
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/275647363

Semantic Web Integration with SPARQL Autocomplete

Conference Paper · April 2015

DOI: 10.13140/RG.2.2.16563.43044

CITATIONS

5
READS

903

4 authors:

Some of the authors of this publication are also working on these related projects:

Master Degree View project

HOBBIT: Holistic Benchmarking of Big Linked Data View project

Aleksandar Andreevski

Ss. Cyril and Methodius University in Skopje

1 PUBLICATION   5 CITATIONS   

SEE PROFILE

Riste Stojanov

Ss. Cyril and Methodius University in Skopje

36 PUBLICATIONS   124 CITATIONS   

SEE PROFILE

Milos Jovanovik

Ss. Cyril and Methodius University in Skopje

61 PUBLICATIONS   212 CITATIONS   

SEE PROFILE

Dimitar Trajanov

Ss. Cyril and Methodius University in Skopje

158 PUBLICATIONS   624 CITATIONS   

SEE PROFILE

All content following this page was uploaded by Milos Jovanovik on 30 April 2015.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/275647363_Semantic_Web_Integration_with_SPARQL_Autocomplete?enrichId=rgreq-c54822359f699c3ca2b087e49579b0f6-XXX&enrichSource=Y292ZXJQYWdlOzI3NTY0NzM2MztBUzoyMjM5MDEyOTc3MTMxNTRAMTQzMDM5MzYzNzc4Ng%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/275647363_Semantic_Web_Integration_with_SPARQL_Autocomplete?enrichId=rgreq-c54822359f699c3ca2b087e49579b0f6-XXX&enrichSource=Y292ZXJQYWdlOzI3NTY0NzM2MztBUzoyMjM5MDEyOTc3MTMxNTRAMTQzMDM5MzYzNzc4Ng%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/Master-Degree-8?enrichId=rgreq-c54822359f699c3ca2b087e49579b0f6-XXX&enrichSource=Y292ZXJQYWdlOzI3NTY0NzM2MztBUzoyMjM5MDEyOTc3MTMxNTRAMTQzMDM5MzYzNzc4Ng%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/HOBBIT-Holistic-Benchmarking-of-Big-Linked-Data?enrichId=rgreq-c54822359f699c3ca2b087e49579b0f6-XXX&enrichSource=Y292ZXJQYWdlOzI3NTY0NzM2MztBUzoyMjM5MDEyOTc3MTMxNTRAMTQzMDM5MzYzNzc4Ng%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-c54822359f699c3ca2b087e49579b0f6-XXX&enrichSource=Y292ZXJQYWdlOzI3NTY0NzM2MztBUzoyMjM5MDEyOTc3MTMxNTRAMTQzMDM5MzYzNzc4Ng%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Aleksandar-Andreevski-2?enrichId=rgreq-c54822359f699c3ca2b087e49579b0f6-XXX&enrichSource=Y292ZXJQYWdlOzI3NTY0NzM2MztBUzoyMjM5MDEyOTc3MTMxNTRAMTQzMDM5MzYzNzc4Ng%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Aleksandar-Andreevski-2?enrichId=rgreq-c54822359f699c3ca2b087e49579b0f6-XXX&enrichSource=Y292ZXJQYWdlOzI3NTY0NzM2MztBUzoyMjM5MDEyOTc3MTMxNTRAMTQzMDM5MzYzNzc4Ng%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Ss_Cyril_and_Methodius_University_in_Skopje?enrichId=rgreq-c54822359f699c3ca2b087e49579b0f6-XXX&enrichSource=Y292ZXJQYWdlOzI3NTY0NzM2MztBUzoyMjM5MDEyOTc3MTMxNTRAMTQzMDM5MzYzNzc4Ng%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Aleksandar-Andreevski-2?enrichId=rgreq-c54822359f699c3ca2b087e49579b0f6-XXX&enrichSource=Y292ZXJQYWdlOzI3NTY0NzM2MztBUzoyMjM5MDEyOTc3MTMxNTRAMTQzMDM5MzYzNzc4Ng%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Riste-Stojanov?enrichId=rgreq-c54822359f699c3ca2b087e49579b0f6-XXX&enrichSource=Y292ZXJQYWdlOzI3NTY0NzM2MztBUzoyMjM5MDEyOTc3MTMxNTRAMTQzMDM5MzYzNzc4Ng%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Riste-Stojanov?enrichId=rgreq-c54822359f699c3ca2b087e49579b0f6-XXX&enrichSource=Y292ZXJQYWdlOzI3NTY0NzM2MztBUzoyMjM5MDEyOTc3MTMxNTRAMTQzMDM5MzYzNzc4Ng%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Ss_Cyril_and_Methodius_University_in_Skopje?enrichId=rgreq-c54822359f699c3ca2b087e49579b0f6-XXX&enrichSource=Y292ZXJQYWdlOzI3NTY0NzM2MztBUzoyMjM5MDEyOTc3MTMxNTRAMTQzMDM5MzYzNzc4Ng%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Riste-Stojanov?enrichId=rgreq-c54822359f699c3ca2b087e49579b0f6-XXX&enrichSource=Y292ZXJQYWdlOzI3NTY0NzM2MztBUzoyMjM5MDEyOTc3MTMxNTRAMTQzMDM5MzYzNzc4Ng%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Milos-Jovanovik?enrichId=rgreq-c54822359f699c3ca2b087e49579b0f6-XXX&enrichSource=Y292ZXJQYWdlOzI3NTY0NzM2MztBUzoyMjM5MDEyOTc3MTMxNTRAMTQzMDM5MzYzNzc4Ng%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Milos-Jovanovik?enrichId=rgreq-c54822359f699c3ca2b087e49579b0f6-XXX&enrichSource=Y292ZXJQYWdlOzI3NTY0NzM2MztBUzoyMjM5MDEyOTc3MTMxNTRAMTQzMDM5MzYzNzc4Ng%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Ss_Cyril_and_Methodius_University_in_Skopje?enrichId=rgreq-c54822359f699c3ca2b087e49579b0f6-XXX&enrichSource=Y292ZXJQYWdlOzI3NTY0NzM2MztBUzoyMjM5MDEyOTc3MTMxNTRAMTQzMDM5MzYzNzc4Ng%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Milos-Jovanovik?enrichId=rgreq-c54822359f699c3ca2b087e49579b0f6-XXX&enrichSource=Y292ZXJQYWdlOzI3NTY0NzM2MztBUzoyMjM5MDEyOTc3MTMxNTRAMTQzMDM5MzYzNzc4Ng%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Dimitar-Trajanov?enrichId=rgreq-c54822359f699c3ca2b087e49579b0f6-XXX&enrichSource=Y292ZXJQYWdlOzI3NTY0NzM2MztBUzoyMjM5MDEyOTc3MTMxNTRAMTQzMDM5MzYzNzc4Ng%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Dimitar-Trajanov?enrichId=rgreq-c54822359f699c3ca2b087e49579b0f6-XXX&enrichSource=Y292ZXJQYWdlOzI3NTY0NzM2MztBUzoyMjM5MDEyOTc3MTMxNTRAMTQzMDM5MzYzNzc4Ng%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Ss_Cyril_and_Methodius_University_in_Skopje?enrichId=rgreq-c54822359f699c3ca2b087e49579b0f6-XXX&enrichSource=Y292ZXJQYWdlOzI3NTY0NzM2MztBUzoyMjM5MDEyOTc3MTMxNTRAMTQzMDM5MzYzNzc4Ng%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Dimitar-Trajanov?enrichId=rgreq-c54822359f699c3ca2b087e49579b0f6-XXX&enrichSource=Y292ZXJQYWdlOzI3NTY0NzM2MztBUzoyMjM5MDEyOTc3MTMxNTRAMTQzMDM5MzYzNzc4Ng%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Milos-Jovanovik?enrichId=rgreq-c54822359f699c3ca2b087e49579b0f6-XXX&enrichSource=Y292ZXJQYWdlOzI3NTY0NzM2MztBUzoyMjM5MDEyOTc3MTMxNTRAMTQzMDM5MzYzNzc4Ng%3D%3D&el=1_x_10&_esc=publicationCoverPdf


