET 

By nature and architecture .NET is a multi-threaded 

environment. This environment has been chosen because of 

the popularity of the programming language C#.NET [9].  

Today, most applications tend to be written in C#.NET and 

because this paper is intended for measuring performance on 

multicore processors, processors for future low-end 

computers, we decided to include multithreading in .NET. 

There are two main ways of multi-threading which .NET 

encourages: starting own threads and using the pool either 

directly or indirectly using asynchronous methods. In general, 

one should create a new thread "manually" for long-running 

tasks, whereas for short-running tasks, particularly those 

created often, the thread pool is an excellent choice. The 

thread pool can run many jobs at once, and uses framework 

classes internally. In case of synchronization as there is 

limited amount of recourses, there can be a restriction on the 

access to the resource by one thread at a time. In these 

situations one can consider implementing locking on the 

thread. 

3.4 Multithreading in Java 

Java is a programming language which has been designed to 

support concurrent programming [10], and all execution in the 

language takes place in the context of a thread. It is important 

for a Java programmer to understand both the power and 

limitations of Java threads. 

In the JVM (Java Virtual Machine) [11], objects and 

resources can be accessed by many separate threads; each 

thread has its own path of execution but can potentially access 

any object in the program. The programmer must ensure that 

threads do not interfere with each other, and that resources are 

properly coordinated (or "synchronized") during both read 

and write access. The Java language has built-in constructs to 

support this coordination. When the object resources are 

being used by multiple threads produced by the re-entrant-

capable process i.e. object, each of these threads are 

competing. The Java environment handles the competition on 

the object resources by these threads by providing the monitor 

mechanism, similar to the semaphores in other languages. 

While the monitors are being acquired or released for 

implementing the synchronization, the threads enter into the 

waiting pool, internal to the Java environment. 

The Java Language Specification does not say how the JVM 

designer should implement the multithreading primitives 

specified, because there is so much variation among the 

various operating systems and hardware on which the JVM is 

expected to run. 

4. IMPLEMENTATION ISSUE 

4.1 Used algorithms 

For the purpose of this paper we used two algorithms: 

calculation of PI and dense matrix multiplication. 

The value of PI can be calculated with integration of non-

negative function in given interval (1).  

1

2

0

4

1
dx

x+
∫      (1) 

The integration is approximately done by dividing the region 

in regular geometric forms and summation of the area of these 

forms. In our simulation we divided the region in 500 millions 

forms and obtained the value of PI by summation of the 

calculated area. 

For matrix multiplication we have used the well-known 

sequential algorithm. In our simulation we have multiplied 

two square matrices with dimension 1000 x 1000. 

4.2 From sequential to parallel programming 

Given the sequential algorithms we used manual method for 

developing parallel code. The parallel solution is 

computationally intensive with minimum communication. 

Each parallel task works on a portion of the data, which is 

block partitioned. When parallelizing the given algorithm we 

have used coarse-grain parallelism with high computational to 

communication ratio which implied more opportunity for 

performance increase. The following text gives a short 

description of the parallel algorithms. 

OpenMP has many utility functions, but the most of the work 

is done with #pragma commands. We use the parallel for 

directive for creating concurrent threads and for statement for 

delivering the work. The private clause means that every 

thread has its own local copy of the x variable (fig. 1).   

 

Fig. 1 Calculating PI number using OpenMP 

Implementation with MPI required set of function for 

managing the movement of data among sets of 

communication processes (fig. 2). The programmer must 

foresee the decomposition of the problem. 

 

Fig. 2 Calculating PI number using MPI 



With multithreading in C++ program developers face the race 

conditions, deadlocks, mutexes. It’s very hard for the 

programmer to isolate the defects and debug the program. The 

program code becomes unreadable and uncommon for the 

way the programmers’ mind works (fig. 3).   

 

Fig. 3 Calculating PI number using Multithreading in C++ 

In our implementation of multithreading with C#.NET we 

used the Thread class from the System.Threading namespace. 

We manually created threads from the current thread and each 

of these threads used different portion of data (fig. 4). Also 

we used the thread pool but the results in either case were the 

same. 

 

Fig. 4 Calculating PI number using Multithreading in .NET 

The Java environment handles race conditions by providing 

monitor mechanism. While the synchronization is 

implemented, the threads enter into the waiting pool, internal 

to the Java environment (fig. 5). 

 

Fig. 5 Calculating PI number using Multithreading in Java 

5. PERFORMANCE COMPARISON RESULTS 

All the measurements were carried out after all unnecessary 

processes were stopped and the network was unplugged, thus 

lowering to minimum CPU load.  In order to analyze the 

influence of multiple threads we ran the parallelized 

applications with different number of threads (from 1 to 8 

threads). For each run we make 10 measurements and then we 

get the average value. 

