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Abstract Fog computing is an evolution of cloud 
computing paradigm, whose key point is the location of 
computing resources at the edge of the network. Data center 
facilities at the fog level are smaller than those at the cloud 
level, but nevertheless, they may share similar topologies, such 
as fat tree or leaf and spine architectures. In this paper, a 
formal algebraic specification of an IoT/Fog environment 
based on each of both architectures is presented, where users 
may be moving around and their associated computing assets 
are meant to migrate among hosts in order to follow their 
respective users so as to be as close as possible to them. 

Keywords ACP, fog computing, IoT, formal protocol 
specification, networking. 

I. INTRODUCTION 

Cloud computing paradigm has been a reference in the 
last years among distributed computing models due to its 
advantages against traditional computing. Some of those are 
cost reduction in device acquisition, configuration and 
maintenance, the ubiquitous access to information anywhere, 
anytime and anyhow, the improvement of backup 
management, and the flexibility in meeting actual computing 
needs adequately [1]. 

Nevertheless, this paradigm is not up to all scenarios, 
such as real-time applications, where latency is a key factor, 
or when dealing constrained devices, as it happens with IoT 
devices [2]. In order to cope with it, cloud philosophy has 
been adapted to such environments by means of getting the 
computer assets to the edge of the network, thus getting them 
closer to the end user, hence reducing latency and the need of 
bandwidth. This new approach has been redefined as fog 
computing paradigm [3]. 

Special attention may be paid to the moving IoT devices 
[4], as their computing assets, such as virtual machines 
(VMs) or containers, should be as close as possible to them, 
therefore, those might try to follow their associated users 
while moving around, in order to minimise latency and the 
usage of bandwidth. This movement of VMs through 
different hosts within a fog computing facility is known as 
migration [5]. 

In order to study VM migration, it is necessary first to 
establish the type of architecture in the fog computing data 
centre (DC). As fog computing is an evolution of cloud 
computing, fog DCs share some of the topology designs 

being in use in cloud DCs, such as fat tree [6], leaf and spine 
[7] or n-hypercube topologies [8]. 

VM migration among hosts is a complex operation, 
having some approaches available, such as cold migration, 
hot migration and life migration [9], that being the most 
interesting one as it carries out the migration process in the 
most transparent manner for the user. 

Supposing live VM migration is selected, there are some 
three parameters to rate its performance, such as the 
downtime, the total migration time and the amount of dirty 
pages migrated [10], where the best solution is to consider a 
tradeoff between the first and the second one, as the third one 
may not be known beforehand.  

For that tradeoff to be successful, memory transfer is key, 
which may be performed with different techniques, but the 
pre-copy migration seems to be the one giving better 
performance due to its efficiency [11]. However, the models 
considered herein will not take into account all of that and 
will be focused only on algebraic and arithmetic properties.  

In this paper, the objective is twofold. First, we will try to 
achieve a formal algebraic specification of a fat tree 
architecture with a generic K value in order to model the VM 
migration process between a source host and a destination 
host, both being part of a fat tree topology.  

Furthermore, that topology is to be changed by a leaf and 
spine architecture and a brand-new formal algebraic 
specification is going to be used to model that same VM 
migration procedure, so as to compare the behaviour of both. 

In both case scenarios, it is going to be supposed that VM 
migration processes take places in a distributed manner, 
meaning that there is neither an orchestrator nor any other 
control entity dictating the path to be followed from a host 
source to a host destination within the DC. Therefore, each 
step of such a path is going to be worked out by means of 
arithmetic calculations depending on source and destination. 

The organisation of this paper is as follows: first of all, 
Section 2 presents an ACP overview, then, Section 3 
presents a formal algebraic specification for a generic fat tree 
architecture, next, Section 4 replicates the previous study for 
a generic leaf and spine architecture, and finally, the Section 
5 draws some conclusions about the whole study. 



II. ACP OVERVIEW 

The formal algebraic specifications proposed are going to 
be designed by using Algebra of Communicating Processes 
(ACP), which is a type of process algebra within the family 
of abstract algebras focused on reasoning about relationships 
within distributed systems [12]. 

ACP defines each entity in a concurrent system as a 
process and each one is described as process terms stating its 
properties and liaisons with other peers [13]. Those relations 
are composed by atomic actions, such as send a message d, 
given by the expression , or read a message d, stated by 

, through a communication channel .  