1

Semantic Web Integration with SPARQL
Autocomplete

Aleksandar Andreevski, Riste Stojanov, Milos Jovanovik and Dimitar Trajanov
Faculty of Computer Science and Engineering

Ss. Cyril and Methodius University in Skopje, Macedonia
andreevski.aleksandar@students.finki.ukim.mk, {riste.stojanov, milos.jovanovik, dimitar.trajanov}@finki.ukim.mk

Abstract—This project is intended to ease the writing process
of dynamic SPARQL queries for applications. Its goal is to make
an autocomplete form that can be reused in different applications
and will be up to date with the latest ontologies, thus making
the process of using Linked Open Data closer to application
developers in general. This is done by having a server with
an API that returns a JSONP format for each SPARQL query
sent by the user application, i.e. the autocomplete form. The
autocomplete feature is implemented with AngularJS and helps
the user with writing the SPARQL keywords, the ontology classes
and properties.

Index Terms—Semantic Web, SPARQL, AngularJS, Autocom-
plete

I. INTRODUCTION

The current Web is comprised of text and media files such as
pictures, audio and video files. This kind of data representation
makes it very easy for humans to understand and absorb the
knowledge from that data. However, it is not suitable for
the computers, since they see the data structurally without
”understanding” its meaning. Thus, the computers don’t under-
stand this data, and they can not fetch, select, filter, combine,
aggregate data for us, without someone analyzing that data.
This is where the Semantic Web comes in. The Semantic
Web represents a system that makes it easier for machines
to process and ”understand” web data and also to respond
to complex human requests based on their meaning. All that
the humans need to provide is relevant information about
that data. The Semantic Web is bridging the gap between the
human understandable meaning and computer understandable
structure with the standards that define representation structure
of the data meaning.

The knowledge in the Semantic Web is mostly represented
through several formats, such as RDF1, RDFS[1] and OWL[2].
One can query this knowledge using the SPARQL query
language[3]. SPARQL is able to query files containing RDF
data regardless if they are exposed on the Web or stored in a
local database. Furthermore, SPARQL can query multiple data
sources at once and dynamically build a virtual RDF graph
from all those sources. It is intended for revealing facts from
the semantic data by the applications and expert users that
know its syntax.

The base of the SPARQL syntax is similar to the SQL
syntax, and their difference is that SPARQL is designed to

1http://www.w3.org/RDF/

work with path expressions for graph querying. In the query
languages such as SPARQL, the one that writes the query
should know the underlying data and its relations. Even though
the base of the SPARQL syntax is simple, its main complexity
comes from the huge amount of data that is being queried,
since each data set can contains millions of triples from
different domains. It is hard for a human to remember all
the resources from some data set, and it is often practice
for the SPARQL users to write several additional queries in
order to reveal the underlying data, represented with resources
identified by their URIs. In SPARQL queries, the resources
must be referenced with their URIs.

In this paper we describe a SPARQL autocomplete system
that solves the problem of remembering resource URIs by the
users, and significantly speeds up the query writing process.
In Section II we describe the SPARQL query building systems
with their features. In Section III we describe our SPARQL
autocomplete system with the technical and architectural fea-
tures, and we compare it with similar systems in Section IV.
The last section Section V gives the conclusion and describes
the future steps for this project.

II. RELATED WORK

There are a few SPARQL query builders that exist. In
general they can be split in two groups:

a) Graphical query builders: These query builders lean
towards the idea of graphical representation of the resources,
variables, type of query. They can be in a form of building a
graph [4] where every node is a variable, resource or literal
and by choosing the type of query, the system (program) will
build the query for you. The other form is building the query
based on filling in forms of what the user wants the query to
achieve, which would the variables be, selecting the resources
from lists, etc. These query builders are wizard-like or have
an interface that starts building the query like a tree starting
from the query type as a root, and then restricting the possible
terms and resources to choose from with each choice made in
the branches [5].

One of the main advantages of the graphical query builders
is that the person using them does not have to know much
about SPARQL, or can just have a basic knowledge of it to
construct a query. The user interface is pretty straight-forward
and easy to learn for new users. The downside is that in
some builders the query takes more time to build due to the
conversion from its graphical form to a proper SPARQL query.

http://www.w3.org/RDF/


2

Fig. 2. Syntax words autocomplete.

b) Autocomplete or Textcomplete query builder: These
builders are meant for users who have knowledge of SPARQL
query writing. They will not create the query for you; instead
they will help you writing it. The general idea is to give the
user suggestions what to write next or in some builders even
check the validity of the current state of the query. Flint2

and Squebi3 are text editors for building SPARQL queries
that enable this kind of autocomplete and query validation.
Although these kind of query builders may not be visually
rich as the graphical query builders, they do provide in-depth
control of the query and are also faster in terms of query
creation time. The query is built by the user and it is validated
with every next letter the user types, so the query is ready
instantaneously after each new letter. One problem with this
kind of builders is that the autocomplete is only for reserved
syntax words and maybe some small set of the most popular
prefixes, classes and properties. This leaves the user with the
problem of finding the URIs (URLs) of the desired resources
so he/she can build the desired query. Most of the graphical
query builders share this problem too.

Regardless of the type of the query builders, they can be
hosted on the Web as part of a web page or they can be a
desktop editor or an application. The editor and application
types are bound to the user system and the user can use them
from there only. The ones hosted on the Web are more flexible
in that aspect. They are service-oriented, can be used from
everywhere and will always be up-to-date.

