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ABSTRACT

 The goal of this paper is to describe the problem of text 

document classification as well as to analyze some of the 

most common methods that are being used for its resolution. 

There are numerous practical examples where according to 

some provided document corresponding class of it is required 

to be assigned. There are a lot of documents that are already 

classified by some expert from the particular field thus the 

idea of this paper is to show how such classification can be 

used to train a system to classify newly provided documents. 

I. INTRODUCTION

In this paper I will review three methodologies that can 

be used to solve this problem with certain success. 

Methodologies that will be reviewed are Naive Bayes

classifiers, method of k nearest neighbors and support vector 

machines scattered through next topics. For every method I 

will introduce the mathematical model. Moreover I will 

analyze how these methods can be applied for text 

classification. I will also describe an example usage for each 

of these methods on real data collected from internet. All

methods are commonly used for text classification purposes 

and all of them have some success from different view point 

so there is hardly to tell which one is the best. The goal of this 

paper is to describe the problem, the methods that can be used 

and to show how data can be modeled in order to be 

processed with these method. I will try to interpret the 

meanings of these methods and their steps in this process and 

also point out possible problems why they occur and how to 

avoid them.

II. NAIVE BAYES CLASSIFIER 

Naive Bayes classifier is supervised probabilistic method 

for machine learning. In order to be used for document 

classification it should be tailored for the specific problem 

and most important modeled against appropriate vector 

space.

According to the Naive Bayes classifiers probability of 

one document belonging to class c is expressed with next 

equation (1):

. (1)

where  is the conditional probability of term 

occurring in a document of class c. One more factor beside 

the words occurring in the document is the independent

probability of the class itself.

For the need of this approach text documents should be 

modeled as vectors that indicate the term occurrence 

frequencies for terms of given vocabulary. Let 

be the vector that describes arbitrary document d. Elements 

 from the vectors are all words from the vocabulary. As an 

example the sentence „hello world example“ can be translated 

to ("hello", "world", "example") where . 

In the case where we should choose one of multiple 

offered classes than a multinomial Naive Bayes classifier is 

being used. The goal of such approach is to choose the class 

with best score i.e. probability:

. (2) 

However there is a problem with the last formula that is a 

result of many very small values being multiplied. Having in 

mind that the probability is expressed with a value in the 

interval [0..1] and the number of words in a document can be 

in orders of hundreds or thousands of words  than in the last 

formula we are multiplying many such small values that can 

cause danger of floating point underflow during our 

calculation. This problem is being resolved with changing 

previous formula with sum of logarithms of probabilities as in 

the next formula: 

(3)

 Probabilities in the previous formula are measure about 

how good indicator the term is about some class. More 

common classes have greater probability of being assigned to 

the document and that is described with the probability of the 

class. So the formula is just a sum of all indicators about 

document membership to the class.  

(4) 

 (5) 

 What is left in this model is just to specify how we 

calculate the independent probability of the classes and the 

conditional probabilities of the terms for these classes. The 

class probability calculation is simple and is equal to the 
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frequency of documents that belong to this class divided by 

the number of documents. On the other hand the conditional 

probability of the terms is calculated with dividing the 

number of occurrences of the term t in the whole set of 

documents of this class, including multiple occurrences, with 

the number of occurrences of that term in the whole set of 

documents. This formula awards the term as good indicator if 

it happens to be more common and more unique for the 

current class against those terms that are rare for the class or 

common in the whole set. There is some loss of information 

with such approach because we ignore the word positioning 

what for sure has meaning for semantics purpose but for 

classification it will be acceptable loss. 

A. Example: Classification with Naive Bayes classifier

Subject of mine example will be a set of various 

magazine articles published globally. I'll use a set of about 

120 article sources who have already assigned class by the 

publisher. Class assignation naturally can be done with 

multiple classes having hierarchical tree structure and 

furthermore one document can be assigned multiple classes, 

however such structure won't be the case in this research and 

can be considered for further research. I have defined flat 

structure with five classes that will be unnaturally disjunctive. 

Such classes will be World, Business, Technology, Sport and 

Life. Collected articles are subject of preprocessing to clear 

out unnecessary formatting metadata such as html. 

Disclaimer: this process is wasting useful already structured 

semantic data but having in mind it's not subject of this 

research I will ignore all formatted data and use pure text. 

These instances will be structured as (text,class) tuples and 

processed afterwards. In the moment of retrieving data I've 

fetched 2745 articles what would be enough data for this 

analysis. Data distribution across classes is dependent upon 

the number of articles published at the moment and the nature 

of the source, but however the numbers are from the same 

range.

Figure 1: Articles class distribution. 