The logical flow in which those atomic actions takes 
place may be customized by the use of operators [14], these 
being the main ones: the sequential operator, where one 
process gets executed and the next one does it after its 
completion, is stated by the sign; the alternate operator, 
where the choice between the execution of two processes is 
taken, is given by the sign; the concurrent operator, where 
two processes get executed at the same time, is cited by the  
sign; the conditional operator, where a decision is taken 
depending on the delivery of a certain condition, is denoted 
by the string . 

Some more extra operators are given by the Expansion 
Theorem by Bergstra and Klop [15], which expresses the 
concurrent (merge) operator  in terms of left merge  and 
communication merge in order to make easier this kind of 
calculations; the encapsulation operator  to force atomic 
actions involved in internal channels to transform into 
communications or otherwise go to deadlock, and 
abstraction operator  to hide internal communications, 
showing only the external behaviour of the model studied. 

At this stage, the external behaviour obtained for the 
model and that of the real system, expressed in ACP syntax 
and semantics, may be compared, and if both share the same 
string of actions and also the same branching structure, it 
may be stated that both are rooted branching bisimilar [16], 
being a sufficient condition to get the model verified [17]. 

III. ALBEBRAIC SPECIFICATION FOR FAT TREE 

Fat tree is a three-layer architecture derived from Clos 
networks [18], where crossbar switches employed to switch 
telephone calls have been substituted for commodity network 
switches, making it one of the preferred solutions for Data 
Centre implementations. 

Regarding the three layers involved in fat tree [19], the 
first one is called Edge, the second one is named 
Aggregation and the third one is labeled Core. It is to be 
pointed out that all Hosts being part of a fat tree DC hang on 
the Edge layer switches and the path for a VM to be 
migrated from any given source host to any given 
destination host may be one, two or three hops away, 
depending on the minimum number of layers necessary to 
establish that path. 

Fat tree topology is divided into Pods, defined as a set 
composed by the same number of switches on Edge and 
Aggregation layer where there is full mesh connectivity, in a 
way that there is a connection between any given switch on 
Edge layer and all of the switches on Aggregation layer. 

Additionally, each Pod has full mesh connectivity with all 
the switches situated on the Core layer. 

The setup of a fat tree topology gets fully influenced by 
parameter K, being that a positive even number, as it 
dictates the layout of all devices involved. Likewise, all 
connections among different devices are also heavily biased 
by parameter K, as long as the oversubscription rate is 1:1, 
because any other rate would not show all expected links. 

The aforesaid influence on K parameter may be 
appreciated in the values shown in Table I for an 
oversubscription rate 1:1.  

TABLE I.  FAT TREE MOST RELEVANT VALUES 

 K-ary K=8 K=4 

Number of Pods k 8 4 

Number of switches in a Pod k 8 4 

Number of ports per switch k 8 4 

Number of Hosts per Edge switch k/2 4 2 
 

Num. Aggregation switches within a Pod k/2 4 2 

Num. Edge switches within a Pod k/2 4 2 

Num. Hosts within a Pod (k/2)2 16 4 

Number of connections in a Pod (k/2)2 48 12 

Total Core switches in a topology (k/2)2 16 4 

Total Aggregation switches in a topology k2/2 32 8 

Total Edge switches in a topology k2/2 32 8 

Total switches in a topology (k/2)2 80 20 

Total Hosts in a topology k3/4 128 16 

Total connections in a topology 3/4 384 48 

Paths between two hosts being 1-hop away (k/2)0 1 1 

Paths between two hosts being 2-hop away (k/2)1 4 2 

Paths between two hosts being 3-hop away (k/2)2 16 4 

 
Regarding the nomenclature of the devices involved, 

items at each layer are enumerated from left to right, going 
from zero to the precedent integer quoted by the previous 
table. In fact, Table II shows the lower and upper bounds for 
each type of item present in a certain layer, along with its 
acronym to be used within the algebraic model proposed. 

Each layer is identified by a number, where digits 1 to 3 
represent the layers of the fat tree topology in ascending 
order, and digit 0 represents where the hosts are. Besides, 
values 1 to 3 identify the minimum number of hops away 
between any two given hosts attached to the topology. 

TABLE II.  ACRONYM AND INDEX FOR EACH LAYER IN FAT TREE 

# Layer where the item lays index Lower bound Upper bound 

0 Host (H) h (Hh) 0 (k3/4) - 1 

1 Edge (E) i (Ei) 0 (k2/2) - 1 

2 Aggregation (A) j (Aj) 0 (k2/2) - 1 

3 Core (C) l (Cl) 0 (k2/4) - 1 



 

Fig. 1. Fat tree topology for K=4 and oversubscription rate 1:1 

Likewise, Pods are identified from left to right, where 
items belonging to a certain Pod will be spotted in the model 
by means of the basic arithmetic operators, along with the 
integer division (int) and the modulo operation (mod). 

