
HTML5 based Facet Browser for SPARQL Endpoints

Martina Janevska, Milos Jovanovik, Dimitar Trajanov
Faculty of Computer Science and Engineering

Ss. Cyril and Methodius University
Skopje, Republic of Macedonia

Abstract—The Linked Data concept uses a collection of Semantic
Web technologies in order to interconnect, publish, and share
pieces of data on the Web, in a machine-readable format. It
enables querying and combining data from different datasets
together in order to retrieve specific information and enable use-
case scenarios which are unavailable over isolated datasets.
However, the process of querying linked data published on
different places on the Web poses several challenges. Generally,
each user should know the schema of the data, write a query and
access a relevant linked data endpoint. According to statistics,
endpoints are often unavailable and have significant downtime,
so this presents a serious obstacle in application development and
scenarios which rely on the data. In this paper, we present a facet
browser for SPARQL endpoints, based on HTML5. It allows
users to search and retrieve RDF triples based on a keyword,
from public SPARQL endpoints. By using HTML5 Web Storage,
the triples from the results can be saved in the browser, locally,
for future use. The facet browser provides management
functionalities over the stored data - capabilities to update,
refresh, modify, delete and download the triples in various RDF
formats: JSON-LD, Turtle, NTriples, RDF/XML, JSON, CSV.
The locally stored RDF triples can also be shared with other
users. We believe that these features of the facet browser will
help overcome the endpoint downtime issues, by providing offline
data accessibility for the user and his applications.

Keywords—Facet Browser; Linked Data; SPARQL;
HTML5; Semantic Web;

I. INTRODUCTION

The Linked Data principles propose using the Web to create
typed links between data from different sources. These may be
as diverse as databases maintained by two organizations in
different geographical locations, or simply heterogeneous
systems within one organization that, historically, have not
easily interoperated at the data level [1]. W3C provides a
palette of technologies (RDF, GRDDL, POWDER, RDFa, the
upcoming R2RML, RIF, SPARQL) to get access to the data1.
SPARQL is a query language that is flexible and is mostly
used for interacting with RDF databases also known as triple
stores. As a standardized query language it contains a lot of
specifications, query operations, request and response formats.

 Every dataset declared as Linked Data can be accessed
using the SPARQL language and queries distributed over
different SPARQL endpoints. For retrieving the data, a user
has to access available endpoints and to be able to query them.
The ability to query the data space of Linked Data provides

1 http://www.w3.org/standards/semanticweb/data

benefits which have not been possible before. Data from
different data sources can be gathered, and scattered
information from multiple sources can be joined in order to
achieve a more complete view of a given domain and support
more complex use-case scenarios.

Executing queries over the Web of Linked Data poses
several challenges that do not arise in traditional query
processing. Due to the openness of the data space, it is not
possible to know all data sources that might be relevant for
answering a query in advance. People who need some data
from the Linked Data cloud2 sometimes do not know how the
specified data is represented in datasets and they face the
challenge to write complex queries in order to extract results.

Another issue which arises in the domain of querying data
over the data space of Linked Data is the availability of the
SPARQL endpoints. According to statistics3, these endpoints
are often unavailable and have significant downtime. This
presents a serious obstacle in developing „killer applications‟
over Linked Data datasets, and forces developers to focus their
time and energy on other technologies and approaches.

In this paper, we present a facet browser for SPARQL
endpoints, which tries to overcome these two main issues.
Firstly, it offers keyword lookup in RDF datasets from
SPARQL endpoints, mitigating the issue of schema
knowledge beforehand, or knowing the SPARQL language at
all. Secondly, it allows storage of the results received from a
SPARQL endpoint, for future use. The results are being stored
in HTML5 Web Storage, in the user browser, and can be
manipulated by the user. The data can also be serialized into
all common RDF formats, and shared with others.

II. RELATED WORK

Browsers can be a crucial tool when someone is dealing
with data from the Linked Data cloud. They should provide
different use-cases and options for users and their needs. That
is the main reason why there are a number of browser
applications for Linked Data and they all provide different
approaches in dealing with data and presenting results to the
end user.

