
The 8th International Conference for Informatics and Information Technology (CIIT 2011)

ANALYSIS OF TEXT CLASSIFICATION METHODS

Goran Kolevski; Ana Madevska Bogdanova
(goran.kolevski@gmail.com; ana@ii.edu.mk)

Institute of Informatics

Faculty of Natural Sciences and Mathematics
University Ss Cyril and Methodius

Skopje, Macedonia

ABSTRACT

 The goal of this paper is to describe the problem of text

document classification as well as to analyze some of the

most common methods that are being used for its resolution.

There are numerous practical examples where according to

some provided document corresponding class of it is required

to be assigned. There are a lot of documents that are already

classified by some expert from the particular field thus the

idea of this paper is to show how such classification can be

used to train a system to classify newly provided documents.

I. INTRODUCTION

In this paper I will review three methodologies that can

be used to solve this problem with certain success.

Methodologies that will be reviewed are Naive Bayes

classifiers, method of k nearest neighbors and support vector

machines scattered through next topics. For every method I

will introduce the mathematical model. Moreover I will

analyze how these methods can be applied for text

classification. I will also describe an example usage for each

of these methods on real data collected from internet. All

methods are commonly used for text classification purposes

and all of them have some success from different view point

so there is hardly to tell which one is the best. The goal of this

paper is to describe the problem, the methods that can be used

and to show how data can be modeled in order to be

processed with these method. I will try to interpret the

meanings of these methods and their steps in this process and

also point out possible problems why they occur and how to

avoid them.

II. NAIVE BAYES CLASSIFIER

Naive Bayes classifier is supervised probabilistic method

for machine learning. In order to be used for document

classification it should be tailored for the specific problem

and most important modeled against appropriate vector

space.

According to the Naive Bayes classifiers probability of

one document belonging to class c is expressed with next

equation (1):

. (1)

where is the conditional probability of term

occurring in a document of class c. One more factor beside

the words occurring in the document is the independent

probability of the class itself.

For the need of this approach text documents should be

modeled as vectors that indicate the term occurrence

frequencies for terms of given vocabulary. Let

be the vector that describes arbitrary document d. Elements

 from the vectors are all words from the vocabulary. As an

example the sentence „hello world example“ can be translated

to ("hello", "world", "example") where .

In the case where we should choose one of multiple

offered classes than a multinomial Naive Bayes classifier is

being used. The goal of such approach is to choose the class

with best score i.e. probability:

. (2)

However there is a problem with the last formula that is a

result of many very small values being multiplied. Having in

mind that the probability is expressed with a value in the

interval [0..1] and the number of words in a document can be

in orders of hundreds or thousands of words than in the last

formula we are multiplying many such small values that can

cause danger of floating point underflow during our

calculation. This problem is being resolved with changing

previous formula with sum of logarithms of probabilities as in

the next formula:

(3)

 Probabilities in the previous formula are measure about

how good indicator the term is about some class. More

common classes have greater probability of being assigned to

the document and that is described with the probability of the

class. So the formula is just a sum of all indicators about

document membership to the class.

(4)

 (5)

 What is left in this model is just to specify how we

calculate the independent probability of the classes and the

conditional probabilities of the terms for these classes. The

class probability calculation is simple and is equal to the

53

8th Conference on Informatics and Information Technology with International Participation (CIIT 2011)

The 8th International Conference for Informatics and Information Technology (CIIT 2011)

frequency of documents that belong to this class divided by

the number of documents. On the other hand the conditional

probability of the terms is calculated with dividing the

number of occurrences of the term t in the whole set of

documents of this class, including multiple occurrences, with

the number of occurrences of that term in the whole set of

documents. This formula awards the term as good indicator if

it happens to be more common and more unique for the

current class against those terms that are rare for the class or

common in the whole set. There is some loss of information

with such approach because we ignore the word positioning

what for sure has meaning for semantics purpose but for

classification it will be acceptable loss.

