
A System for Suggestion and Execution of Semantically

Annotated Actions based on Service Composition

Milos Jovanovik, Petar Ristoski, Dimitar Trajanov

Faculty of Computer Science and Engineering, Ss. Cyril and Methodius in Skopje, Republic of

Macedonia

milos.jovanovik@finki.ukim.mk, petar.ristoski88@gmail.com,

dimitar.trajanov@finki.ukim.mk

Abstract. With the growing popularity of the service oriented architecture con-

cept, many enterprises have large amounts of granular web services which they

use as part of their internal business processes. However, these services can also

be used for ad-hoc actions, which are not predefined and can be more complex

and composite. Here, the classic approach of creating a business process by

manual composition of web services, a task which is time consuming, is not ap-

plicable. By introducing the semantic web technologies in the domain of this

problem, we can automate some of the processes included in the develop-and-

consume flow of web services. In this paper, we present a solution for sugges-

tion and invocation of actions, based on the user data and context. Whenever

the user works with given resources, the system offers him a list of appropriate

actions, preexisting or ad-hoc, which can be invoked automatically.

Keywords: Semantic web services, automatic composition, semantic web tech-

nologies, service oriented architecture.

1 Introduction

The growing trend in software architecture design is to build platform-independent

software components, such as web services, which will then be available in a distri-

buted environment. Many businesses and enterprises are tending to transform their

information systems into linked services, or repeatable business tasks which can be

accessed over the network. This leads to the point where they have a large amount of

services which they use as part of predefined business processes. However, they face

the problem of connecting these services in an ad-hoc manner.

The information an employee works with every day, can be obtained from different

sources – local documents, documents from enterprise systems or other departments,

emails, memos, etc. Depending on the information, the employee usually takes one or

more actions, such as adding a task from an email into a To-Do list, uploading at-

tachments to another company subsystem for further action or analysis, or sending the

attachments to the printer.

mailto:milos.jovanovik@finki.ukim.mk,%20petar.ristovski@gmail.com

Additionally, with the increasing number of cloud services with specialized func-

tionalities in the last years, the common Internet user comes across the need to rou-

tinely perform manual actions to interchange data among various cloud services –

email, social networks, online collaboration systems, documents in the cloud, etc. – in

order to achieve more complex and composite actions. These actions always require a

certain amount of dedicated time from the user, who has to manually change the con-

text in which he or she works, in order to take the appropriate actions and transfer

data from one system to another.

In this paper we present a way of using the technologies of the Semantic Web [1],

to automate the processes included in the develop-and-consume flow of web services.

The automatic discovery, automatic composition, and automatic invocation of web

services provide a solution for easier, faster and ad-hoc use of specialized enterprise

services for an employee in the company, and of public services for the common In-

ternet user.

The paper is structured as follows: In Section 2 we provide an overview of existing

related solutions and approaches. In Section 3 we give a detailed explanation of the

system architecture and its components. In Section 4 we describe the algorithm for

detection and selection of the most suitable action for returning the requested output

from the set of provided inputs. In Section 5 we discuss the advantages and applica-

tions of the system. We conclude in Section 6 with a short summary and an outlook

on future work.

2 Related Work

As the semantic web technologies proved their usability in a large number of IT sys-

tems [2], [3], and as most of the applications and systems are now being built upon

the Service Oriented Architecture (SOA) model [4], many solutions combining the

two fields have been developed. These solutions apply semantic web technologies

into SOA systems, in order to automate various complex processes within them [5],

[6].

There are many tools and solutions for designing and running standard BPEL

processes, such as Oracle Fusion Middleware1 and IBM Websphere2 [7]. However,

they usually don’t provide the ability to describe and characterize the services with

semantics. Without information about the service capabilities and behavior, it is hard

to compose collaborative business processes.

One of the solutions for this problem is the OntoMat-Service [8], a framework for

discovery, composition and invocation of semantic web services. OntoMat-Service

does not aim at intelligent and completely automatic web service discovery, composi-

tion and invocation. Rather, it provides an interface, the OntoMat-Service-Browser,

which supports the intelligence of the user and guides him or her in the process of

adding semantic information, in a way that only a few logically valid paths remain to

be chosen.