The Tabulator project4 represents a generic data browser,
which provides ways for browsing RDF resources published
on the Web, and follow RDF links from one resource to

2 http://lod-cloud.net/
3 http://sparqles.okfn.org/availability
4 http://www.w3.org/2005/ajar/tab

Fig. 1. The facet browser interface.

another [2]. The main goal of Tabulator is to increase the
usage of Linked Data, explore the potentials and restrictions of
the Semantic Web architecture and to increase development in
the field of generic data interfaces.

The Disco - Hyperdata Browser5 is a browser which is
used for handling the Semantic Web as an unbounded set of
data sources. This tool renders all information related to a
resource, which is specified by his URI entered into the
navigation box. For this resource, the user gets a description
which contains hyperlinks or facets allowing him to navigate
between resources. When a user moves from one resource to
other, the browser dynamically retrieves and displays
information as a property-value table. Also, the browser stores
all retrieved RDF graphs, whose hyperlinks have been clicked,
in a session cache and provide an option for showing them in a
list in a new browser window.

Swoogle6 is a specialized web based data browser used for
discovering, analyzing and indexing of data from datasets
published on the Web with Semantic Web technologies.
Swoogle explains and records significant metadata about data
published in these datasets and their fundamental parts (e.g.,
terms, individuals, triples). As a browser it uses its search and
navigation services in order to provide scalable service for
accessing Semantic Web data and finding relevant documents
[3]. On one hand, similar to our solution, Swoogle represents a
keyword-based search engine and it does not require schema
knowledge and query language expertise. That is an important
reason why it is really appropriate for non-technical users. On
the other hand, similarly as Tabulator and Disco – Hyperdata
Browser, Swoogle does not provide any options for further
management and wider usage of retrieved RDF results, which
is one of main focuses used in our approach.

Longwell7 is a web-based faceted browser, considered as a
combination of the flexibility of the RDF data model and the
effectiveness of the faceted browsing paradigm. It is a
powerful tool, and just like our solution it enables
visualization and browsing complex RDF datasets, allows the
user to quickly get an overview of what data is present in the
dataset, and offers specific information about resources.

Virtuoso Faceted Browser8 is keyword-based faceted
browser and as a solution it is the most advanced. The user can
enter a text search pattern and get a results page containing a
list of literal value snippets from property values associated
with the searched pattern. With a click on some of the entities
or relations, the user gets new results with description of that
particular object. There is also an option for getting raw data
from search result in several formats, such as CSV, JSON,
XML, N-Triples, etc.

5 http://wifo5-03.informatik.uni-
mannheim.de/bizer/ng4j/disco/
6 http://swoogle.umbc.edu/
7 http://simile.mit.edu/wiki/Longwell
8 http://lod.openlinksw.com

The facet browser we have developed has several
additional options which differentiate it from all of these
examples. The user of our applications gets the results for the
used keyword in a table, and has the additional option to save
them for later use. The saved data can be managed by the user;
it can be updated and refreshed, modified, removed, and
serialized on the local machine in various RDF formats. The
local storage of RDF data, in the browser, allows other future
features, as well.

III. THE FACET BROWSER

The facet browser for SPARQL endpoints (Fig. 1) is a
HTML5 web-based application which has a main focus of
searching and retrieving RDF triples which contain a given
keyword, from a specified SPARQL endpoint. The results are
presented in a human-readable representation. The endpoint
does not require any SPARQL or RDF knowledge from the
user.

A. Data Retrieval

One of the main functionalities in our application is the
effective search for data from a SPARQL endpoint. There are
two basic things which should be provided by the user to the
application: a search term and SPARQL endpoint URL. The
application takes the search term of the user as a keyword, and
sends a SPARQL query to the endpoint provided by the user.

In order to get these results, we use the following
SPARQL query, in which we replace “pattern” with the
keyword of the user:

SELECT ?s ?p ?o

WHERE

{

 ?s ?p ?o.

 FILTER (regex(?o, "pattern", "i"))

}

LIMIT 1000

Fig. 2. Results from searching the keyword „Aspirin‟.

With the use of this specific query, we get a number of
triples, composed of literal value snippets from property
values related with the searched keyword.

In the query we place a limit of maximum 1000 triples, in
order to comply with the fair use policy of Linked Data. The
results are shown in a table with three columns: entity, relation
and value, sorted by entity values, and with the possibility of
displaying a particular number (10, 50, 100 or 1000) of result
rows per page (Fig. 2).