As an example, Fig. 1 depicts this nomenclature applied 
to the specific case where K=4 with oversubscription rate 
1:1, thus exhibiting all available links. 

With respect to the ports of each of those items, Fig. 2 
shows their respective layouts [20]. Basically, items situated 
at host layer are supposed to be servers with a single link to 
the proper upper switch, being that link called 0. In order to 
distinguish the source and destination hosts from the rest of 
them, the former will be quoted as host a (Ha) and the latter 
as host b (Hb).  

As per the ports in the different kind of switches, each 
switch standing on layer 1 (Edge) are supposed to have half 
of their ports looking downwards and the other half looking 
upwards, hence, those ports are identified from 0 to (k/2)-1, 
going from left to right, on the lower half, and then, from 
k/2 to k-1, from left to right as well, on the upper half. With 
respect to switches staying on layer 2 (Aggregation), they 
have the same layout, so they share the same way to name 
the ports. Finally, switches being on layer 3 (Core) have all 
their ports looking downwards, thus, they will be quoted 
from 0 to k-1, going from left to right. 

 
Fig. 2. Ports on each layer in the model for fat tree topology  

All devices will be working in a distributed manner, thus 
doing it concurrently. In the model proposed, it is assumed 
that no control entity is managing the path from source to 
destination, but it gets calculated in a hop by hop fashion. 

To do so, let us assume that the data being sent from a given 
source host contain not only the migrated VM but also the 
values identifying source and destination hosts. This way, 
both numbers may be used in each item along the path to 
resolve where the next step is going to be, all the way from 
source to destination. 

Regarding the offered traffic, switches do not know 
which port it is coming from, hence, all switches may be 
listening through all ports on a regular basis. With respect to 
the carried traffic, it may be sent over all uplink ports in 
case of upstream traffic, or otherwise, it may be sent only on 
the way to destination in case of downstream traffic. 

As per the expressions to model the different types of 
devices, let us start with the hosts, where the source Ha 
starts the migration process by sending VM across and the 
destination Hb listens to receive it, whilst the rest of them 
keep listening but they are idle during this transaction. 

Specifically, source host may be described by this 
recursive expression:  , where destination 

host may do it by this one: . Extending this 

to include all hosts, considering that all hosts may be ready 
to send at any moment, otherwise they are listening to the 
channel for possible new arrivals, and taking into account 
that all hosts work in a concurrent manner, which will be 

to exhibit 
the behaviour of all hosts goes like this, where send and 
receive actions bear two parameters separated by a comma, 
as the first one indicates the device involved and the second 
one its port involved in the transaction: 

 
 (1) 

Applying the same rules, the behaviour of switches 
standing on layer 1 of the fat tree architecture (Edge), on 
layer 2 (Aggregation) and on layer 3 (Core) may be 
modelled according to the following expressions:

 

 (2) 

 

 

(3) 
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Eventually, the overall recursive model  for the whole 
fat tree topology would be specified by executing all items 
from all layers in a concurrent manner: 

  (5) 

It is to be noted that the arithmetic condition proposed to 
find out whether two hosts are connected to the same Edge 
switch is , whereas the one to know 
if two hosts are connected to the same Pod is 

. With that in mind, the 

aforementioned expressions modelling the three layers of 
switches may be easily understood. 

Regarding all switches on the Edge layer, all lower ports 
are waiting to receive a message from a source host, and 
when that happens, such a message is forwarded on to either 
only the destination host if it is hanging on the same Edge 
switch, or otherwise, through all upper ports. Likewise, all 
upper ports are waiting to receive a message, and when that 
comes about, it is forwarded on just to the destination host.  

With respect to all switches on the Aggregation layer, 
the behaviour is quite similar, with the difference that all 
lower ports redirect all incoming messages from a given 
Edge switch either to the proper Edge switch where the 
destination host is connected, if it happens to be in the same 
Pod, or otherwise, through all upper ports. And on the other 
hand, all upper ports redirect all incoming messages to the 
Edge switch where the destination host is hanging. 

Respecting all switches on Core layer, they just wait to 
get new messages from a given Aggregation switch to 
forward them on to the proper Aggregation switch within 
the Pod where the destination host is located. 

