



Abstract — There are a lot of P2P computing systems or

distributed GRID systems that have clients that need to be

downloaded and installed on the client’s computer and after

that they will start with their work for the grid computation.

Unlike this approach, there is another type of grid processing

clients, which are based on web browsers. These Web GRID

systems are easier to use, because they don’t require manual

download and installation. Users are only one click away of

involving in the grid computing process. In this paper, we are

analyzing the Web GRID solutions and propose a Web GRID

architecture for which we present a mathematical

performance modeling. We also emphasize the GRID user

interface gains, the expected increase of the number of the

future GRID worldwide users and claim the problems found

in our Web GRID show-case scenario implementation.

Keywords — GRID, User, WEB, Web Client script

I. INTRODUCTION

HE idea of sharing computer resources is growing

rapidly these days. Creating virtual computers that

work on many computer networks caused many scientific

researches to replace the super computers with the power

of the GRID architecture [1].

The major purpose of a grid system is to make an

efficient usage of resources in order to solve problems. In

essence, grid computing allows you to unite pools of

servers, storage systems, and networks into a single large

system so you can deliver the power of multiple-systems

resources to a single user point for a specific purpose. To a

user, data file, or application, the system appears to be a

Agim Bajrami, Faculty of Computer Science and Engineering, Ss.

Cyril and Methodius University, Ruger Boskovik 16, 1000 Skopje,

Macedonia (phone:+389-23-099-153;e-mail:

agim.bajrami@posta.com.mk)

Vladimir Zdraveski, Faculty of Computer Science and Engineering,

Ss. Cyril and Methodius University, Ruger Boskovik 16, 1000 Skopje,

Macedonia (phone:+389-23-099-153;e-mail:

vladimir.zdraveski@finki.ukim.mk)

Sonja Filiposka, Faculty of Computer Science and Engineering, Ss.

Cyril and Methodius University, Ruger Boskovik 16, 1000 Skopje,

Macedonia (phone:+389-23-099-153;e-mail:

sonja.filiposka@finki.ukim.mk)

Goran Piskachev, Faculty of Computer Science and Engineering, Ss.

Cyril and Methodius University, Ruger Boskovik 16, 1000 Skopje,

Macedonia (phone:+389-23-099-153;e-mail:

goran.piskachev@finki.ukim.mk)

Dimitar Trajanov, Faculty of Computer Science and Engineering, Ss.

Cyril and Methodius University, Ruger Boskovik 16, 1000 Skopje,

Macedonia (phone:+389-23-099-153;e-mail:

dimitar.trajanov@finki.ukim.mk)

single, enormous computing system. In order to achieve

these goals, we must provide scalable architecture, tools

and methods that support effective development of

portable and high performance algorithms and grid

environment applications. All these require more complex

properties and capabilities than those used in simple

sequential programming. Grid environment, unlike single

machine or cluster environment is heterogeneous and

dynamic. This means that it contains different types of

resources whose configuration may change during the

runtime. Also here we have to face the need of

dynamically adding and removing new resources. Thus,

grid programming models, tools and frameworks must be

platform independent and easy to deploy and maintain on

the processing resources.

Grid is also used for high-performance computing.

Obtaining this requires balance of computation and

communication load among all resources involved.

Although there are some very successful GRID systems,

and they are mostly Smart Client architectures, the client

side software is still a big problem [2]. The thought that

they should install additional software to participate in the

GRID is unpleasant for most of the PC users who are

scared of and suspicious about clicking the “Allow”

button.

On the other side, there are widely accepted MatLab

GRID extensions [3], but they are completely application

specific and do not target the whole computing eager

community. The last and obviously the most acceptable

GRID client UI is the web interface.

Web Grid solution deals with these problems in a very

user friendly way, by means of the client’s web browsers.

So instead of using any client side software, the GRID

core of our solution prepares the jobs in a web browser’s

language, sends the jobs and merges back all the results.

Despite the core changes, the performance scenario is

quite the same, but the number of the end users around the

world is expected to be extremely grater.

If we emphasize the number of online PCs (with active

browsers), that are usually switched on most of the time, it

becomes reasonably clear that our system will target an

enormous group of end users, thus growing up in a

relatively powerful, easy accessible and very cheap GRID

infrastructure.

II. RELATED WORK

Nowadays, the applications using PCs for processing

complex tasks are getting very popular. Many people can

volunteer in researches by becoming a part from a GRID

network. Rosseta@home [4] is one example of a scientific

Performance modeling for a Web GRID

architecture

Agim Bajrami, Vladimir Zdraveski, Sonja Filiposka, Goran Piskachev, Dimitar Trajanov

T

mailto:agim.bajrami@posta.com.mk
mailto:vladimir.zdraveski@finki.ukim.mk
mailto:sonja.filiposka@finki.ukim.mk
mailto:goran.piskachev@finki.ukim.mk
mailto:dimitar.trajanov@finki.ukim.mk

project that is based on volunteers that share their

computer resources. This research creates a model of

intermolecular and intramolecular interactions, that is

planned to be used for predicting the macromolecular

structure and interactions.