A. Example: Classification with Naive Bayes classifier

Subject of mine example will be a set of various

magazine articles published globally. I'll use a set of about

120 article sources who have already assigned class by the

publisher. Class assignation naturally can be done with

multiple classes having hierarchical tree structure and

furthermore one document can be assigned multiple classes,

however such structure won't be the case in this research and

can be considered for further research. I have defined flat

structure with five classes that will be unnaturally disjunctive.

Such classes will be World, Business, Technology, Sport and

Life. Collected articles are subject of preprocessing to clear

out unnecessary formatting metadata such as html.

Disclaimer: this process is wasting useful already structured

semantic data but having in mind it's not subject of this

research I will ignore all formatted data and use pure text.

These instances will be structured as (text,class) tuples and

processed afterwards. In the moment of retrieving data I've

fetched 2745 articles what would be enough data for this

analysis. Data distribution across classes is dependent upon

the number of articles published at the moment and the nature

of the source, but however the numbers are from the same

range.

Figure 1: Articles class distribution.

Collected data is cleared out from unnecessary data but it

still lacks acceptable formatting for mine research. Naive

Bayes method requires term frequencies in given document as

well as occurrences in specific classes. With the weka [5]

package I'm cleaning the stopwords, filtering out about

thousand most common words and stemming them. Important

notice is that all this preprocessing steps are losing important

grammatical data but anyway the goal of this research is to

analyze quantitative classifiers based just on the words. That

is why this approach is also called bag of words. After doing

Naive Bayes calculations described with formulas (4) and (5)

with weka on percentage split 66% to 33% left for validation

we can obtain conditional probabilities for retrieved terms for

each class. Also independent class probability is calculated as

well. For an example

. (6)

 There are couple problems with this approach that can be

noticed in the list of conditional probabilities. Some of the

words are actually numbers, years, prices etc. They might

have some value for determination of some class but most

probably are useless so they should be considered to be

filtered in the preprocessing step next time.

Table 1: Example for conditional probability score for the

term "development"

class word development - score

world 1.6291951775822744E-4

life 4.6253469010175765E-4
sport 7.342683016374188E-5

tech 0.0011613471627087426

business 2.066258006749776E-4

If we take a look at some particular word as an example

"development" we can see that we have very small values for

their affiliation to some class. This was one of the problems

I've mentioned. However most important fact in this

extraction is that technology has highest value for this term

what would mean that if the word development shows up next

time in the document then most probably it's about

technology, but not for sure because it can also belong to

some other class.

Table 2: Naive Bayes classifier results

...

Time taken to build model: 0.05 seconds

=== Evaluation on test split ===

=== Summary ===

Correctly Classified Instances 715 76.6345 %
Incorrectly Classified Instances 218 23.3655 %

Kappa statistic 0.7058

54

8th Conference on Informatics and Information Technology with International Participation (CIIT 2011)

The 8th International Conference for Informatics and Information Technology (CIIT 2011)

Mean absolute error 0.1036
Root mean squared error 0.2753

Relative absolute error 32.5716 %

Root relative squared error 69.0474 %
Total Number of Instances 933

=== Detailed Accuracy By Class ===

 TP Rate FP Rate Precision Recall F-Measure ROC Area
Class

 0.66 0.067 0.669 0.66 0.665 0.903 world
 0.772 0.084 0.738 0.772 0.754 0.928 life

 0.911 0.009 0.95 0.911 0.93 0.992 sport

 0.785 0.056 0.811 0.785 0.798 0.936 scitech
 0.716 0.079 0.697 0.716 0.706 0.887 business

Weighted Avg. 0.766 0.062 0.768 0.766 0.767 0.927

=== Confusion Matrix ===

a b c d e <-- classified as

105 18 3 4 29 | a = world
14 169 3 19 14 | b = life

5 5 133 0 3 | c = sport

12 22 0 172 13 | d = scitech
21 15 1 17 136 | e = business

 This method offers great performances either from speed

as well as precision. What I got after this iteration for

multiclass Naive Bayes was something above 76% correctly

classified instances and time taken to build the model of

0.05seconds. Most interesting entries in the confusion matrix

are ones between sport and technology classes saying that

none instance from those classes was incorrectly classified in

the other class and also world versus business entries having

greatest values in the confusion matrix but those two classes

are really too similar even for human to classify them. If some

of previous comments are taken into consideration for further

steps and futher analysis on the data are being made than this

precision would probably raise.