The aforementioned model is able to transport data, such 
as VMs, from source host Ha to destination host Hb, 
regardless where about in the topology they are situated, 
thanks to its tree-like structure [21]. As a matter of fact, 
three case scenarios may appear, according to the way both 
hosts are interconnected [22], matching real fat tree layout: 

1) Through the same Edge switch, so they are one-hop 
away. They are considered to share the same network, thus 
having just 1 unique path between them. If this is the case, 
both hosts may be called neighbors. 

2) Through all Aggregation switches within a given 
Pod, so they are two-hops away. They are considered to 

share the same Pod, hence having as many paths between 
them as Aggregation switches in a Pod, this is, k/2 paths. In 
such a case, both hosts might be named superneighbors. 

3) Through all Core switch around the whole topology, 
so they are three-hops away. They do not share the same 
Pod, therefore, there are as many paths between them as the 
total tally of Core switches, this is, (k/2)2 paths. In such a 
case, both hosts might be named hyperneighbors. 

Regarding the verification of the model, it may be 
performed in different ways, although it is going to be 
presented by applying structural induction and also by 
means of ACP concept of rooted branching bisimilarity.  

As per the structural induction, a fat tree topology may 
well be considered as a set M of m-ary trees, being m any 
natural number. Hence, the point is to proof that any full and 
complete m-ary tree fulfills the definition of a tree, 
therefore, it will imply connectivity among any given pair of 
leaves, as a tree provides a continuous path among all their 
leaves (those being considered the hosts in a fat tree setup). 

In order to do it, let us consider a tree with a single node 
r is inside M. In this case, if r is a node and {T1 , T2 M}  
are disjoint m-ary trees, this is, {T1 , T2 M}  M, then 
the tree T = (r, T1 , T2 M) is also an m-ary tree, this is, T 
is inside M. And the same applies for a set of m-ary trees. 

As per the ACP approach, let us apply the encapsulation 
operator to the final model  presented above to each pair 
of neighbouring layers presented therein, as non 
neighbouring layers do not interact with each other, so they 
will go deadlock and will be discarded. 

It is to be noted that the communication actions show 
both ends of each channel, separated by a double dash, 
where at each end it is shown the device and its port. Also, 
port variables m and n may be single and double quoted in 
order to point out that they may belong to different switches. 

In summary, only internal communications will make it 
through, along with external inputs and outputs. First, in (6), 
we are focusing on the links between Host layer and Edge 
layer, only if there is a shared channel, through port m of Ei. 
Then, in (7), we are looking at the links between Edge layer 
and Aggregation layer, just if there is a shared channel, 
through port n of Aj. Finally, in (8), we are selecting the 
links between Aggregation layer and Core layer, just if there 
is a shared channel, through port p of Cl. 

 

 (6) 

 

 (7) 

 

 (8) 



At this stage, it is time to apply the abstraction operator, 
and that would hide all internal communications. At this 
point, if we consider the model as in (5), where the host 
layer may be seen as the lower most layer, and above that, 
all fat tree switching structure is built upon, then all 
communications may well be seen as internal.  

In this case, all communications shown in (6)-(8) will 
get masked, and also the send and read actions appearing 
therein will do the same as they represent an action to a 
different layer than those shown in the corresponding 
expression. Hence, no external communication will take 
place and the behaviour of the overall topology might be 
perceived as a closed system, with no external interaction. 

  (9) 

However, if it is considered just the fat tree switching 
structure, thus taking out of the expression the host layer, 
then paths from the source host and to the destination host 
would prevail after applying the abstraction operation, as 
being external paths, whereas the rest of terms will be 
hidden. This would make look the overall expression for the 
switching layers as an open system, with two paths for 
external interaction. 

 
 (10) 

On the other hand, the external behaviour of a real fat 
tree switching infrastructure, leaving out the host layer, is 
just the internal architecture to interconnect the different 
hosts hanging on it, where a source host transmits some 
information getting into the system, and a destination host 
receives such information getting out of the system.

 
  (11) 

By comparing both previous expressions, the one 
obtained for the external behaviour of the model (10) and 
the one achieved for the external behaviour of the real 
system (11), it is obvious that both are recursive expressions 
with the same terms being multiplied. Therefore, it is clear 
that both recursive variables may match in this context: 

  (12) 

Hence, it may be concluded that both expressions are 
rooted branching bisimilar, and that makes the model 
proposed gets verified. 