Collected data is cleared out from unnecessary data but it 

still lacks acceptable formatting for mine research. Naive

Bayes method requires term frequencies in given document as 

well as occurrences in specific classes. With the weka [5]

package I'm cleaning the stopwords, filtering out about 

thousand most common words and stemming them. Important 

notice is that all this preprocessing steps are losing important 

grammatical data but anyway the goal of this research is to 

analyze quantitative classifiers based just on the words. That 

is why this approach is also called bag of words. After doing 

Naive Bayes calculations described with formulas (4) and (5) 

with weka on percentage split 66% to 33% left for validation 

we can obtain conditional probabilities for retrieved terms for 

each class. Also independent class probability is calculated as 

well. For an example 

.  (6) 

 There are couple problems with this approach that can be 

noticed in the list of conditional probabilities. Some of the 

words are actually numbers, years, prices etc. They might 

have some value for determination of some class but most 

probably are useless so they should be considered to be 

filtered in the preprocessing step next time.  

Table 1:  Example for conditional probability score for the 

term "development" 

class word development - score

world 1.6291951775822744E-4

life 4.6253469010175765E-4
sport 7.342683016374188E-5

tech 0.0011613471627087426

business 2.066258006749776E-4

If we take a look at some particular word as an example 

"development" we can see that we have very small values for 

their affiliation to some class. This was one of the problems 

I've mentioned. However most important fact in this 

extraction is that technology has highest value for this term 

what would mean that if the word development shows up next 

time in the document then most probably it's about 

technology, but not for sure because it can also belong to 

some other class.

Table 2:  Naive Bayes classifier results 

...

Time taken to build model: 0.05 seconds

=== Evaluation on test split ===

=== Summary ===

Correctly Classified Instances         715               76.6345 %
Incorrectly Classified Instances       218               23.3655 %

Kappa statistic                            0.7058
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Mean absolute error                      0.1036
Root mean squared error            0.2753

Relative absolute error               32.5716 %

Root relative squared error          69.0474 %
Total Number of Instances          933     

=== Detailed Accuracy By Class ===

               TP Rate   FP Rate   Precision Recall  F-Measure   ROC Area  
Class

                 0.66      0.067      0.669     0.66      0.665      0.903    world
                 0.772     0.084      0.738     0.772     0.754      0.928    life

                 0.911     0.009      0.95      0.911     0.93       0.992    sport

                 0.785     0.056      0.811     0.785     0.798      0.936    scitech
                 0.716     0.079      0.697     0.716     0.706      0.887    business

Weighted Avg.    0.766     0.062      0.768     0.766     0.767      0.927

=== Confusion Matrix ===

a   b   c   d   e   <-- classified as

105  18   3   4  29 |   a = world
14 169   3  19  14 |   b = life

5   5 133   0   3 |   c = sport

12  22   0 172  13 |   d = scitech
21  15   1  17 136 | e = business

 This method offers great performances either from speed 

as well as precision. What I got after this iteration for 

multiclass Naive Bayes was something above 76% correctly 

classified instances and time taken to build the model of 

0.05seconds. Most interesting entries in the confusion matrix 

are ones between sport and technology classes saying that 

none instance from those classes was incorrectly classified in 

the other class and also world versus business entries having 

greatest values in the confusion matrix but those two classes 

are really too similar even for human to classify them. If some 

of previous comments are taken into consideration for further 

steps and futher analysis on the data are being made than this 

precision would probably raise.  

III. K NEAREST NEIGHBORS

Method of K nearest neighbors is a method with lazy 

evaluation. The main idea during the training phase is just to 

save training set instances and be evaluated during decision 

phase. This is the pure idea of the method, however for 

performance issues first phase is modified and while training 

various improvement techniques can be used such as caching 

and splitting training data across regions for the need of faster 

calculations. During decision phase class is being determined 

by calculating a distance from the instance of interest and 

trained instances. The class is chosen from the majority class 

of k nearest neighbors. 

Question in such defined case is how should we calculate 

the distance between the documents. Most common metric is 

Euclidian distance, another one is Hamming distance but 

however for multidimensional space with many sparse 

vectors such as document classification problem the metric 

that is used is cosine similarity of document vectors 

represented with tf-idf values. 

Formally documents can be represented as vectors in high 

dimensional space such as

(7)

Every word in the dictionary is determined via one of the 

vector space dimensions. If the word occurs in the document 

than corresponding value will be non zero. Simplest way to 

represent the document is to put one if the word occurs and 

zero if it doesn't. However better solution is to weight every 

word according it's frequency in the document with tf-idf 

representation for each word. Term frequency (TD) value is 

calculated as 

(4)

where is the number of occurences of the term  in the 

document , and the denominator is the number of all words 

in the document i.e. . The other part of tf-idf is the inverse 

document frequency (IDF) which is calculated:

(8)

where |D| is the cardinal number of the D set i.e. the number 

of training documents and the denominator is the number of 

documents where the term occurs. TF part values word 

occurences, what means that most common words for one 

class will be more valuable and reverse the IDF part will 

value less the words that are common for many classes which 

means they are just too common and do not carry enough 

information for some particular class.