III. K NEAREST NEIGHBORS

Method of K nearest neighbors is a method with lazy

evaluation. The main idea during the training phase is just to

save training set instances and be evaluated during decision

phase. This is the pure idea of the method, however for

performance issues first phase is modified and while training

various improvement techniques can be used such as caching

and splitting training data across regions for the need of faster

calculations. During decision phase class is being determined

by calculating a distance from the instance of interest and

trained instances. The class is chosen from the majority class

of k nearest neighbors.

Question in such defined case is how should we calculate

the distance between the documents. Most common metric is

Euclidian distance, another one is Hamming distance but

however for multidimensional space with many sparse

vectors such as document classification problem the metric

that is used is cosine similarity of document vectors

represented with tf-idf values.

Formally documents can be represented as vectors in high

dimensional space such as

(7)

Every word in the dictionary is determined via one of the

vector space dimensions. If the word occurs in the document

than corresponding value will be non zero. Simplest way to

represent the document is to put one if the word occurs and

zero if it doesn't. However better solution is to weight every

word according it's frequency in the document with tf-idf

representation for each word. Term frequency (TD) value is

calculated as

(4)

where is the number of occurences of the term in the

document , and the denominator is the number of all words

in the document i.e. . The other part of tf-idf is the inverse

document frequency (IDF) which is calculated:

(8)

where |D| is the cardinal number of the D set i.e. the number

of training documents and the denominator is the number of

documents where the term occurs. TF part values word

occurences, what means that most common words for one

class will be more valuable and reverse the IDF part will

value less the words that are common for many classes which

means they are just too common and do not carry enough

information for some particular class.

With a vector space prepared like this we can calculate

the angle between two documents i.e. the cosine of the angle

which would be the same in means of similarity. Since we are

interested in the angle distance between these documents its

cosine value is just scaled value of the angle. The meaning of

this calculation is that the documents that have many similar

dimensions (words) will have smaller angles between them.

The cosine similarity is calculated with the following

formula.

(9)

A. Example: Classification with KNN

 For this example I will use the same set of data as

described for Naive Bayes example but I will also have

somewhat different approach in its processing. I will

introduce tf-idf weights and I will also choose Euclidean

distance as a measure instead of cosine similarity I've

described. Primary reason is that cosine similarity is not

supported by weka at the moment so I will use this to show

how bad KNN with Euclidean distance can be compared to

other methods. Weka offer multiclass KNN implementation

via IBk method thus I will use it for this example. Results

55

8th Conference on Informatics and Information Technology with International Participation (CIIT 2011)

The 8th International Conference for Informatics and Information Technology (CIIT 2011)

show that this is fast method for training i.e. taking

approximately zero seconds but also its worth mentioning that

this will be penalized during the phase of making decision

since the pure algorithm iterates the dataset, what is actually

worse. Enhancement for this issue is available with

partitioning the dataset but such approach will take some time

during training as an example generating a ball tree required

about 28 seconds. What is most important in this analysis is

the precision that was not so good in this example with just

about 45% correctly classified instances.

Table 3: KNN classifier with Euclidian distance results

=== Run information ===

Scheme: weka.classifiers.lazy.IBk -K 1 -W 0 -A
"weka.core.neighboursearch.LinearNNSearch -A

\"weka.core.EuclideanDistance -R first-last\""

Relation: tekst-weka.filters.unsupervised.attribute.StringToNominal-
R2-weka.filters.unsupervised.attribute.StringToWordVector-R1-Pzbor--

W1000-prune-rate-1.0-C-T-I-N0-L-S-
stemmerweka.core.stemmers.NullStemmer-M1-

tokenizerweka.core.tokenizers.WordTokenizer -delimiters "

\r\n\t.,;:\'\"()?!"
Instances: 2745

Attributes: 4016
 [list of attributes omitted]