1 http://www.oracle.com/technology/products/middleware/index.html
2 http://www.ibm.com/software/websphere/

The system described in [9] can deal with preexisting services of standard enter-

prise systems in a semantically enriched environment. By transforming the classic

web services into semantic web services, the services are prepared to be invoked

within a prebuilt business process. The system described in [10] presents a web ser-

vice description framework, which is layered on top of the WSDL standard, and pro-

vides semantic annotations for web services. It allows ad-hoc invocation of a service,

without prior knowledge of the API. However, this solution does not support the abili-

ty of creating a composition of atomic semantic web services.

The authors in [11] propose a planning technique for automated composition of

web services described in OWL-S process models, which can be translated into ex-

ecutable processes, like BPEL programs. The system focuses on the automatic com-

position of services, disregarding the user’s context and provided inputs to suggest the

most reliable and relevant composition.

Another approach [12] describes an interface-matching automatic composition

technique that aims to generate complex web services automatically by capturing

user’s expected outcomes when a set of inputs are provided; the result is a sequence

of services whose combined execution achieves the user goals. However, the system

always requests the user’s desired output, which means that the system is unable to

suggest new actions. Additionally, it is not guaranteed that the system would always

choose the most reliable compositions of services, as the compositions are built based

only on two factors: the execution time and the similarity value between the services

in the composition, expecting only one user input.

Similar approaches have been further studied in [13], [14] and [15]. However, none

of the related systems fully automate the workflow of discovery, ranking and invoca-

tion of web services and web service compositions, but they only automate a certain

part of it. In our solution, we fully automate the workflow of web service and web

service composition invocation, which includes automatic fetching of possible actions

for a given context, automatic ranking and composition, and automatic invocation.

3 Solution Description

Our approach is based on web service invocation. We refer to the invocation as taking

an action. As an action we consider a single RESTful service, a single SOAP web

service, or a composition of more than one SOAP web services. The system tries to

discover all of the possible actions that can be taken over the given resources in a

given context, and provides the user with a list of available actions to execute. The

user can then quickly execute complex actions by a single click. These actions can be

discovered in an ad-hoc manner, i.e. they do not have to be predefined and pre-

modeled.

The solution is developed in the Java programming language, using the Play MVC

framework3. The system architecture, shown in Fig. 1, consists of several compo-

nents.

3 http://www.playframework.org/

Fig. 1. System Architecture

The repository of semantically annotated web services and RESTful web services

(SAWSRWS) holds information about all of the semantically annotated web services.

There is no restriction on the technology used to develop the web services. After a

web service is developed, in order for it to be uploaded onto the repository it has to be

semantically annotated. The system provides a simple form for annotation and saving

the information for the new web services into the repository. For SOAP web services,

the semantically annotated WSDL file for the service is stored. The SOAP web ser-

vices are annotated using the Semantic Annotations for WSDL and XML Schema

(SAWSDL) framework4. For RESTful web services, we store an XML file with de-

tails about the service, such as the base-URL, the method type, the names of the input

parameters and the output parameter, along with their semantic annotations. This

information is stored within an XML file in the repository.

4 http://www.w3.org/TR/sawsdl/

http://www.w3.org/TR/sawsdl/

The service manager is responsible for handling the requests to the SAWSRWS

repository: adding, removing, updating and loading services. On system startup, the

manager is indexing the services, and this index is updated only when a service is

added or removed from the SAWSRWS repository. With this index, the number of

accesses to the SAWSRWS repository is decreased and the system performance is

improved. Newly created actions are stored in the repository of semantic action in

three strictly defined storage forms. The first storage form includes a unique ID for

the action, the inputs that are needed to invoke the action, and the output of the action.

The second storage form is an upgrade of the first storage form, which includes a list

of all the web services that compose the action, which are described with their name,

the function, and the inputs and output of the function. The third storage form is used

only for RESTful web services, which cannot be part of a composition in our system.

This storage form includes the base-URL of the RESTful web service, the input pa-

rameters, the output parameter and the method type.