On the other hand, Help Conquer Cancer [5] is a project

for improving protein crystallography, which is faster way

for determining the structure of the cancer-related proteins.

These results will be used in pharmaceutical researches for

creating new drugs to treat deadly diseases.

Another biomedical example is GPUGRID.net [6]. This

infrastructure is build only by NVIDIA graphics cards and

provides high-performance biomedical simulations of

atoms. Volunteers in this project need to own PCs with

NVIDIA GPUs and follow the guide for joining the GRID.

One new infrastructure that is still in progress is the

Lattice Project [7]. It is leaded by the researchers in the

University of Maryland, who are creating infrastructure of

computer resources, middleware, application software and

web services, to provide powerful processing network for

scientific analysis. Lattice Project’s architecture is based

on a Grid and it is built from multiprocessors and desktop

computers.

Unlike this approach there is another type of grid

processing clients which are based on reach clients. There

are some implementations with different types of

technologies like Legion [8] with the use of Silverlight on

the client side or with use of Java Applets [9]. Grid

systems which use rich client are easier to use, because

they don’t require manual download and installation.

Users are only one click away of involving in grid

computing process. In [10] the Java based GRID solutions

is presented, with the programming model that hide the

distributed environment details, and provides a single

machine environment perception.

III. SOLUTION DESCRIPTION

The idea to send the GRID job embedded in the user’s

web page has various advantages, starting from the lack of

need to install special software, via the large user base

until the ability to create special business models that will

encourage users to participate in the Grid.

The job, which may be a java script, Silverlight and etc.,

will run in browsers background. When it is done, will

generate an asynchronous request to the server and send

the job result values in the request. Thus the user will not

notice any difference in his web page, but the required

amount of processing power of its machine will satisfy the

GRID system needs.

The core module is slightly more complex than a

standard GRID core module, since it has to translate the

jobs in a web browser understandable language. Besides,

the system must include appropriate administration

interface, which enables tasks management, creation of

new tasks and parameters settings.

The results also have to be collected via the http request,

which increases the time delay of the core module too,

because the results should be retrieved of the whole

request’s content.

We implemented a basic show case scenario with

Silverlight and java script and confirmed the proposed

solution’s features. As we mentioned, the GRID core takes

some time to schedule and distribute the jobs and then

needs also an additional amount of time to parse and

integrate the results.

There were browser specific features and settings and

all the browser types should be considered in the future

implementations of this architecture. Since it is build on

top of a java script/Silverlight or similar client scripting

technology, we do not see a generic solution, without

treating all the browser kinds separately.

On the client side, there is slowdown, but it appears

with the fact that the script/applet is executed via the web

browser and not directly on the client’s operating system.

The Web GRID client side will absolutely be slightly

slower than a standard GRID implementation with client

side software.

But the world wide active web browsers total number

and up time and, as we mentioned above, the user’s doubt

in installing additional client side software, we see a bright

future for the Web GRID architecture.

IV. PERFORMANCE ESTIMATION

In the following text, we will make a brief mathematical

analyze of the performance of the proposed Web Grid

architecture. The total execution time of the Grid jobs will

depend on the following:

 The master node processor speed

 The slave nodes processors speed

 The size and the nature of the GRID task

 The number of nodes in the GRID system

 The throughput between the nodes, Master –

Slave and vice versa

The total execution time of all the GRID jobs, given by

the application layer, is given by:

The variable in (1) stands for the required

amount of time for calculating an optimal schedule by the

scheduler service, is a sum of

the time intervals required to distribute the jobs to the

slaves, the execution time and the amount of time required

to collect the results from all the nodes, and

denotes the time needed for collected results integration to

a single final result value.

The scheduler service’s time, in relation (1),

represents the time required for task scheduling and

creating a distribution table. For different scheduling

algorithms, the value of the parameter is

different, but this value also depends on the performances

of the machine where the scheduling is executed. The

distribution time, in (1), is

equal to the response time of the “slowest” node (tј) that

finishes the GRID job execution last. Thus,

(2)

The response time tј, ј =1,2,3...,n, is calculated using the

following relation:

 (3)

It represents the sum of the starting time of servicing for

node j (
) and the processing time of all the tasks

distributed to the node j, denoted as

 . The

execution time of one task, denoted as , is calculated

using the following relation:

(4)

In (4) is calculated as the sum of distribution time of

the task to node j -
, time for executing task k

in node j (
) and time for returning the result to

the master node i (
).

The distribution time of the task to the node j

(
) is calculated using:

 (5)

 in (5) is the length of the package task, R is the

rate of distribution (bits/second) while we assume that the

network in homogenous (in order to simplify the

equations, we will assume that the links have equal speed).

