
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/343957913

Formal Algebraic Specification of an IoT/Fog Data Centre for Fat Tree or Leaf and

Spine architectures

Conference Paper · June 2020

DOI: 10.1109/ICECCE49384.2020.9179445

CITATIONS

3
READS

75

5 authors, including:

Some of the authors of this publication are also working on these related projects:

GEANT 4-2 View project

Extracting domain ontology from folksononmy View project

Pedro Juan Roig

Universidad Miguel Hernández de Elche

35 PUBLICATIONS 65 CITATIONS

SEE PROFILE

Salvador Alcaraz

Universidad Miguel Hernández de Elche

53 PUBLICATIONS 137 CITATIONS

SEE PROFILE

Katja Gilly

Universidad Miguel Hernández de Elche

66 PUBLICATIONS 273 CITATIONS

SEE PROFILE

Sonja Filiposka

Ss. Cyril and Methodius University in Skopje

140 PUBLICATIONS 840 CITATIONS

SEE PROFILE

All content following this page was uploaded by Pedro Juan Roig on 14 November 2020.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/343957913_Formal_Algebraic_Specification_of_an_IoTFog_Data_Centre_for_Fat_Tree_or_Leaf_and_Spine_architectures?enrichId=rgreq-bb6b9fa72eec9a9e480ec0c8ef6d90ac-XXX&enrichSource=Y292ZXJQYWdlOzM0Mzk1NzkxMztBUzo5NTc3MTc5NzE3MzA0MzRAMTYwNTM0OTE2NjkwMg%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/343957913_Formal_Algebraic_Specification_of_an_IoTFog_Data_Centre_for_Fat_Tree_or_Leaf_and_Spine_architectures?enrichId=rgreq-bb6b9fa72eec9a9e480ec0c8ef6d90ac-XXX&enrichSource=Y292ZXJQYWdlOzM0Mzk1NzkxMztBUzo5NTc3MTc5NzE3MzA0MzRAMTYwNTM0OTE2NjkwMg%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/GEANT-4-2-2?enrichId=rgreq-bb6b9fa72eec9a9e480ec0c8ef6d90ac-XXX&enrichSource=Y292ZXJQYWdlOzM0Mzk1NzkxMztBUzo5NTc3MTc5NzE3MzA0MzRAMTYwNTM0OTE2NjkwMg%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/Extracting-domain-ontology-from-folksononmy?enrichId=rgreq-bb6b9fa72eec9a9e480ec0c8ef6d90ac-XXX&enrichSource=Y292ZXJQYWdlOzM0Mzk1NzkxMztBUzo5NTc3MTc5NzE3MzA0MzRAMTYwNTM0OTE2NjkwMg%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-bb6b9fa72eec9a9e480ec0c8ef6d90ac-XXX&enrichSource=Y292ZXJQYWdlOzM0Mzk1NzkxMztBUzo5NTc3MTc5NzE3MzA0MzRAMTYwNTM0OTE2NjkwMg%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Pedro-Roig?enrichId=rgreq-bb6b9fa72eec9a9e480ec0c8ef6d90ac-XXX&enrichSource=Y292ZXJQYWdlOzM0Mzk1NzkxMztBUzo5NTc3MTc5NzE3MzA0MzRAMTYwNTM0OTE2NjkwMg%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Pedro-Roig?enrichId=rgreq-bb6b9fa72eec9a9e480ec0c8ef6d90ac-XXX&enrichSource=Y292ZXJQYWdlOzM0Mzk1NzkxMztBUzo5NTc3MTc5NzE3MzA0MzRAMTYwNTM0OTE2NjkwMg%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Universidad-Miguel-Hernandez-de-Elche?enrichId=rgreq-bb6b9fa72eec9a9e480ec0c8ef6d90ac-XXX&enrichSource=Y292ZXJQYWdlOzM0Mzk1NzkxMztBUzo5NTc3MTc5NzE3MzA0MzRAMTYwNTM0OTE2NjkwMg%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Pedro-Roig?enrichId=rgreq-bb6b9fa72eec9a9e480ec0c8ef6d90ac-XXX&enrichSource=Y292ZXJQYWdlOzM0Mzk1NzkxMztBUzo5NTc3MTc5NzE3MzA0MzRAMTYwNTM0OTE2NjkwMg%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