The action manager is intended to improve the performance of the system. On sys-

tem startup, if the repository is not empty, the action manager creates an index of the

actions. The action manager is handling the requests from the user applications and

systems. When a request arrives, the resource types are aligned as inputs. The action

manager is iterating the index to find if previously created actions for these inputs

exist. If not, the action manager sends a request with the list of inputs to the output

type extractor, and receives a list of all possible outputs that can be obtained from the

available services. From the list of outputs, the action manager creates actions in the

first storage form, for SOAP web services, and creates actions in the third storage

form for RESTful web services. Then it stores them in the semantic action repository,

updates the action index and returns the list of actions, in XML form, to the user ap-

plication or system. When the user wants to invoke an action, a request to the action

executor is sent, which identifies the action in the action manager, based on the action

unique ID. The action manager checks in the index of actions for the storage form of

the action with the given ID. If the action is in the second or third storage form, the

actions’ details are sent to the action executor. If the action is in first storage form, the

action manager sends the action details to the composition builder, and receives a

composition of functions from the web services with their name, list of inputs and the

output. Then the action storage form is upgraded to the second storage form, and the

action details are sent to the action executor.

The output type extractor receives the list of inputs from the action manager and

iterates the index of services in the service manager, in order to find all of the possible

outputs from the services for the given list of inputs. In the list of outputs we add only

the outputs of the service functions which can be invoked with the given list of inputs,

or a subset of the list of inputs. When a new output is detected, it is added both to the

list of outputs and to the list of inputs. Then the extractor iterates the index of services

again, with the new list of inputs. When there are no more new outputs, the iteration

stops. Then the extractor sends the list of detected outputs to the action manager.

The composition builder receives a list of inputs and one output from the action

executor. The composition builder uses an intelligent algorithm, described further, for

building an optimal composition of semantic web services, in order to provide the

needed output for the list of given inputs. The RESTful web services are not included

in compositions.

The action executor receives requests from the user applications and systems. The

request contains the action ID and a list of values, which represent the input values for

the action. The action executor identifies the action in the action manager, and rece-

ives a RESTful web service, a single function from a SOAP web service, or a compo-

sition of functions from SOAP web services, ordered for invocation. In the former

two cases, the invocation is done in a single step. But for the latter case, the action

executor invokes the first SOAP web service function, for which every input value is

provided by the user. If the function is successfully executed, the result value is added

in the initial list of input values, and the values used for invocation are removed from

the list. The same steps are repeated for the rest of the functions. When the last func-

tion is executed, if the function has an output, it is displayed to the user; otherwise, a

message for successful invocation is displayed to the user. If any function fails to

execute, the algorithm stops, and an error message is displayed to the user. For the

invocation of the actions we use the Apache Axis2 engine5.

4 Service Composition

The composition builder uses a specially created algorithm for building an optimal

composition of semantic web services, in order to provide the needed output for a list

of given inputs. The algorithm works with a set of inputs and an output parameter,

provided to the composition builder by the action manager. The algorithm tries to

identify if the service repository contains a single service which returns an output of

the same semantic type, as the requested output value. If there are one or more such

services, it checks to see if their input parameters match the inputs provided to the

composition builder.

If оr is the semantic type of the requested output parameter, and oi is the semantic

type of the output from the ith web service from the repository, what the algorithm

tries to find are services for which

 ir oo  (1)

is true. These semantic web services become candidate web services for providing the

requested output.

For each of the semantic web services which satisfy the equation (1), the algorithm

has to compare the input types set },...,,{ 21 rnrrr iiiI  , provided to the composition

builder, and the set of input types of the ith web service, },...,,{ 21 imiii iiiI  . If the

two sets satisfy that

 ri II  (2)

5 http://axis.apache.org/axis2/java/core

the algorithm eliminates the ith semantic web service from the list of potential candi-

date web services, because the number of input parameters of the services is less than

the number of input parameters provided to the composition builder. This way, the

potential lack of precision in the output, caused by lesser constraints, is eliminated.

If the input sets satisfy that

 ri II  (3)

it means that the number and the semantic types of the inputs provided to the compo-

sition builder match the number and the semantic types of the ith web service. The

algorithm assigns this semantic web service with a fitting coefficient:

1F

The fitting coefficient – F, represents the suitability of a given semantic web ser-

vice, or a composition of semantic web services, to provide the requested output.