So as to notice the possible performance decrease of the 

parallelized applications when they run on single-core 

processors, we measure performance on single-core AMD 

Sempron 2600+ processor. Fig.6 shows the speedup of PI 

calculation relative to sequential application depending on the 

number of threads for MPI, OpenMP, C++, Java and C#. The 

speedups of all applications are near 1 except for Java which 

has smaller speedup of around 0.8. In addition the speedup is 

not dependent on the number of threads. Fig. 7 shows the 

speedup of the matrix multiplication relative to sequential 

application depending on the number of threads for MPI, 

OpenMP, C++, Java and C#. The best result shows the MPI, 

second is OpenMP and third is C++. The C# and Java 

implementations have the poorest performance, because their 

execution is on virtual machines. 

The performance of the same applications for Intel Pentium D 

Dual Core processor is shown in fig. 8 (PI calculation) and 

fig. 9 (matrix multiplication). When applications are running 

with more than one thread the gained speedup for PI 

calculation is near 2 for all applications except for Java which 

has very bad speedup (around 0.5 for one thread and 1 for two 

threads). For matrix multiplication the performances are    

similar. The best speedup is achieved with OpenMP 

application only when even number of threads is used and this 

is the only case where OpenMP is better than MPI. 

The measured performance on AMD AthlonX2 procesoor is 

similar to that on the Intel Dual Core processor. The only 

difference is that the Java application has better speedup than 

that achieved on the Intel Dual Core processor. The results are 

shown in fig. 10 (PI calculation) and fig. 11 (matrix 

multiplication).  

When using AMD Opteron 275 one can see the linear 

increase of the speedup relative to the number of execution 

threads (until the number oft threads reach the number of 

processors), for both the PI calculation and the matrix 

multiplication (fig. 12 and fig. 13). It is noticeable that using 

five threads gives the worst performances and what is more 

the speedup is almost the same as when three threads are used. 

C# performances with matrix multiplication are worse than 

the ones with PI calculation. Yet still Java is the worst 

solution. 

Fig. 14 shows that all software platforms have nearly the same 

average speedup of multithreaded version of PI calculation 

relative to single threaded version, whereas fig. 15 shows that 

in general Java has the best average speedup of multithreaded 

version of matrix calculation relative to single threaded 

version for all test processors. 



6. CONCLUDING REMARKS 

Every programmer chooses certain platform for parallel 

programming depending on the algorithm that he uses. He 

must predict the performance drawback when his parallel 

application will be used on a machine with a single core. The 

ideal speedup is very rarely achieved. When parallelizing 

loops, OpenMP seems the easiest way and also gives very 

good results. Programmers must allow dynamic change of the 

number of threads depending on the number of cores in the 

processor. Our conclusion is that parallel programming with 

OpenMP is the easiest solution for the programmer to choose. 

The performance loss at a single-core machine when using 

parallel application for PI calculation is relatively small. For 
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Fig. 6  Speedup of PI calculation  relative to sequential 

application depending on the number of threads for AMD 

Sempron 2600+ 
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Fig. 7  Speedup of matrix multiplication  relative to sequential 

application  depending on the number of threads for AMD 

Sempron 2600+ 
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Fig. 8  Speedup of PI calculation  relative to sequential 

application  depending on the number of threads for Intel 

Pentium D Dual Core  

0

0,2

0,4

0,6

0,8

1

1,2

1,4

1,6

1,8

2

1 2 3 4 5 6 7 8

Number of threads

S
p

e
e

d
u

p

OpenMP

C++

MPI

C#

Java

 
Fig. 9  Speedup of  matrix multiplication  relative to sequential 

application  depending on the number of threads for Intel 

Pentium D Dual Core 
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Fig. 10  Speedup of PI calculation  relative to sequential 

application  depending on the number of threads for AMD 

Athlon X2 
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Fig. 11  Speedup of  matrix multiplication  relative to sequential 

application  depending on the number of threads for AMD 

Athlon X2 



matrix multiplication the loss of the performance is 

significant, about 2% for MPI, 6% for OpenMP, 17.5% for 

C++, 70% for C# and 140% for Java. Thus when we have 

application similar to Matrix multiplications it might be better 

to have two versions, one parallel and one sequential. 

The Java and C# have poor performance. Their two-threaded 

versions when run on multicore processors have similar 

performance like C++ version with a single thread. Thus 

writing parallel application in C# and Java does not mean 

performance increase, and it might be better and easier to 

rewrite the application in C++ rather than parallelizing the 

original application. It is interesting to note that Java has the 

worst performances, but it has the best speedup relatively to 

his single threaded version, which indicates good 

implementation of multithreading subsystem.  

For future work, parallelizing open source programs will take 

part in our simulation and this parallelization will be also 

done with other parallel languages like JavaPP, HPF, Parallel 

C and C++. 
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Fig. 12  Speedup of PI calculation  relative to sequential 

application  depending on the number of threads for AMD 

Opteron 275 
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Fig. 13  Speedup of  matrix multiplication  relative to 

sequential application  depending on the number of threads for 

AMD Opteron 275 
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Fig. 14 Average speedup of multithreaded version of  PI 

calculation  relative to single threaded version  
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Fig. 15  Average speedup of multithreaded version of matrix 

calculation  relative to single threaded version 
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