Salvador-Alcaraz?enrichId=rgreq-bb6b9fa72eec9a9e480ec0c8ef6d90ac-XXX&enrichSource=Y292ZXJQYWdlOzM0Mzk1NzkxMztBUzo5NTc3MTc5NzE3MzA0MzRAMTYwNTM0OTE2NjkwMg%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Salvador-Alcaraz?enrichId=rgreq-bb6b9fa72eec9a9e480ec0c8ef6d90ac-XXX&enrichSource=Y292ZXJQYWdlOzM0Mzk1NzkxMztBUzo5NTc3MTc5NzE3MzA0MzRAMTYwNTM0OTE2NjkwMg%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Universidad-Miguel-Hernandez-de-Elche?enrichId=rgreq-bb6b9fa72eec9a9e480ec0c8ef6d90ac-XXX&enrichSource=Y292ZXJQYWdlOzM0Mzk1NzkxMztBUzo5NTc3MTc5NzE3MzA0MzRAMTYwNTM0OTE2NjkwMg%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Salvador-Alcaraz?enrichId=rgreq-bb6b9fa72eec9a9e480ec0c8ef6d90ac-XXX&enrichSource=Y292ZXJQYWdlOzM0Mzk1NzkxMztBUzo5NTc3MTc5NzE3MzA0MzRAMTYwNTM0OTE2NjkwMg%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Katja-Gilly-2?enrichId=rgreq-bb6b9fa72eec9a9e480ec0c8ef6d90ac-XXX&enrichSource=Y292ZXJQYWdlOzM0Mzk1NzkxMztBUzo5NTc3MTc5NzE3MzA0MzRAMTYwNTM0OTE2NjkwMg%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Katja-Gilly-2?enrichId=rgreq-bb6b9fa72eec9a9e480ec0c8ef6d90ac-XXX&enrichSource=Y292ZXJQYWdlOzM0Mzk1NzkxMztBUzo5NTc3MTc5NzE3MzA0MzRAMTYwNTM0OTE2NjkwMg%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Universidad-Miguel-Hernandez-de-Elche?enrichId=rgreq-bb6b9fa72eec9a9e480ec0c8ef6d90ac-XXX&enrichSource=Y292ZXJQYWdlOzM0Mzk1NzkxMztBUzo5NTc3MTc5NzE3MzA0MzRAMTYwNTM0OTE2NjkwMg%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Katja-Gilly-2?enrichId=rgreq-bb6b9fa72eec9a9e480ec0c8ef6d90ac-XXX&enrichSource=Y292ZXJQYWdlOzM0Mzk1NzkxMztBUzo5NTc3MTc5NzE3MzA0MzRAMTYwNTM0OTE2NjkwMg%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Sonja-Filiposka?enrichId=rgreq-bb6b9fa72eec9a9e480ec0c8ef6d90ac-XXX&enrichSource=Y292ZXJQYWdlOzM0Mzk1NzkxMztBUzo5NTc3MTc5NzE3MzA0MzRAMTYwNTM0OTE2NjkwMg%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Sonja-Filiposka?enrichId=rgreq-bb6b9fa72eec9a9e480ec0c8ef6d90ac-XXX&enrichSource=Y292ZXJQYWdlOzM0Mzk1NzkxMztBUzo5NTc3MTc5NzE3MzA0MzRAMTYwNTM0OTE2NjkwMg%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Ss_Cyril_and_Methodius_University_in_Skopje?enrichId=rgreq-bb6b9fa72eec9a9e480ec0c8ef6d90ac-XXX&enrichSource=Y292ZXJQYWdlOzM0Mzk1NzkxMztBUzo5NTc3MTc5NzE3MzA0MzRAMTYwNTM0OTE2NjkwMg%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Sonja-Filiposka?enrichId=rgreq-bb6b9fa72eec9a9e480ec0c8ef6d90ac-XXX&enrichSource=Y292ZXJQYWdlOzM0Mzk1NzkxMztBUzo5NTc3MTc5NzE3MzA0MzRAMTYwNTM0OTE2NjkwMg%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Pedro-Roig?enrichId=rgreq-bb6b9fa72eec9a9e480ec0c8ef6d90ac-XXX&enrichSource=Y292ZXJQYWdlOzM0Mzk1NzkxMztBUzo5NTc3MTc5NzE3MzA0MzRAMTYwNTM0OTE2NjkwMg%3D%3D&el=1_x_10&_esc=publicationCoverPdf

Formal Algebraic Specification of an IoT/Fog Data
Centre for Fat Tree or Leaf and Spine architectures

Pedro Juan Roig
Department of Computer Engineering

Miguel Hernández University
Elche (Alicante), Spain

pedro.roig@graduado.umh.es

Sonja Filiposka
Faculty of Computer Science and Eng.