When the ith web service satisfies (3), the service is considered to be the most suit-

able – the requested output can be returned in just one step. Therefore its fitting coef-

ficient is equal to the highest value. When the algorithm discovers at least one seman-

tic web service with F = 1, the discovery of candidate web services ends.

If the algorithm does not find a suitable semantic web service for the received re-

quest, i.e. does not find a service which satisfies (1), the algorithm ends without suc-

cess and does not return a suitable semantic web service or a composition of semantic

web services.

If the sets of input satisfy that

 ri II  (4)

but the types of all of the input parameters of the ith semantic web service do not

match the types of the input parameters provided to the composition builder, the fit-

ting coefficient of the ith semantic web service is calculated as

i

fi

i
y

y
F  (5)

where fifi Iy  is the number of parameters from the ith semantic web service which

have a matching semantic type with the input parameters from
rI ,

ifi II  , and

ii Iy  .

In this case, the algorithm continues to search for the other input parameters which

do not belong to Ifi. The algorithm starts again, but now the requested output or is the

input parameter which does not belong to Ifi. If we have more than one such parame-

ter, this secondary search is performed for each of them. This way, we search for

outputs from other services which can be used as inputs for the discovered service.

If the services discovered in the secondary search have the same types of input pa-

rameters as the inputs provided to the composition builder, they can be invoked and

their outputs can be used as inputs for the semantic web service discovered in the first

iteration. If they too have input parameters with types which do not match those pro-

vided to the composition builder, the algorithm performs a tertiary search for services

which can provide them. These iterations last until the algorithm does not come to the

state in which all of the discovered semantic web services have the same types of

input parameters as the input parameters provided to the composition builder and as

the outputs provided from other services in the composition, or the state in which a

suitable service or composition cannot be discovered.

By creating a composition of semantic web services in this manner, we raise the

cost for getting the required output. Depending on the number of services and levels

in the composition, the time necessary to get the output from the list of given inputs

increases. Additionally, as the composition grows larger, so does the possibility of an

error occurring during a call to a web service from the composition. Therefore, we

must somehow take this into account in our calculations for the fitting coefficient.

We add a coefficient for fitness degradation:

)(

1

2

1

1

1





  kykK
p

j

ji (6)

where p is the total number of services in the composition, without the initially dis-

covered service, yj is the number of input parameters from the jth service, and k1 and k2

are factors for fitness degradation. k1 is a factor of influence of the number of services

from the composition. k2 is a factor of the influence of the number of parameters of

services from the composition. Generally, the values of these factors should always be

k1 < k2, because the number of services has a bigger impact on the total call time of

the composition, compared to the number of parameters of the services. The default

values for the factors are chosen to be k1 = 10 and k2 = 100, and can be modified with-

in the composition builder.

From (6) we can see that the algorithm does not take into account the level of com-

position at which the jth service is positioned. This is because the calls to web services

from the same level are performed sequentially, just as the calls to web services from

different levels. Therefore, the cost for getting the requested output depends only on

the number of services in the composition, and not their level distribution.

From (6) we can also see that the coefficient depends on the number of parameters

used for each of the services, disregarding whether they are provided to the composi-

tion builder, or returned from another service. This is because the number of parame-

ters represents the amount of data which has to be transferred for the calls to the ser-

vices, so the nature of the parameters is irrelevant.

We add the coefficient for fitness degradation to (5):

K

y

y
F

i

fi

i 

)(

1

2

1

1

1





  kyk
y

y
F

p

j

j

i

fi

i (7)

The algorithm uses (7) to calculate the fitness of all candidate semantic web services

which satisfy (4). The fitting coefficient is larger when a candidate service uses more

of the input parameters provided to the composition builder. The coefficient drops

with the number of additional services and the number of their input parameters.

Once the algorithm calculates F for each of the candidate web services, they are

ranked and the atomic service or a composition of services with the highest value of F

is selected as most suitable for providing the requested output.

5 Advantages and System Usability

The flexible architecture of the solution allows it to be used from within various sys-

tems. In order for it to be prepared for use in a new domain, it requires semantically

annotated services from the domain, which can be taken from different enterprise

systems and cloud infrastructures. After this step is completed, the users can receive a

list of possible actions for any resources and data they are working with, within their

own environment. These ad-hoc actions can then be executed by a single click, which

is time-saving; an advantage towards which all modern tools aim. Additionally, be-

cause of its modularity, the solution can be easily updated and extended.