Faceted navigation is an examining technique which uses
several different ways for navigating through a collection of
components, instead of using a specific and determined order.
Facet browser interfaces provide navigation through
collections of data in a user-friendly way [4]. When users are
facing Linked Data datasets, they often are not sure what
exactly they are looking for, so they may not always be
familiar with the domain and its schema. Or, the users may
just want to learn something new about a particular matter.

With our faceted browser we allow users to search data
through multiple successive iterations without having
excessive (or any) knowledge of the datasets. In the results
table, the entities and the relations are displayed as facets,
providing a multi resource scheme. The users can click on the
any of the facets, and get a description of the resource or
relation. This is done by the application by sending a new
query to the endpoint, asking for the description of that
resource or relation. As a result from the „describe‟ query, the

browser displays a table with two columns: relation and value,
displaying all of the relations and object values related to the
entity (Fig. 3).

There are also options for the users to see more details
about the displayed result data, and get all of the results from
the endpoint, not just the first 1000. This supports use-cases
for more advanced users, who can be interested in more
technical details about the query, or would like to get all
possible RDF triples for their initial query.

The application also has the capability of saving data. We use
HTML5 for the web application, which provides us with the
Web Storage functionality. This functionality supports
persistent data storage with great capacity. It offers two
different types of storage: local and session. For our
application we use the former, because it stores data with no
expiration date, which means the data will not be deleted and
will persist when the user closes the browser and his session
ends. The application allows the users to define details about
the RDF triples before saving them in Web Storage (Fig. 4).

This Web Storage functionality allows our application to
provide offline access to the RDF results from the saved
queries. This is the feature which helps Linked Data users
mitigate the issue of having the needed SPARQL endpoint
available at any given moment. This client-side storage is a
programming model which does not require a server
infrastructure and single user can only access his local files,
which means that our web application becomes personalized.

Fig. 3. A resource description, showing its relations and values.

Fig. 4. Form for saving data in local storage.

After a result set is saved, the user can then manage it, or
continue querying a SPARQL endpoint.

B. Storage Management

As we already mentioned, the application allows the users
to access and manage their stored data. An example stored
dataset is shown on Fig. 6. Each saved dataset, aside from the
RDF triples, contains a mnemonic name, graph name and a
description, which are used to distinguish the datasets.

The application provides management options to the users
for manipulating the RDF triples from a stored dataset (Fig.
6). The „Details‟ option allows a user to see all of triples
which are parts of that dataset, instead of only the first 10. A
user can also edit the mnemonic name, the graph name and the

description (Fig. 5).

However, one of the main functionalities over the stored
datasets is the ability to edit the RDF triples themselves (Fig.
5). This is also a feature available in the application, and its
intention is to provide the user with the ability to modify the
datasets in order to correct, change or delete some of the RDF
triples which he intends to use for other purposes.

In order to provide the capabilities of storing the dataset
triples as into HTML5 Web Storage, as well as review and
manage them, we use the JavaScript wrapper library
triplestore.js9. The library offers several functionalities which
provide RDF data administration for the user. Additionally, it
is a library which is very simple to use and develop with.

When a user has an RDF dataset stored in his browser, it
can only be viewed and manipulated through the application.
However, if the user needs a dataset for other purposes, such
as using it as a data layer for an application, or using it in data
analysis, the user may need to serialize the data and save it
locally on his machine.

Our application offers this functionality to the users, by
allowing serialization of a saved dataset in various RDF
formats: JSON-LD, Turtle, NTriples, RDF/XML and CSV.
The serialized data is showed in the web application, for
supporting use-cases when the user would like to copy and
paste the dataset content, but the application also allows for
the serialized RDF dataset to be downloaded as a file, on the
local machine (Fig. 7).

9 http://www.w3.org/2013/04/semweb-html5/triplestoreJS/

Fig. 6. Table of data saved in local storage.

Fig. 5. Local storage data management.

Because of the dynamic nature of Linked and Open Data
datasets, a user may want to update a locally saved resulting
RDF dataset, once the source SPARQL endpoint is available.