III. SPARQL AUTOCOMPLETE SYSTEM

The system presented in this paper provides SPARQL query
builder that autocompletes the user text with suggestions on
what to write next. It also allows query execution against any
SPARQL endpoint provided by the user. The SPARQL queries
are written in the HTML textarea, which is the main com-
ponent in the project. The query is automatically completed
with SPARQL syntax terms, the classes and properties from
the most widely used ontologies, and also supports the most
commont ontology prefixes. When a prefix is chosen, it is
automatically added in the prefix clause of the query along
with its full URI.

2http://openuplabs.tso.co.uk/demos/sparqleditor
3https://github.com/tkurz/squebi

Fig. 3. Ontology terms URL autocomplete.

The SPARQL autocomplete editor is developed as a
reusable web component which can be integrated in any web
page and can query any SPARQL endpoint. Since there are
endpoints that doesn’t support the JSONP4 protocol, and the
browsers doesn’t support cross site scripting[6], the editor
communicates with a dedicated server via the JSONP pro-
tocol that provides the autocomplete hints for the users. The
architecture of the system is shown in Figure 1.

A. SPARQL Autocomplete Server

The server is responsible for indexing and storing the classes
and the properties from the most common SPARQL endpoints.
In the current version, the server provides the classes and
properties provided by the Linked Open Vocabulary project5,
but it is not limited to them. The server also provides an
interface for adding new SPARQL endpoints; when a new
endpoint is added, the system queries it and retrieves all the
classes and properties available through it. For the prefixes,
the server provides the one registered in the Linked Open
Vocabulary project, combined with the prefixes defined in the
crowd sourced prefix.cc platform6.

The server has scheduled tasks that re-index the classes,
properties and prefixes from the registered sources. In the
current version, these scheduled tasks are executed weekly.

The server provides several functonalities. The first one is to
serve the script for the autocomplete editor widget. This widget
is described in details in Section III-B. The second function is
to provide the resources needed for autocompleting the user
query. The server supports two modes for communication. In
the first mode it transfers JSON objects that are suitable for
all clients. However, if the editor is reused in a page with
a different domain than the one of the server, this way of
communication does not work, since the browsers block the
cross side scripting. Because of this, the server also supports
communication via JSONP, where the data is sent to a callback
provided by the caller.

4http://en.wikipedia.org/wiki/JSONP
5http://lov.okfn.org
6http://prefix.cc/

http://openuplabs.tso.co.uk/demos/sparqleditor
https://github.com/tkurz/squebi
http://en.wikipedia.org/wiki/JSONP
http://lov.okfn.org
http://prefix.cc/


3

Fig. 1. System architecture.

B. SPARQL Autocomplete Editor

The SPARQL autocomplete editor is developed as an An-
gular JS[7] directive, which can be reused in every web
project. The directive provides configuration of the accepted
SPARQL endpoints, a default endpoint and the appearance of
the component. It can be reused in every web project, and its
only dependencies are AngularJS and Text Complete JQuery
plugin7. This way, each developer can reuse the features of
this editor in his/her project. In this mode of functioning, the
directive is hosted on a different domain than the autocomplete
server, and in order to communicate with eachother, the
JSONP protocol is used. This way, the server sends the result
as an argument to a callback Javascript function.

Additionally, the system provides an easier way of integra-
tion via the widget. This widget is included with an embedded
Javascript, hosted by the autocomplete server. This script takes
the ID of the target HTML element as an argument, and once it
is loaded, it displays the editor at the position of the provided
element. The embedded Javascript has all of the dependencies
with it, so there is no additional configuration necessary.

The SPARQL autocomplete editor is a custom directive that
displays a textarea with auto-completion dropdown list shown
while the user types in it. The directive additionally provides
list of available endpoints and allows query execution against
the selected endpoint.

The autocomplete functionality uses the open source JQuery
plugin(Footnote 7) that allows definition of suggested words
based on regular expression for matching the text typed in

7http://yuku-t.com/jquery-textcomplete/

by the user. The component allows definition of a function
for narrowing the suggestions, the template for the suggestion
list, what to replace after the autocompletion and many more
options. There are three matching patterns implemented in the
current version:

• SPARQL syntax words
• <resource uri>
• ontology prefix:resource

All of these words are retrieved from the SPARQL au-
tocomplete server and are loaded into the directive. The
SPARQL syntax words are hard-coded in an array, because
they represent a fixed set of words defined by the SPARQL
W3C standard. These words are suggested after a single typed
letter, as shown in Figure 2.

The next group of words are shown when the user types the
’<’ symbol and means that the user can search the ontology
terms by their URIs. Once the ’<’ is typed, a set of URIs
is retrieved by the AngularJS service. The service loads these
URIs by sending a request to the server who then delegates
the response to the AngularJS service. After the response is
retrieved by the service, it will be processed and returned as an
array to the autocomplete directive. Figure 3 shows the URL
autocompletion.