Ss. Cyril and Methodius University
Skopje, North Macedonia

sonja.filiposka@finki.ukim.mk

Salvador Alcaraz
Department of Computer Engineering

Miguel Hernández University
Elche (Alicante), Spain

salcaraz@umh.es

Katja Gilly
Department of Computer Engineering

Miguel Hernández University
Elche (Alicante), Spain

katya@umh.es

Noura Aknin
Faculty of Science

Abdelmalek Essaadi University
Tétouan, Morocco

noura.aknin@uae.ac.ma

Abstract Fog computing is an evolution of cloud
computing paradigm, whose key point is the location of
computing resources at the edge of the network. Data center
facilities at the fog level are smaller than those at the cloud
level, but nevertheless, they may share similar topologies, such
as fat tree or leaf and spine architectures. In this paper, a
formal algebraic specification of an IoT/Fog environment
based on each of both architectures is presented, where users
may be moving around and their associated computing assets
are meant to migrate among hosts in order to follow their
respective users so as to be as close as possible to them.

Keywords ACP, fog computing, IoT, formal protocol
specification, networking.

I. INTRODUCTION

Cloud computing paradigm has been a reference in the
last years among distributed computing models due to its
advantages against traditional computing. Some of those are
cost reduction in device acquisition, configuration and
maintenance, the ubiquitous access to information anywhere,
anytime and anyhow, the improvement of backup
management, and the flexibility in meeting actual computing
needs adequately [1].

Nevertheless, this paradigm is not up to all scenarios,
such as real-time applications, where latency is a key factor,
or when dealing constrained devices, as it happens with IoT
devices [2]. In order to cope with it, cloud philosophy has
been adapted to such environments by means of getting the
computer assets to the edge of the network, thus getting them
closer to the end user, hence reducing latency and the need of
bandwidth. This new approach has been redefined as fog
computing paradigm [3].

Special attention may be paid to the moving IoT devices
[4], as their computing assets, such as virtual machines
(VMs) or containers, should be as close as possible to them,
therefore, those might try to follow their associated users
while moving around, in order to minimise latency and the
usage of bandwidth. This movement of VMs through
different hosts within a fog computing facility is known as
migration [5].

In order to study VM migration, it is necessary first to
establish the type of architecture in the fog computing data
centre (DC). As fog computing is an evolution of cloud
computing, fog DCs share some of the topology designs

being in use in cloud DCs, such as fat tree [6], leaf and spine
[7] or n-hypercube topologies [8].

VM migration among hosts is a complex operation,
having some approaches available, such as cold migration,
hot migration and life migration [9], that being the most
interesting one as it carries out the migration process in the
most transparent manner for the user.

Supposing live VM migration is selected, there are some
three parameters to rate its performance, such as the
downtime, the total migration time and the amount of dirty
pages migrated [10], where the best solution is to consider a
tradeoff between the first and the second one, as the third one
may not be known beforehand.

For that tradeoff to be successful, memory transfer is key,
which may be performed with different techniques, but the
pre-copy migration seems to be the one giving better
performance due to its efficiency [11]. However, the models
considered herein will not take into account all of that and
will be focused only on algebraic and arithmetic properties.

In this paper, the objective is twofold. First, we will try to
achieve a formal algebraic specification of a fat tree
architecture with a generic K value in order to model the VM
migration process between a source host and a destination
host, both being part of a fat tree topology.

Furthermore, that topology is to be changed by a leaf and
spine architecture and a brand-new formal algebraic
specification is going to be used to model that same VM
migration procedure, so as to compare the behaviour of both.

In both case scenarios, it is going to be supposed that VM
migration processes take places in a distributed manner,
meaning that there is neither an orchestrator nor any other
control entity dictating the path to be followed from a host
source to a host destination within the DC. Therefore, each
step of such a path is going to be worked out by means of
arithmetic calculations depending on source and destination.

The organisation of this paper is as follows: first of all,
Section 2 presents an ACP overview, then, Section 3
presents a formal algebraic specification for a generic fat tree
architecture, next, Section 4 replicates the previous study for
a generic leaf and spine architecture, and finally, the Section
5 draws some conclusions about the whole study.