Second term in the relation (4) is the execution time of

task k in node j and it is denoted as
. This value

can be calculated as:

 (6)

 denotes the number of clocks for executing a

single instruction, is the processor frequency of the

node j, whereas
 is the number of instructions for

execution of the task k. The delay that the web browser

causes to the system is embedded in
, thus we

refer to “clocks for executing a single instruction” in terms

of web browsers point of execution vs. the common client

software’s point of execution. The term denotes

the initial GRID problem complexity, ex. O(n), O(n2),

O(n3) and etc. and equals to N, N2 and N3

respectively. N denotes the total number of instructions

needed to solve the job portion of the problem.

For simplicity of the analysis, we assume that the tasks

contain only one type of instruction for which the number

of clocks is determined before.

The value
 represents the time for delivering the

result to the node i:

 (7)

The length of the package of results () depends on

the type of the task for processing. Now, by combining the

relations (5), (6), (7) and (4), we obtain:

 =

 +

 +

(8)

Hence by using (8) in (3), we obtain the following

relation for :

 Lresultj,iR (9)

Using the relation (9) in relation (2), we obtain the

following result:

 =

 (10)

Finally, in order to calculate the total execution time for

all Grid tasks from application layer, we combine the

relation (10) and relation (1) as follows:

 Lrasultj,iR+ (11)

As we mentioned at the beginning, there are only a few

differences with the normal GRID system performance.

The first difference is the scheduling time (),

which is longer for the web GRID architecture and the

number of clock cycles needed per instruction

(

), which we counted from the web

browsers point of view.

The last difference or customization is that the value R

represents the rate of transfer (bits/second) and we make

an assumption that the Grid network is homogenous,

which means that all links between the nodes have equal

speed.

On the other side, a simple sequential non-GRID

execution could be modeled with the following equation:

 (12)

The only difference is (ex.

) that the is related to the whole problem scale,

despite the (ex.), which denotes

a single job scale (a worthwhile Web GRID system tends

to M >> N).

The performance analysis and equations (11) and (12)

will provide a decision making mechanism, whether to

solve the problem sequentially or to run it on a web GRID

system. The following constraint makes that decision:

 (13)

The curves intersection (solution point of (13) as an

equation) in Fig. 1 shows the minimal problem scale (a

little more then 6*105), when it would be worth to solve

the problem on the web GRID system, in case of an O(n2)

complex problem. In order to simplify the mathematical

model and get a clear clonclusion, we assume an average

value for .

Fig. 1- Performance Estimation - O(n

2
) Problem

In case of problem with increased complexity,

O(n2Log(n)) in Fig. 2, the benefits from the Web GRID

system could be gained with quite lower problem scale.

Fig. 2 – Performance Estimation - O(n

2
Log(n)) Problem

V. CONCLUSION

The main idea of the proposed Web GRID architecture

is to make the GRID systems available for most of the

Internet users, since they do not have to install any

additional client side software, but only open a web

browser and browse through their web pages.

The show-case implementation claimed our

expectations and showed some problems, that we

described through the paper.

Now, we are working on a more complex test scenario

with Silverlight and plan to extend it with a pure java

script module. Difference among browsers causes some

implementation problems, but we solve them easily all the

time and do not see a generic solution that works with all

the web browser types.

But the idea of having a web browser accessible GRID

system and the ability of dynamical new tasks creation and

management seems very bright and possible, thus we

propose further efforts in this direction.

REFERENCES

[1] Thomas D. Arkwright, “Grid Architecture“

[2] Mario Höfer, Gernot Howanitz, “The Client Side of Cloud

Computing”, July 1, 2009

[3] MatLab grid extensions,

http://www.mathworks.com/programs/techkits/ec2_paper.ht

ml

[4] Rosseta@home,

http://boinc.bakerlab.org/rosetta/rah_research.php#intro

[5] Help Conquer Cancer,

http://www.cs.toronto.edu/~juris/WCG/wcg-hcc.html

[6] GPUGRID.net, http://www.gpugrid.net/index.php

[7] Lattice, http://lattice.umiacs.umd.edu/

[8] D.Vaughan. Legion. Codeproject, 2008.

[9] C. Chen L. Yan. Jam: High performance internet computing

with massive java applets. 19th IEEE International

Conference on Distributed Computing Systems Workshops,

1999.

[10] Riste Stojanov, Zoran Dimov, Dimitar Trajanov, Rich client

grid system architecture using web technologies, ETAI

2009, Ohrid, Macedonia 2009

View publication statsView publication stats

http://www.amazon.com/s/ref=ntt_athr_dp_sr_1?_encoding=UTF8&sort=relevancerank&search-alias=books&field-author=Thomas%20D.%20Arkwright
http://www.mathworks.com/programs/techkits/ec2_paper.html
http://www.mathworks.com/programs/techkits/ec2_paper.html
http://boinc.bakerlab.org/rosetta/rah_research.php#intro
http://www.cs.toronto.edu/~juris/WCG/wcg-hcc.html
http://www.gpugrid.net/index.php
http://lattice.umiacs.umd.edu/
https://www.researchgate.net/publication/230555412