In order to provide support for this scenario, we added the

functionality of refreshing the data from a stored RDF dataset.
In order to do this, we store the initial query used for obtaining
the dataset, along with the source SPARQL endpoint, so when
a user needs to refresh the data, we send a new query to the
SPARQL endpoint and retrieve the updated results. After a
dataset refresh, we prompt the user in order to see whether he
wants to do an update refresh or a clean refresh. If he chooses
the former, only the newly retrieved triples which did not exist
in the previously stored results are added to the RDF dataset,
and if he chooses the latter, the newly retrieved results will
replace the previously stored ones.

Since HTML5 Web Storage has different storage capacity
for local storage depending on the user web browser and RDF
results retrieved from an endpoint can reach the size of
thousands of triples, we also provide the option for deleting an
RDF dataset from the web browser storage (Fig. 6).

C. About the application

The Web of Linked Data is open, so applications which
work with Linked Data can follow relations between data and
learn about new data sources. As a result of that, with increase
of published data, these applications will provide to the users
more complete information and knowledge [5]. This also
means that anyone can publish data structured with these
technologies on the Web, and become part of the increasingly
growing LOD cloud. With this, every Linked Data publisher
adds more possible use-cases over the interconnected datasets
on the Web, and with this, indirectly adds more value to the
LOD cloud datasets.

Therefore, we based our HTML5 facet browser on the
same principles of openness and collaborative value leverage.
We developed and published it as an open-source application10
where other can also participate in further development, and
deployed a public instance11.

IV. CONCLUSION AND FUTURE WORK

In general, Semantic Web technologies are used for
publishing and managing Open Data, and interconnecting it
with other data in the Linked Data cloud; using already

10 https://github.com/mjanevska/html5-sparql-browser
11 http://fct.linkeddata.finki.ukim.mk

Fig. 7. Data serialization and download.

published Open and Linked Data from public SPARQL
endpoints; developing applications based on Open and Linked
data, either stored locally, or available on the Web.

Our HTML5 facet browser is intended to be used as a
search engine for datasets published as Linked Data, available
through SPARQL endpoints. It provides a flat browsing
capability through the dataset by combining search, facets and
operations on sets of resources.

Using HTML5 Web Storage, we enable the option to store
the RDF results for future use, locally, in the browser storage.
The facet browser provides a broader view on the stored data
and management functionalities over it. The locally stored
RDF triples can be serialized in several RDF formats,
downloaded as separated files and then used in applications,
analysis or shared with other users. We believe these features
help the users to overcome the existing SPARQL endpoint
availability issues.

The original goal of the project was to simplify the process
of searching the Web of Open and Linked Data by using
facets, and to provide more services and options to their users.
With our application, we would also like to encourage
development of innovative applications and services over
Linked and Open Data.

The future development of the project will include a
feature for providing more transparent sharing of the stored
RDF datasets. We plan to add an option for publishing a
dataset in a chosen RDF format on a permanent URL, in order
to support use-cases in which a user would like to share an
RDF dataset with other, via the Web.

We also plan to add more management options for the
stored data. By using other functionalities from triplestore.js,
we can enable scenarios in which the users would filter a
stored RDF dataset and obtain smaller subsets of it. These
filtered subsets will contain RDF triples with subjects which
are matched with an optional property and value, or triples
which contain values that match with a specified subject and
optional property.

ACKNOWLEDGEMENT

The work in this paper was partially financed by the
Faculty of Computer Science and Engineering, at the Ss. Cyril
and Methodius University in Skopje, as part of the research
project “Semantic Sky 2.0: Enterprise Knowledge
Management”.

REFERENCES
[1] Bizer, C., Heath, T., Berners-Lee, T.: “Linked Data - the story so far”.

Journal on Semantic Web and Information Systems, 2009.

[2] Berners-Lee, T.: “Tabulator: Exploring and analyzing linked data on the
semantic web”. Proceedings of the 3rd International Semantic Web User
Interaction Workshop, 2006.

[3] Finin, T.: "Swoogle: Searching for knowledge on the Semantic Web"
Proceedings, AAAI 05, 2005.

[4] Brunetti J. M., Gil R., Garcia R.: “Facets and Pivoting for Flexible and
Usable Linked Data Exploration”. Interacting with Linked Data, 2012.

[5] Bizer, Christian. "The emerging Web of Linkedata." Intelligent Systems,
IEEE 24.5, 2009.