II. ACP OVERVIEW

The formal algebraic specifications proposed are going to
be designed by using Algebra of Communicating Processes
(ACP), which is a type of process algebra within the family
of abstract algebras focused on reasoning about relationships
within distributed systems [12].

ACP defines each entity in a concurrent system as a
process and each one is described as process terms stating its
properties and liaisons with other peers [13]. Those relations
are composed by atomic actions, such as send a message d,
given by the expression , or read a message d, stated by

, through a communication channel .

The logical flow in which those atomic actions takes
place may be customized by the use of operators [14], these
being the main ones: the sequential operator, where one
process gets executed and the next one does it after its
completion, is stated by the sign; the alternate operator,
where the choice between the execution of two processes is
taken, is given by the sign; the concurrent operator, where
two processes get executed at the same time, is cited by the
sign; the conditional operator, where a decision is taken
depending on the delivery of a certain condition, is denoted
by the string .

Some more extra operators are given by the Expansion
Theorem by Bergstra and Klop [15], which expresses the
concurrent (merge) operator in terms of left merge and
communication merge in order to make easier this kind of
calculations; the encapsulation operator to force atomic
actions involved in internal channels to transform into
communications or otherwise go to deadlock, and
abstraction operator to hide internal communications,
showing only the external behaviour of the model studied.

At this stage, the external behaviour obtained for the
model and that of the real system, expressed in ACP syntax
and semantics, may be compared, and if both share the same
string of actions and also the same branching structure, it
may be stated that both are rooted branching bisimilar [16],
being a sufficient condition to get the model verified [17].

III. ALBEBRAIC SPECIFICATION FOR FAT TREE

Fat tree is a three-layer architecture derived from Clos
networks [18], where crossbar switches employed to switch
telephone calls have been substituted for commodity network
switches, making it one of the preferred solutions for Data
Centre implementations.

Regarding the three layers involved in fat tree [19], the
first one is called Edge, the second one is named
Aggregation and the third one is labeled Core. It is to be
pointed out that all Hosts being part of a fat tree DC hang on
the Edge layer switches and the path for a VM to be
migrated from any given source host to any given
destination host may be one, two or three hops away,
depending on the minimum number of layers necessary to
establish that path.

Fat tree topology is divided into Pods, defined as a set
composed by the same number of switches on Edge and
Aggregation layer where there is full mesh connectivity, in a
way that there is a connection between any given switch on
Edge layer and all of the switches on Aggregation layer.

Additionally, each Pod has full mesh connectivity with all
the switches situated on the Core layer.

The setup of a fat tree topology gets fully influenced by
parameter K, being that a positive even number, as it
dictates the layout of all devices involved. Likewise, all
connections among different devices are also heavily biased
by parameter K, as long as the oversubscription rate is 1:1,
because any other rate would not show all expected links.

The aforesaid influence on K parameter may be
appreciated in the values shown in Table I for an
oversubscription rate 1:1.

TABLE I. FAT TREE MOST RELEVANT VALUES

 K-ary K=8 K=4

Number of Pods k 8 4

Number of switches in a Pod k 8 4

Number of ports per switch k 8 4

Number of Hosts per Edge switch k/2 4 2

Num. Aggregation switches within a Pod k/2 4 2

Num. Edge switches within a Pod k/2 4 2

Num. Hosts within a Pod (k/2)2 16 4

Number of connections in a Pod (k/2)2 48 12

Total Core switches in a topology (k/2)2 16 4

Total Aggregation switches in a topology k2/2 32 8

Total Edge switches in a topology k2/2 32 8

Total switches in a topology (k/2)2 80 20

Total Hosts in a topology k3/4 128 16

Total connections in a topology 3/4 384 48

Paths between two hosts being 1-hop away (k/2)0 1 1

Paths between two hosts being 2-hop away (k/2)1 4 2

Paths between two hosts being 3-hop away (k/2)2 16 4

Regarding the nomenclature of the devices involved,

items at each layer are enumerated from left to right, going
from zero to the precedent integer quoted by the previous
table. In fact, Table II shows the lower and upper bounds for
each type of item present in a certain layer, along with its
acronym to be used within the algebraic model proposed.

Each layer is identified by a number, where digits 1 to 3
represent the layers of the fat tree topology in ascending
order, and digit 0 represents where the hosts are. Besides,
values 1 to 3 identify the minimum number of hops away
between any two given hosts attached to the topology.