5.1 Use-Case

In this scenario, the user application works with geographic data, and it uses several

web services which have the functions given in Table 1.

In this use-case, a user uses an application which works with the web services from

Table 1, and has a name of a certain municipality as the only useful information in the

context of the working environment, e.g. an email message. In this case, the applica-

tion has only one service which can be invoked for the context of the user – WSF6

from Table 1 – so in a standard SOA architecture with service discovery the system

will only offer this action to the user.

Table 1. List of web service functions from the use-case example.

WSF # Web Service Function

1 DialingCode getDialingCode (Country country, City city);

2 DialingCode getDialingCode (Continent continent, Country country, City

city, Municipality municipality);

3 Continent getContinent (Country country);

4 Country getCountry (Municipality municipality, City city);

5 Country getCountry (City city);

6 City getCity (Municipality municipality);

7 City getCity (City city);

Fig. 2. Possible action for the given user in-

put, i.e. the name of the municipality.

Fig. 3. The most suitable semantic web ser-

vice composition for returning a dialing code,

based on the name of the municipality.

However, if the application is connected with the system presented in this paper,

the number of possible actions will grow. The system, besides WSF6 as an atomic

web service, will automatically detect the possible semantic web service composi-

tions, as shown on Fig. 2. This means that four different actions: getCity, getCountry,

getContinent and getDialingCode can be executed over the information extracted

from the context of the user, i.e. the name of the municipality, either as atomic web

services or as web service compositions. When an action represents a composition of

SOAP web services, its name is derived from the name of the last web service func-

tion in the composition. When the action consists of a single SOAP or RESTful web

service, it has the same name as the atomic web service.

These actions are built from the most optimal and most reliable web services or

compositions of web services, according to the algorithm from Section 4. One of

these actions is the action which can return the dialing code, based only on the muni-

cipality name. This action can be derived from four different web service composi-

tions, shown in Table 2, all of which end with either WSF1 or WSF2. Therefore, the

name of this action is getDialingCode.

For each of the compositions which return the dialing code, we calculate the fitting

coefficient F (for k1 = 10 and k2 = 100), using (7), and the results are shown in Table

2. The most suitable composition, the one with the highest value of F, is chosen for

representing the action of deriving the dialing code based on the municipality name.

In this scenario, it is the first composition.

Table 2. List of possible compositions for providing the dialing code based on the municipality

name.

Action Fitting Coefficient

WSF6 → WSF5 → WSF3 → WSF2 F = 0.19

WSF6 → WSF4 → WSF3 → WSF2 F = 0.18

WSF6 → WSF4 → WSF1 F = -0.17

WSF6 → WSF5 → WSF1 F = -0.18

The user can choose to execute any of the actions from Fig. 2, just by a single

click. The list contains all of the possible actions for the given input, by creating com-

positions of web services. Thus, introducing new actions, which were previously not

part of the user system, or the user was unaware that they existed, is done automati-

cally. Even if the user was aware that these actions were available, he or she would

have had to pre-connect the services manually into a business process, which takes

much longer and is not an easy task to do. This is essential in systems where the ser-

vices are constantly changing, and new services are added regularly.

5.2 Application

The solution has been implemented as part of Semantic Sky, a platform for cloud

service integration [16]. Semantic Sky enables connectivity and integration of differ-

ent cloud services and of local data placed on the users machines, in order to create a

simple flow of information from one infrastructure to another. It is able to automati-

cally discover the context in which the users are working, and based on it and by us-

ing the solution described in this paper, provide them with a list of actions which can

be executed over their data. In this way, the users can completely focus on their tasks

in their work environment, and get relevant information and executable actions in

their current context. By automating the discovery and execution of relevant tasks, the

system improves the productivity, information exchange and efficiency of the users.

6 Conclusion and Future Work

This paper presents a solution for automatic discovery and invocation of atomic web

services and web service compositions, by employing semantic web technologies.

The solution provides a list of all possible actions which exist within the user system

or in distributed environments and which can be executed over the data and informa-

tion the user is currently working with. This approach offers the user a broader pers-

pective and can introduce action for which he or she was previously unaware.