With a vector space prepared like this we can calculate 

the angle between two documents i.e. the cosine of the angle 

which would be the same in means of similarity. Since we are 

interested in the angle distance between these documents its 

cosine value is just scaled value of the angle. The meaning of 

this calculation is that the documents that have many similar 

dimensions (words) will have smaller angles between them. 

The cosine similarity is calculated with the following 

formula.

(9)

A. Example: Classification with KNN

 For this example I will use the same set of data as 

described for Naive Bayes example but I will also have 

somewhat different approach in its processing. I will 

introduce tf-idf weights and I will also choose Euclidean 

distance as a measure instead of cosine similarity I've 

described. Primary reason is that cosine similarity is not 

supported by weka at the moment so I will use this to show 

how bad KNN with Euclidean distance can be compared to 

other methods. Weka offer multiclass KNN implementation 

via IBk method thus I will use it for this example. Results 
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show that this is fast method for training i.e. taking 

approximately zero seconds but also its worth mentioning that 

this will be penalized during the phase of making decision 

since the pure algorithm iterates the dataset, what is actually 

worse. Enhancement for this issue is available with 

partitioning the dataset but such approach will take some time 

during training as an example generating a ball tree required 

about 28 seconds. What is most important in this analysis is 

the precision that was not so good in this example with just 

about 45% correctly classified instances.  

Table 3:  KNN classifier with Euclidian distance results 

=== Run information ===

Scheme:       weka.classifiers.lazy.IBk -K 1 -W 0 -A
"weka.core.neighboursearch.LinearNNSearch -A

\"weka.core.EuclideanDistance -R first-last\""

Relation:     tekst-weka.filters.unsupervised.attribute.StringToNominal-
R2-weka.filters.unsupervised.attribute.StringToWordVector-R1-Pzbor--

W1000-prune-rate-1.0-C-T-I-N0-L-S-
stemmerweka.core.stemmers.NullStemmer-M1-

tokenizerweka.core.tokenizers.WordTokenizer -delimiters " 

\r\n\t.,;:\'\"()?!"
Instances:    2745

Attributes:   4016
              [list of attributes omitted]

Test mode:    split 66.0% train, remainder test

=== Classifier model (full training set) ===

IB1 instance-based classifier

using 1 nearest neighbour(s) for classification

Time taken to build model: 0 seconds

=== Evaluation on test split ===

=== Summary ===

Correctly Classified Instances         420               45.0161 %
Incorrectly Classified Instances       513           54.9839 %

Kappa statistic                               0.2923

Mean absolute error                      0.2265
Root mean squared error                0.4153

Relative absolute error                 71.2098 %
Root relative squared error            104.1416 %

Total Number of Instances              933     

=== Detailed Accuracy By Class ===

               TP Rate   FP Rate   Precision   Recall  F-Measure   ROC Area  

Class

                 0.27      0.03       0.652     0.27      0.382      0.555    world
                 0.795     0.55       0.307     0.795     0.443      0.691    life

                 0.322     0.004      0.94      0.322     0.48       0.584    sport

                 0.475     0.08       0.646     0.475     0.547      0.742    scitech
                 0.274     0.05       0.584     0.274     0.373      0.545    business

Weighted Avg.    0.45      0.164      0.601     0.45      0.449      0.633

=== Confusion Matrix ===

a   b   c   d   e   <-- classified as

43  96   0   8  12 |   a = world
12 174   0  22  11 |   b = life

1  86  47   8   4 |   c = sport

2 101   2 104  10 |   d = scitech
8 110   1  19  52 |   e = business

IV. SUPPORT VECTOR MACHINES

For two class linear separable set there are many linear 

separators. The decision border drawn in the middle of the 

void between the vectors of both classes seems like better 

classifier candidate than one that is close to border 

representatives. Some machine learning methods such as the 

perceptron to name one, are searching for any separator that 

divides both sets. SVM by definition searches for decision 

border that maximizes  distance from both sets. This distance 

is called margin. To find the separator only a subset of 

training instances is required because only boundary vectors 

are needed to define decision hyper plane. Those vectors are 

called support vectors thus the name of this method is support 

vector machines. Margin maximization helps out to make 

better classification with avoiding to misclassify doubtful 

instances. Mathematical foundation of SVM can be found in 
[1][2]

Figure 2: Example showing decision hyperplane, margin and 

support vectors 

However, SVM as described previously requires exactly 

hyper plane that separates both sets. For text classification 

purpose especially having in mind high dimensional vector 

space this is almost impossible. Solution to this problem is to 

allow some mistakes by introducing slack variables and 

penalize every misclassification. 