TABLE II. ACRONYM AND INDEX FOR EACH LAYER IN FAT TREE

Layer where the item lays index Lower bound Upper bound

0 Host (H) h (Hh) 0 (k3/4) - 1

1 Edge (E) i (Ei) 0 (k2/2) - 1

2 Aggregation (A) j (Aj) 0 (k2/2) - 1

3 Core (C) l (Cl) 0 (k2/4) - 1

Fig. 1. Fat tree topology for K=4 and oversubscription rate 1:1

Likewise, Pods are identified from left to right, where
items belonging to a certain Pod will be spotted in the model
by means of the basic arithmetic operators, along with the
integer division (int) and the modulo operation (mod).

As an example, Fig. 1 depicts this nomenclature applied
to the specific case where K=4 with oversubscription rate
1:1, thus exhibiting all available links.

With respect to the ports of each of those items, Fig. 2
shows their respective layouts [20]. Basically, items situated
at host layer are supposed to be servers with a single link to
the proper upper switch, being that link called 0. In order to
distinguish the source and destination hosts from the rest of
them, the former will be quoted as host a (Ha) and the latter
as host b (Hb).

As per the ports in the different kind of switches, each
switch standing on layer 1 (Edge) are supposed to have half
of their ports looking downwards and the other half looking
upwards, hence, those ports are identified from 0 to (k/2)-1,
going from left to right, on the lower half, and then, from
k/2 to k-1, from left to right as well, on the upper half. With
respect to switches staying on layer 2 (Aggregation), they
have the same layout, so they share the same way to name
the ports. Finally, switches being on layer 3 (Core) have all
their ports looking downwards, thus, they will be quoted
from 0 to k-1, going from left to right.

Fig. 2. Ports on each layer in the model for fat tree topology

All devices will be working in a distributed manner, thus
doing it concurrently. In the model proposed, it is assumed
that no control entity is managing the path from source to
destination, but it gets calculated in a hop by hop fashion.

To do so, let us assume that the data being sent from a given
source host contain not only the migrated VM but also the
values identifying source and destination hosts. This way,
both numbers may be used in each item along the path to
resolve where the next step is going to be, all the way from
source to destination.

Regarding the offered traffic, switches do not know
which port it is coming from, hence, all switches may be
listening through all ports on a regular basis. With respect to
the carried traffic, it may be sent over all uplink ports in
case of upstream traffic, or otherwise, it may be sent only on
the way to destination in case of downstream traffic.

As per the expressions to model the different types of
devices, let us start with the hosts, where the source Ha
starts the migration process by sending VM across and the
destination Hb listens to receive it, whilst the rest of them
keep listening but they are idle during this transaction.

Specifically, source host may be described by this
recursive expression: , where destination

host may do it by this one: . Extending this

to include all hosts, considering that all hosts may be ready
to send at any moment, otherwise they are listening to the
channel for possible new arrivals, and taking into account
that all hosts work in a concurrent manner, which will be

to exhibit
the behaviour of all hosts goes like this, where send and
receive actions bear two parameters separated by a comma,
as the first one indicates the device involved and the second
one its port involved in the transaction:

 (1)

Applying the same rules, the behaviour of switches
standing on layer 1 of the fat tree architecture (Edge), on
layer 2 (Aggregation) and on layer 3 (Core) may be
modelled according to the following expressions:

 (2)

(3)

l

k

l

k

p
k

bCl
pCll CdsdrC

1
4

0

1

0

2

int,
,

2

2

)((4)

Eventually, the overall recursive model for the whole
fat tree topology would be specified by executing all items
from all layers in a concurrent manner:

 (5)

It is to be noted that the arithmetic condition proposed to
find out whether two hosts are connected to the same Edge
switch is , whereas the one to know
if two hosts are connected to the same Pod is

. With that in mind, the

aforementioned expressions modelling the three layers of
switches may be easily understood.

Regarding all switches on the Edge layer, all lower ports
are waiting to receive a message from a source host, and
when that happens, such a message is forwarded on to either
only the destination host if it is hanging on the same Edge
switch, or otherwise, through all upper ports. Likewise, all
upper ports are waiting to receive a message, and when that
comes about, it is forwarded on just to the destination host.

With respect to all switches on the Aggregation layer,
the behaviour is quite similar, with the difference that all
lower ports redirect all incoming messages from a given
Edge switch either to the proper Edge switch where the
destination host is connected, if it happens to be in the same
Pod, or otherwise, through all upper ports. And on the other
hand, all upper ports redirect all incoming messages to the
Edge switch where the destination host is hanging.