Additionally, the solution offers actions in an ad-hoc manner; the service composi-

tions are created on-the-fly, overriding the need for pre-connecting the services into

fixed compositions, i.e. creating pre-built business processes. This is essential in sys-

tems where the services are continually changing, and new services are added regular-

ly. In such dynamic environments, the fast and automatic detection of new possible

actions is of high importance.

Currently, the solution does not support building compositions of RESTful web

services or combining RESTful web services with SOAP web services in a same

composition. This is because we use primitive data types for semantic annotation of

the inputs and the output of the services, and most of the RESTful services return a

more complex value. This can be solved by adding more complex classes for annota-

tion into the ontologies. These drawbacks will be our main focus in the future devel-

opment of the solution.

References

1. Berners-Lee, T., Hendler. J. Lassila, O.: The Semantic Web. Scientific American, (2001)

2. Hitzler, P., Krotzsch, M. and Rudolph, S.: Foundations of Semantic Web Technologies.

Chapman and Hall/CRC (2011)

3. Sugumaran, V., Gulla, J. A.: Applied Semantic Web Technologies. Auerbach Pub (2012)

4. He, H.: What is Service-Oriented Architecture?, O’Reilly XML.com, (2003)

5. Hu, Y., Yang, Q., Sun, X. and Wei, P.: Applying Semantic Web Services to Enterprise

Web. International Journal of Manufacturing Research, vol. 7 (1), 1-8.

DOI:10.1504/IJMR.2012.045240 (2011)

6. Wang, D., Wu, H., Yang, X., Guo, W. and Cui, W.: Study on Automatic Composition of

Semantic Geospatial Web Service. In: IFIP Advances in Information and Communication

Technology, vol. 369/2012, 484-495, DOI:10.1007/978-3-642-27278-3_50 (2012)

7. Kloppmann, M. Business process choreography in WebSphere: Combining the power of

BPEL and J2EE. IBM Systems Journal, vol. 43 (2), 270-296 (2004)

8. Agarwal, S., Handschuh, S. and Staab, S.: Annotation, Composition and Invocation of

Semantic Web Services. Journal of Web Semantics, vol. 2 (1), 1-24 (2004).

9. Martinek, P., Tothfalussy, B. and Szikora, B.: Execution of Semantic Services in Enter-

prise Application Integration. In: World Scientific and Engineering Academy and Society

(WSEAS), Stevens Point, Wisconsin, USA, 128-134 (2008)

10. Eberhart, A.: Ad-hoc Invocation of Semantic Web Services. In: IEEE International Confe-

rence on Web Services (Las Vegas, USA, 2003), IEEE Computer Society, Washington,

DC, USA, 116-123. DOI:10.1109/ICWS.2004.18 (2004)

11. Traverso, P., Pistore M.: Automated Composition of Semantic Web Services into Execut-

able Processes. In: The third International Semantics Web Conference (ISWC-04), Sprin-

ger, vol. 3298, pp. 380-394, Hiroshima, Japan (2004)

12. Zhang, R., Arpinar, B., Aleman-Meza, B.: Automatic Composition of Semantic Web Ser-

vices. In: ICWS 2003: pp. 38-41 (2003)

13. He, T., Miao, H., Li, L.: A Web Service Composition Method Based on Interface Match-

ing. In: The eight IEEE/ACIS International Conference on Computer and Information

Science (2009)

14. Talantikite, H., Aissani, D., Boudjilda, N.: Semantic Annotations for Web Services Dis-

covery and Composition. Computer Standards & Interfaces archive Volume 31 Issue 6,

November, pp. 1108-1117 (2009)

15. Hamadi, R., Benatallah, B.: A Petri Net-Based Model for Web Service Composition. In:

The 14th Australasian database conference, pp. 191-200, Adelaide, Australia (2003)

16. Trajanov, D., Stojanov, R., Jovanovik, M., Zdraveski, V., Ristoski, P., Georgiev, M., Fili-

poska, S.: Semantic Sky: A Platform for Cloud Service Integration based on Semantic

Web Technologies. In: Proceedings of the 8th International Conference on Semantic Sys-

tems (I-SEMANTICS '12). ACM, New York, NY, USA, 109-116 (2012)