Another constraint of described method is multiclass 

classification as offered solution is just a binary classifier. 

There are two techniques to override this limitation. First one 

is with testing membership to each class against all others and 

choose the class with the best score and the other one is to 

build one versus one classifiers and test each of them. 

A. Example: Classification with multiclass SVM

 For this example I will use the same dataset as described 

for the Naive Bayes case. In the SVM case weka has another 
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issue. In this case the implementation of the SVM algorithm 

in weka i.e. SMO is very slow, but there are couple external 

implementations such as LibSVM. For this example I will use 

the similar configuration as for the Naive Bayes example, 

33% of the dataset left for validation, top 10000 most 

common words for each class, stopwords filtering etc. From 

the SVM specific case I'm using the simplest kernel type 

linear and C-SVC of nu-SVC algorithm since only those are 

multiclass classification algorithms unlike others which are 

either binary classification or regression. Results from this 

experiment are also satisfactory with 71% correctly classified 

instances what is worse than Naive Bayes but it is in the same 

range. SVM as a mathematical model is considered as more 

powerful tool than the rest classifiers so with some calibration 

can probably be improved. In this experiment the time taken 

to build the classifier was about four seconds what is slower 

than Naive Bayes. What can be considered as drawback for 

SVM classifiers is not the speed but its complexity and can be 

harder for data model interpretation.  

Table 4:  LibSVM classifier results 

=== Run information ===

Scheme:       weka.classifiers.functions.LibSVM -S 0 -K 0 -D 3 -G 0.0 -

R 0.0 -N 0.5 -M 40.0 -C 1.0 -E 0.0010 -P 0.1
Relation:     tekst-weka.filters.unsupervised.attribute.StringToNominal-

Rlast-weka.filters.unsupervised.attribute.StringToWordVector-R1-

Pzbor—W10000-prune-rate-1.0-C-N0-L-S-
stemmerweka.core.stemmers.NullStemmer-M1-

tokenizerweka.core.tokenizers.WordTokenizer -delimiters “ 
\r\n\t.,;:\’\”()?!”

Instances:    2745

Attributes:   19130
              [list of attributes omitted]

Test mode:    split 66.0% train, remainder test

=== Classifier model (full training set) ===

LibSVM wrapper, original code by Yasser EL-Manzalawy (= WLSVM)

Time taken to build model: 3.98 seconds

=== Evaluation on test split ===
=== Summary ===

Correctly Classified Instances         663               71.0611 %
Incorrectly Classified Instances       270               28.9389 %

Kappa statistic                               0.6349
Mean absolute error                    0.1158

Root mean squared error              0.3402

Relative absolute error                 36.3871 %
Root relative squared error            85.3235 %

Total Number of Instances            933     

=== Detailed Accuracy By Class ===

               TP Rate   FP Rate   Precision   Recall  F-Measure   ROC Area  

Class
                 0.572     0.068      0.632    0.572     0.601      0.752    world

                 0.763     0.136      0.633     0.763     0.692      0.813    life

                 0.829     0.019      0.89      0.829     0.858      0.905    sport
                 0.721     0.07       0.76      0.721     0.74       0.826    scitech

                 0.663     0.074      0.696     0.663     0.679      0.795    business
Weighted Avg.    0.711     0.078      0.715     0.711     0.711      0.816

=== Confusion Matrix ===

a   b   c   d   e   <-- classified as

91  33   2   5  28 |   a = world

13 167   6  25   8 |   b = life
6  11 121   3   5 |   c = sport

13  28   6 158  14 |   d = scitech
21  25   1  17 126 |   e = business

V. SUMMARY AND FURTHER RESEARCH

 This text had a goal to describe the problem of text 

documents classification and analyze some of the methods 

used for its resolution. Through the document I've made 

couple oversimplifications on the problem to keep it to the 

subject that was topic of this paper. First simplification was 

considering the class structure flat and disjunctive what is 

obviously not the case and highly hierarchical intersected 

structure would do the organization of text documents more 

intuitive. Metadata as well as grammar information was 

ignored besides it can carry worth information so this should 

be taken into consideration for research that is more 

semantically targeted. In depth analysis of provided methods 

is also available for further research as mine goal was just to 

model them properly and show how they can be used for text 

classification. All of the methods are said to be practically 

used but for different manners. Naive Bayes method is 

simple, fast and agile enough for incremental system, on the 

other hand SVM is powerful tool for classification but is 

somewhat harder to adopt and answer the problems of 

streaming system. Comparative analysis of these methods is 

also an interesting topic for research. 
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