Test mode: split 66.0% train, remainder test

=== Classifier model (full training set) ===

IB1 instance-based classifier

using 1 nearest neighbour(s) for classification

Time taken to build model: 0 seconds

=== Evaluation on test split ===

=== Summary ===

Correctly Classified Instances 420 45.0161 %
Incorrectly Classified Instances 513 54.9839 %

Kappa statistic 0.2923

Mean absolute error 0.2265
Root mean squared error 0.4153

Relative absolute error 71.2098 %
Root relative squared error 104.1416 %

Total Number of Instances 933

=== Detailed Accuracy By Class ===

 TP Rate FP Rate Precision Recall F-Measure ROC Area

Class

 0.27 0.03 0.652 0.27 0.382 0.555 world
 0.795 0.55 0.307 0.795 0.443 0.691 life

 0.322 0.004 0.94 0.322 0.48 0.584 sport

 0.475 0.08 0.646 0.475 0.547 0.742 scitech
 0.274 0.05 0.584 0.274 0.373 0.545 business

Weighted Avg. 0.45 0.164 0.601 0.45 0.449 0.633

=== Confusion Matrix ===

a b c d e <-- classified as

43 96 0 8 12 | a = world
12 174 0 22 11 | b = life

1 86 47 8 4 | c = sport

2 101 2 104 10 | d = scitech
8 110 1 19 52 | e = business

IV. SUPPORT VECTOR MACHINES

For two class linear separable set there are many linear

separators. The decision border drawn in the middle of the

void between the vectors of both classes seems like better

classifier candidate than one that is close to border

representatives. Some machine learning methods such as the

perceptron to name one, are searching for any separator that

divides both sets. SVM by definition searches for decision

border that maximizes distance from both sets. This distance

is called margin. To find the separator only a subset of

training instances is required because only boundary vectors

are needed to define decision hyper plane. Those vectors are

called support vectors thus the name of this method is support

vector machines. Margin maximization helps out to make

better classification with avoiding to misclassify doubtful

instances. Mathematical foundation of SVM can be found in
[1][2]

Figure 2: Example showing decision hyperplane, margin and

support vectors

However, SVM as described previously requires exactly

hyper plane that separates both sets. For text classification

purpose especially having in mind high dimensional vector

space this is almost impossible. Solution to this problem is to

allow some mistakes by introducing slack variables and

penalize every misclassification.

Another constraint of described method is multiclass

classification as offered solution is just a binary classifier.

There are two techniques to override this limitation. First one

is with testing membership to each class against all others and

choose the class with the best score and the other one is to

build one versus one classifiers and test each of them.

A. Example: Classification with multiclass SVM

 For this example I will use the same dataset as described

for the Naive Bayes case. In the SVM case weka has another

56

8th Conference on Informatics and Information Technology with International Participation (CIIT 2011)

The 8th International Conference for Informatics and Information Technology (CIIT 2011)

issue. In this case the implementation of the SVM algorithm

in weka i.e. SMO is very slow, but there are couple external

implementations such as LibSVM. For this example I will use

the similar configuration as for the Naive Bayes example,

33% of the dataset left for validation, top 10000 most

common words for each class, stopwords filtering etc. From

the SVM specific case I'm using the simplest kernel type

linear and C-SVC of nu-SVC algorithm since only those are

multiclass classification algorithms unlike others which are

either binary classification or regression. Results from this

experiment are also satisfactory with 71% correctly classified

instances what is worse than Naive Bayes but it is in the same

range. SVM as a mathematical model is considered as more

powerful tool than the rest classifiers so with some calibration

can probably be improved. In this experiment the time taken

to build the classifier was about four seconds what is slower

than Naive Bayes. What can be considered as drawback for

SVM classifiers is not the speed but its complexity and can be

harder for data model interpretation.