The last word group is the the ontology prefixes group
followed by the ontology resources. Autocomplete suggestions
are given just after one typed letter. Until the ’:’ symbol is
typed or the user chooses one of the prefixes from the list,
the autocomplete shows suggestions only for the ontology
prefixes. They are retrieved from http://prefix.cc but this time

http://yuku-t.com/jquery-textcomplete/
http://prefix.cc


4

Fig. 4. Prefixes autocomplete.

Fig. 5. Sufixes autocomplete.

through a direct AJAX[8] call from the AngularJS service
itself, not the server. The response contains the most popular
ontology prefixes along with their URIs. The prefixes are then
sent to the autocomplete script, while the prefix-uri mapping is
kept in the service (see Figure 4). After the ’:’ is being typed,
the autocomplete directive tries to match whether the prefix
URI is a prefix of some of the URIs we have stored (the URIs
retrieved from http://seminant.com/). If there is a match, those
matches are shown as suggestions and when the user chooses
one of them it is shown in the query as ”prefix:resource”, while
the whole URI is added at the beginning of the query in the
prefixe clause (see Figure 5).

IV. DISCUSSION

In the Section III a full description of our autocomplete
query builder was given. In this section a comparison is
made with the SPARQL query builders and editors from the
plain autocomplete category. Let us start with what this editor
can not do. Our editor lacks the ability to perform a query
validation, while Flint supports this feature by having all the
syntax words and the ontology terms categorized so it can
apply ordering rules to them. Another drawback is the lack to
format the query. This version does not adds tabs or new lines
after writing a triple in the query like in Squebi. Coloring of
words is also not supported because of the constraints of a
HTML textarea and is not intended to support this feature.

Now let us see what is the advantage of our editor over
the others. All of the other cited editors have only a few on-
tologies that they offer as autocomplete suggestions. They are
hard-coded in their implementation, while our system fetches
them as described previously. The other builders only have
autocompletion for the few most common prefixes and some
ontology terms URLs. We offer the most used ontologies,
about one thousand in size, their prefixes, URLs and terms.
That was the general idea for starting this kind of project.
This was the common thing all the other SPARQL editors had
as a drawback. All of their focus was on either formatting,
coloring, visualizing the query or the results. As for our
autocomplete system, the goal was to make the autocompletion
more powerful, thus easing the query writing process.

V. CONCLUSION AND FUTURE WORK

In this paper a review was given of our SPARQL auto-
complete system. The idea behind it was described and then
elaborated through the project structure and logic. Finally, a
comparison was made with the other SPARQL query builders
and listed its flaws and advantages over them. After the
previous section, it was concluded that our autocomplete
system reduces the time to construct a query by not having
to search for the ontology terms and resources by ourselves;
they are rather provided as suggestions.

In our future work we plan to change the preview of the
results. For now we use an AngularJS Table containing links of
triplets. We intend to create a separate AngularJS component
(directive) to show the result in a graph. The general plan is
to have the graph show the resources and to display some
metadata about a node on hover. We also plan to support
navigation from a node to other nodes (resources) that have
an outgoing connection to the one that we navigated from.

REFERENCES

[1] D. Brickley and R. V. Guha, “Resource description framework (rdf)
schema specification 1.0: W3c candidate recommendation 27 march
2000,” 2000.

[2] D. L. McGuinness, F. Van Harmelen et al., “Owl web ontology language
overview,” W3C recommendation, vol. 10, no. 10, p. 2004, 2004.

[3] S. Harris and A. Seaborne, “Sparql 1.1 query language,” W3C Recom-
mendation, vol. 21, 2013.

[4] A. Russell and P. Smart, “Nitelight: A graphical editor for sparql queries,”
2008.

[5] O. Ambrus, K. Möller, and S. Handschuh, “Konduit vqb: a visual query
builder for sparql on the social semantic desktop,” in Workshop on Visual
Interfaces to the Social and Semantic Web, 2010.

[6] K. Spett, “Cross-site scripting,” SPI Labs, pp. 1–20, 2005.
[7] P. B. Darwin and P. Kozlowski, AngularJS web application development.

Packt Publ., 2013.
[8] J. J. Garrett et al., “Ajax: A new approach to web applications,” 2005.

View publication stats

http://seminant.com/
https://www.researchgate.net/publication/275647363

	Introduction
	Related Work
	SPARQL Autocomplete System
	SPARQL Autocomplete Server
	SPARQL Autocomplete Editor

	Discussion
	Conclusion and Future Work
	References