Respecting all switches on Core layer, they just wait to
get new messages from a given Aggregation switch to
forward them on to the proper Aggregation switch within
the Pod where the destination host is located.

The aforementioned model is able to transport data, such
as VMs, from source host Ha to destination host Hb,
regardless where about in the topology they are situated,
thanks to its tree-like structure [21]. As a matter of fact,
three case scenarios may appear, according to the way both
hosts are interconnected [22], matching real fat tree layout:

1) Through the same Edge switch, so they are one-hop
away. They are considered to share the same network, thus
having just 1 unique path between them. If this is the case,
both hosts may be called neighbors.

2) Through all Aggregation switches within a given
Pod, so they are two-hops away. They are considered to

share the same Pod, hence having as many paths between
them as Aggregation switches in a Pod, this is, k/2 paths. In
such a case, both hosts might be named superneighbors.

3) Through all Core switch around the whole topology,
so they are three-hops away. They do not share the same
Pod, therefore, there are as many paths between them as the
total tally of Core switches, this is, (k/2)2 paths. In such a
case, both hosts might be named hyperneighbors.

Regarding the verification of the model, it may be
performed in different ways, although it is going to be
presented by applying structural induction and also by
means of ACP concept of rooted branching bisimilarity.

As per the structural induction, a fat tree topology may
well be considered as a set M of m-ary trees, being m any
natural number. Hence, the point is to proof that any full and
complete m-ary tree fulfills the definition of a tree,
therefore, it will imply connectivity among any given pair of
leaves, as a tree provides a continuous path among all their
leaves (those being considered the hosts in a fat tree setup).

In order to do it, let us consider a tree with a single node
r is inside M. In this case, if r is a node and {T1 , T2 M}
are disjoint m-ary trees, this is, {T1 , T2 M} M, then
the tree T = (r, T1 , T2 M) is also an m-ary tree, this is, T
is inside M. And the same applies for a set of m-ary trees.

As per the ACP approach, let us apply the encapsulation
operator to the final model presented above to each pair
of neighbouring layers presented therein, as non
neighbouring layers do not interact with each other, so they
will go deadlock and will be discarded.

It is to be noted that the communication actions show
both ends of each channel, separated by a double dash,
where at each end it is shown the device and its port. Also,
port variables m and n may be single and double quoted in
order to point out that they may belong to different switches.

In summary, only internal communications will make it
through, along with external inputs and outputs. First, in (6),
we are focusing on the links between Host layer and Edge
layer, only if there is a shared channel, through port m of Ei.
Then, in (7), we are looking at the links between Edge layer
and Aggregation layer, just if there is a shared channel,
through port n of Aj. Finally, in (8), we are selecting the
links between Aggregation layer and Core layer, just if there
is a shared channel, through port p of Cl.

 (6)

 (7)

 (8)

At this stage, it is time to apply the abstraction operator,
and that would hide all internal communications. At this
point, if we consider the model as in (5), where the host
layer may be seen as the lower most layer, and above that,
all fat tree switching structure is built upon, then all
communications may well be seen as internal.

In this case, all communications shown in (6)-(8) will
get masked, and also the send and read actions appearing
therein will do the same as they represent an action to a
different layer than those shown in the corresponding
expression. Hence, no external communication will take
place and the behaviour of the overall topology might be
perceived as a closed system, with no external interaction.

 (9)

However, if it is considered just the fat tree switching
structure, thus taking out of the expression the host layer,
then paths from the source host and to the destination host
would prevail after applying the abstraction operation, as
being external paths, whereas the rest of terms will be
hidden. This would make look the overall expression for the
switching layers as an open system, with two paths for
external interaction.

 (10)

On the other hand, the external behaviour of a real fat
tree switching infrastructure, leaving out the host layer, is
just the internal architecture to interconnect the different
hosts hanging on it, where a source host transmits some
information getting into the system, and a destination host
receives such information getting out of the system.

 (11)

By comparing both previous expressions, the one
obtained for the external behaviour of the model (10) and
the one achieved for the external behaviour of the real
system (11), it is obvious that both are recursive expressions
with the same terms being multiplied. Therefore, it is clear
that both recursive variables may match in this context:

 (12)

Hence, it may be concluded that both expressions are
rooted branching bisimilar, and that makes the model
proposed gets verified.