Table 4: LibSVM classifier results

=== Run information ===

Scheme: weka.classifiers.functions.LibSVM -S 0 -K 0 -D 3 -G 0.0 -

R 0.0 -N 0.5 -M 40.0 -C 1.0 -E 0.0010 -P 0.1
Relation: tekst-weka.filters.unsupervised.attribute.StringToNominal-

Rlast-weka.filters.unsupervised.attribute.StringToWordVector-R1-

Pzbor—W10000-prune-rate-1.0-C-N0-L-S-
stemmerweka.core.stemmers.NullStemmer-M1-

tokenizerweka.core.tokenizers.WordTokenizer -delimiters “
\r\n\t.,;:\’\”()?!”

Instances: 2745

Attributes: 19130
 [list of attributes omitted]

Test mode: split 66.0% train, remainder test

=== Classifier model (full training set) ===

LibSVM wrapper, original code by Yasser EL-Manzalawy (= WLSVM)

Time taken to build model: 3.98 seconds

=== Evaluation on test split ===
=== Summary ===

Correctly Classified Instances 663 71.0611 %
Incorrectly Classified Instances 270 28.9389 %

Kappa statistic 0.6349
Mean absolute error 0.1158

Root mean squared error 0.3402

Relative absolute error 36.3871 %
Root relative squared error 85.3235 %

Total Number of Instances 933

=== Detailed Accuracy By Class ===

 TP Rate FP Rate Precision Recall F-Measure ROC Area

Class
 0.572 0.068 0.632 0.572 0.601 0.752 world

 0.763 0.136 0.633 0.763 0.692 0.813 life

 0.829 0.019 0.89 0.829 0.858 0.905 sport
 0.721 0.07 0.76 0.721 0.74 0.826 scitech

 0.663 0.074 0.696 0.663 0.679 0.795 business
Weighted Avg. 0.711 0.078 0.715 0.711 0.711 0.816

=== Confusion Matrix ===

a b c d e <-- classified as

91 33 2 5 28 | a = world

13 167 6 25 8 | b = life
6 11 121 3 5 | c = sport

13 28 6 158 14 | d = scitech
21 25 1 17 126 | e = business

V. SUMMARY AND FURTHER RESEARCH

 This text had a goal to describe the problem of text

documents classification and analyze some of the methods

used for its resolution. Through the document I've made

couple oversimplifications on the problem to keep it to the

subject that was topic of this paper. First simplification was

considering the class structure flat and disjunctive what is

obviously not the case and highly hierarchical intersected

structure would do the organization of text documents more

intuitive. Metadata as well as grammar information was

ignored besides it can carry worth information so this should

be taken into consideration for research that is more

semantically targeted. In depth analysis of provided methods

is also available for further research as mine goal was just to

model them properly and show how they can be used for text

classification. All of the methods are said to be practically

used but for different manners. Naive Bayes method is

simple, fast and agile enough for incremental system, on the

other hand SVM is powerful tool for classification but is

somewhat harder to adopt and answer the problems of

streaming system. Comparative analysis of these methods is

also an interesting topic for research.

REFERENCES

[1] Corinna Cortes and V. Vapnik, "Support-Vector Networks", Machine

Learning, 20, 1995.

[2] Thorsten Joachims, "Transductive Inference for Text Classification

using Support Vector Machines", Proceedings of the 1999 International
Conference on Machine Learning (ICML 1999), pp. 200-209.

[3] Text Classification from Labeled and Unlabeled Documents using EM

Kamal Nigam, Andrew Kachites Mccallum, Sebastian Thrun and Tom

Mitchell

[4] Introduction to Information Retrieval, Christopher D. Manning,

Prabhakar Raghavan & Hinrich Schütze Cambridge University Press. 2008.

 [5] WEKA 3.6 - Machine Learning Toolkit -

http://www.cs.waikato.ac.nz/ml/weka/

[6] Brin, S. and Page, L. (1998) The Anatomy of a Large-Scale

Hypertextual Web Search Engine. In: Seventh International World-Wide Web
Conference (WWW 1998), April 14-18, 1998, Brisbane, Australia.

[7] Page, Lawrence and Brin, Sergey and Motwani, Rajeev and Winograd,

Terry (1999) The PageRank Citation Ranking: Bringing Order to the
Web. Technical Report. Stanford InfoLab.

57

8th Conference on Informatics and Information Technology with International Participation (CIIT 2011)