IV. ALBEBRAIC SPECIFICATION FOR LEAF AND SPINE  

Leaf and spine is a two-tier architecture, derived from 
Clos networks, whose main characteristic is that all switches 
in the first layer, called leaf, have full mesh connectivity 
with all switches in the second layer, called spine [23]. This 
provides better performance and redundancy for hosts, them 
hanging on leaf switches, although scalability issues may 
arise as the number of necessary switches grows [24]. 

Leaf and spine designs are not influenced by any special 
parameter, as it happened with fat tree, so there is some 
degree of freedom when dealing with models [25]. In this 
paper, it is going to be considered that the number of leaf 
switches is given by variable p, whereas the number of spine 
ones is stated by q. This may be appreciated in Fig. 3. 

 
Fig. 3. Leaf and spine topology for p=8 and q=4 

In order to model each layer, being leaf, spine and host, 
Fig. 4 presents them along with their list of ports [26]. 

 
Fig. 4. Ports on each layer in the model for leaf and spine topology 

The study of this model is pretty similar to that carried 
out for the fat tree architecture, in a way that a distributed 
system is considered, hence, no central entity is governing 
how the switches organise the path from a source host to a 
destination host, but it is done on a hop by hop basis, under 
the criteria of choosing the shortest paths. 

Following the same nomenclature presented in the 
previous case, where

 
Ha is the source host and Hb is the 

destination host, here it comes the model showing the 
behaviour of all hosts for the leaf and spine topology: 

  (13) 

Regarding the lower layer of switches, namely the Leaf, 
it is to be taken into consideration that, the arithmetic 
condition proposed to find out whether two hosts are 
connected to the same Leaf switch is .  

Comparing this rule to the one expressed for the fat tree 
topology, it is clear that parameter K plays a key role in the 
layout of the hosts, whereas leaf and spine topology leaves 
some degree of freedom to the network designers, as 
variable w may be chosen arbitrarily.  

This variable w accounts for the number of physical 
hosts linking to each Leaf switch (considering the same 
number in all of them), and depending on the bandwidth of 
those ports, the load being supported by the network may 
increase over the limit, affecting the network performance. 

Anyway, applying the same rules as in the previous 
section, the behaviour of switches standing on lower layer 
(Leaf) and on upper layer (Spine) may be modelled 
according to the following expressions: 

 

 (14) 

 
 

(15) 



Eventually, the overall model for leaf and spine would 
be given by running all devices concurrently:  

  (16) 

In this case, it happens the same as in the previous 
section, in a way that the whole architecture including the 
hosts may be perceived as a closed system from the point of 
view of its external behaviour, as no interaction will be 
appreciated externally: 

  (17) 

 However, if it is considered just the leaf and switching 
structure, the switching architecture may be seen as an open 
system from the point of view of its external behaviour, with 
two paths for external interaction: 

 

 

(18) 

As per the external behaviour of real leaf and spine 
switching infrastructure, it may be seen as if the whole 
system is ready to receive a message from a given host, and 
in turn, it will forward it on to another given host, regardless 
of whether they both are hanging on the same switch or not. 

  (19) 

By comparing both expressions (18) and (19), it is clear 
that they are both rooted branching bisimilar, as they show 
one recursive variable being multiplied by the same factors. 

  (20) 

Therefore, it may be concluded that the model proposed 
has been verified. 

V. CONCLUSIONS 

In this paper, formal algebraic models for fat tree and leaf 
and spine architectures have been presented, according to the 
behaviour of each of its layers. 

Regarding the topology designs, fat tree is more rigid as 
it depends heavily on parameter K, which constraints all 
aspects of its design, whereas leaf and spine is looser as it 
depends on variable w, which is chosen at design time. But 
small differences in design do not make a big deal in order to 
apply the ACP set of axioms to study them. 

First, fat tree topology has been introduced and its key 
points have been explained, and in turn, arithmetic has been 
used to describe the behaviour of each of its layers. Later on, 
a process algebra called ACP has been used to extract the 
external behaviour of the model, and then, by comparing it to 
the external behaviour of the real system, it has been proved 
that both of them run the same string of actions and have the 
same branching structure, thus the model has been 
considered as being verified, according to ACP. 

On the other hand, leaf and spine topology has been 
brought in and its key ideas have been exposed, and the same 
procedure has been applied to it in order to get it verified. 

In conclusion, both models have been carefully studied 
and they both have been verified. As a future work, some 
other models for Data Center topologies may be built up 
following the same criteria so as to see whether they also get 
verified, such as n-hypercube or more complex structures. 
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