IV. ALBEBRAIC SPECIFICATION FOR LEAF AND SPINE

Leaf and spine is a two-tier architecture, derived from
Clos networks, whose main characteristic is that all switches
in the first layer, called leaf, have full mesh connectivity
with all switches in the second layer, called spine [23]. This
provides better performance and redundancy for hosts, them
hanging on leaf switches, although scalability issues may
arise as the number of necessary switches grows [24].

Leaf and spine designs are not influenced by any special
parameter, as it happened with fat tree, so there is some
degree of freedom when dealing with models [25]. In this
paper, it is going to be considered that the number of leaf
switches is given by variable p, whereas the number of spine
ones is stated by q. This may be appreciated in Fig. 3.

Fig. 3. Leaf and spine topology for p=8 and q=4

In order to model each layer, being leaf, spine and host,
Fig. 4 presents them along with their list of ports [26].

Fig. 4. Ports on each layer in the model for leaf and spine topology

The study of this model is pretty similar to that carried
out for the fat tree architecture, in a way that a distributed
system is considered, hence, no central entity is governing
how the switches organise the path from a source host to a
destination host, but it is done on a hop by hop basis, under
the criteria of choosing the shortest paths.

Following the same nomenclature presented in the
previous case, where

Ha is the source host and Hb is the

destination host, here it comes the model showing the
behaviour of all hosts for the leaf and spine topology:

 (13)

Regarding the lower layer of switches, namely the Leaf,
it is to be taken into consideration that, the arithmetic
condition proposed to find out whether two hosts are
connected to the same Leaf switch is .

Comparing this rule to the one expressed for the fat tree
topology, it is clear that parameter K plays a key role in the
layout of the hosts, whereas leaf and spine topology leaves
some degree of freedom to the network designers, as
variable w may be chosen arbitrarily.

This variable w accounts for the number of physical
hosts linking to each Leaf switch (considering the same
number in all of them), and depending on the bandwidth of
those ports, the load being supported by the network may
increase over the limit, affecting the network performance.

Anyway, applying the same rules as in the previous
section, the behaviour of switches standing on lower layer
(Leaf) and on upper layer (Spine) may be modelled
according to the following expressions:

 (14)

(15)

Eventually, the overall model for leaf and spine would
be given by running all devices concurrently:

 (16)

In this case, it happens the same as in the previous
section, in a way that the whole architecture including the
hosts may be perceived as a closed system from the point of
view of its external behaviour, as no interaction will be
appreciated externally:

 (17)

 However, if it is considered just the leaf and switching
structure, the switching architecture may be seen as an open
system from the point of view of its external behaviour, with
two paths for external interaction:

(18)

As per the external behaviour of real leaf and spine
switching infrastructure, it may be seen as if the whole
system is ready to receive a message from a given host, and
in turn, it will forward it on to another given host, regardless
of whether they both are hanging on the same switch or not.

 (19)

By comparing both expressions (18) and (19), it is clear
that they are both rooted branching bisimilar, as they show
one recursive variable being multiplied by the same factors.

 (20)

Therefore, it may be concluded that the model proposed
has been verified.

V. CONCLUSIONS

In this paper, formal algebraic models for fat tree and leaf
and spine architectures have been presented, according to the
behaviour of each of its layers.

Regarding the topology designs, fat tree is more rigid as
it depends heavily on parameter K, which constraints all
aspects of its design, whereas leaf and spine is looser as it
depends on variable w, which is chosen at design time. But
small differences in design do not make a big deal in order to
apply the ACP set of axioms to study them.

First, fat tree topology has been introduced and its key
points have been explained, and in turn, arithmetic has been
used to describe the behaviour of each of its layers. Later on,
a process algebra called ACP has been used to extract the
external behaviour of the model, and then, by comparing it to
the external behaviour of the real system, it has been proved
that both of them run the same string of actions and have the
same branching structure, thus the model has been
considered as being verified, according to ACP.

On the other hand, leaf and spine topology has been
brought in and its key ideas have been exposed, and the same
procedure has been applied to it in order to get it verified.

In conclusion, both models have been carefully studied
and they both have been verified. As a future work, some
other models for Data Center topologies may be built up
following the same criteria so as to see whether they also get
verified, such as n-hypercube or more complex structures.

REFERENCES
[1] A. Botta, W. de Donato, V. Persico and A. Pescapé, Integration of

cloud computing and Internet of Things: A survey,
Generation Computer Systems, 2016, Vol. 56, pp. 684-700.

[2] P. Sethi and S.R. Sarangi, Internet of Things: Architectures,
Protocols, and Applications, in Journal of Electrical and Computer
Engineering, 2017, article ID 9324035, pp. 1-25.

[3] C.S.R. Prabhu, - Fog Computing and Internet-of-Things
(IoT), EAI Endorsed Transactions on Cloud Systems, 2017, Issue
10, Article 5, pp. 1-24.

[4] L. Bittencourt et al., The Internet of Things, Fog and Cloud
continu in Internet of Things, 2018,
Vol. 3-4, pp. 134-155.

[5] M.R. Anawar et al, Fog Computing: An Overview of Big IoT Data
Analytics, -22.

[6] M. Al-Fares, A. Loukissas and A. Vahdat, A scalable, commodity
data center network architecture, -74.

[7] M. Alizadeh and T. Edsall, On the Data Path Performance of Leaf-
Spine Datacenter Fabrics, in IEEE 21st Annual Symposium on High-
Performance Interconnects, 2013, Vol 1, pp. 71-74.

[8] Z.A. Khan, J. Siddiqui and A. Samad, Topological Evaluation of
Variants Hypercube Network, in Asian Journal of Computer Science
and Information Technology, 2013, Vol 3(9), pp. 125-128.

[9] C. Puliafito et al, Container Migration in the Fog: A Performance
- Middleware Solutions for Wireless Internet

of Things, 2019, Vol. 19(7), Article 1488, pp. 1-22.

[10] O. Osanaiye From Cloud to Fog Computing: A Review and a
Conceptual Live VM Migration Framework ,
Vol. 5, pp. 8284-8300.

[11] M. Forsman, A. Glad, L. Lundberg and D. Ilie, Algorithms for
automated live migration of virtual machines, in Journal of Systems
and Software, 2015, Vol. 101, pp. 110-126.

[12] D.A. Padua, Encyclopedia of Parallel Computing, Springer, 2011.

[13] L. Lockefeer, D.M. Williams and W. Fokkink, Formal specification
and verification of TCP extended with the Window Scale Option, in
Science of Computing Programming, 2016, Vol. 118, No. 1, pp. 3-23.

[14] M. Gazda, W. Fokkink and V. Massaro, Congruence from the
 in Acta Informatica, 2019, pp. 1-23.

[15] J.A. Bergstra and J.W. Klop, Algebra of communicating processes
with abstraction, in T.Computer Science, 1985, Vol. 37, pp. 77-121.

[16] J.F. Groote and M.R. Mousavi, Modelling and Analysis of
Communicating Systems, MIT Press, 2014.

[17] W. Fokkink, Introduction to Process Algebra, Springer, 2007.

[18] C. Clos, A study of non-blocking switching networks, in The Bell
System Technical Journal, 1953, Vol. 32, Issue 2, pp. 406-424.

[19]
Packing Number of a Fat- IEEE Transactions on
Information Theory, 2017, Vol. 63, Issue 8, pp. 5327-5335.

[20] P.J. Roig, S. Alcaraz, K. Gilly and
in a Fog Computing Environment
2019, Vol. 25, Issue 5, pp. 75-81.

[21] V.P. Bakoev, Algorithmic approach to counting of certain types m-
ary partitions in Discrete Mathematics, 2004, Vol. 275, Issues 1-
3, pp. 17-41.

[22] D. Li et al., Scalable and Cost-Effective Interconnection of Data-
Center S in IEEE/ACM Transactions
on Networking, 2011, Vol. 19(1), pp. 102-114.

[23] K.C. Okafor, I.E. Achumba, G.A. Chukwudebe and G.C. Ononiwu,
-

er
Engineering, Vol. 2017, Article 2363240, pp. 1-11.

[24] M. Alizadeh and T. Edsall, On the Data Path Performance of Leaf-
Spine Datacenter Fabrics, in IEEE 21st Annual Symposium on High-
Performance Interconnects, 2013, Vol. 1, pp. 71-74.

[25] X. Li, C.H. Lung and S. Majumdar, Green spine switch management
for datacenter networks Journal of Cloud Computing, 2016, Vol.
5, Art. 9, pp. 1-19.

[26] P.J. Roig, S. Alcaraz, K. Gilly and
Spine Topology for VM Migration in Fog Computing ktronika
Ir Elektrotechnika, 2020, in press.

View publication stats

https://www.researchgate.net/publication/343957913

