
The 7th International Conference for Informatics and Information Technology (CIIT 2010)

©2010 Institute of Informatics.

INTER-PROCESS COMMUNICATION, ANALYSIS, GUIDELINES AND ITS

IMPACT ON COMPUTER SECURITY

Zoran Spasov Ph.D. Ana Madevska Bogdanova

T-Mobile Macedonia Institute of Informatics, FNSM

Skopje, Macedonia Skopje, Macedonia

ABSTRACT

In this paper we look at the inter-process communication

(IPC) also known as inter-thread or inter-application

communication from other knowledge sources. We will look

and analyze the different types of IPC in the Microsoft

Windows operating system, their implementation and the

usefulness of this kind of approach in the terms of

communication between processes. Only local

implementation of the IPC will be addressed in this paper.

Special emphasis will be given to the system mechanisms that

are involved with the creation, management, and use of

named pipes and sockets.

This paper will discuss some of the IPC options and

techniques that are available to Microsoft Windows

programmers. We will make a comparison between Microsoft

remoting and Microsoft message queues (pros and cons).

Finally we will make some notes and remarks regarding

several issues and concerns about the security of the local

system when using these methods, in order to use this

knowledge in building a system that will control processes

within different desktop environments. At the end, we will

give some conclusions about the implementation and use of

the IPC methods, including local security guidelines.

I. INTRODUCTION

Interprocess communication (IPC) serves for the coordination

of activities among cooperating processes. A simple example

of the IPCs usability is the need of two processes to share

some data or a single value. In order for the IPC to work,

some way of communication between the processes is

needed. The IPC commonly is used on local computers, but it

is also possibly to utilize its functionality over the network.

Today’s big and important role that various distributed

systems play in modern computing environments imposes the

need of using the IPC in a common and transparent manner.

Systems for managing communication and synchronization

between cooperating processes are essential to many modern

software systems. For many years the IPC was mainly present

on the UNIX-platform based systems, but in the past decade

the usability in the Microsoft Windows systems is more

present than before. This paper will discuss some of the IPC

types and methods that are available and will describe the

techniques available to Windows OS programmers. We will

explain the special features and implementations with the help

of some example code and tools available for process

monitoring of Windows operating systems.

The advantages that the IPC brings do not come with some

noticeable risks and security concerns about the local

computer system. In this paper we will properly address these

concerns and we will describe some guidelines for their

implementations in a secure way.

Finally the conclusion will offer a summary of the available

programming techniques and implementations for the

Windows platforms. We will note the security risks and the

best practices to avoid them.

II. INTER-PROCESS COMMUNICATION (IPC)

Inter-Process Communication (IPC) stands for many

techniques for the exchange of data among threads in one or

more processes - one-directional or two-directional. Processes

may be running locally or on many different computers

connected by a network. We can divide the IPC techniques

into groups of methods, grouped by their way of

communication: message passing, synchronization, shared

memory and remote procedure calls (RPC). We should

carefully choose the IPC method depending on data load that

the communication will carry and some other factors like the

type of data that is transferred or the bandwidth and the

latency of the communication between the threads

(processes).

There are many reasons of using this kind of communication,

some of them are:

§ Shared control over several processes

§ Sharing of data

§ Parallel processing and computation

§ Modularity

§ Reduce programming costs

§ etc…

IPC may also be referred to as inter-thread communication

and inter-application communication. IPC, mainly depends of

access to the shared memory address space and we can easily

say that IPC is one of the foundation stones for the memory

isolation concept.

IPC techniques include File, Signal, Sockets, Semaphore,

Pipes, Memory-mapped file, Mailslot, Remote Procedure

Calls (RPC), Message passing etc. The most widely used

methods along with programming techniques in Microsoft

operating systems will be described in the continuing text.

A. Memory-mapped file

File mapping is a mechanism for one-way or bi-directional

inter-process communication among two or more processes in

the local machine. The file mapping works by mapping a file

in the computer’s memory address space and the processes

can access it by a handle or by the name of that mapping

object. The address space that is occupied by a memory-

mapped file contains the contents of a file but in virtual

memory and that logical address space belongs to the

application itself. This access to the mapped file is transparent

to the processes and in order to modify the file they read and

 !

The 7th International Conference for Informatics and Information Technology (CIIT 2010)

write directly into the memory. With the newest .NET

Framework, we can use managed code to access memory-

mapped files in the same way that native Windows functions

access memory-mapped files from the Win API. To share a

file, the first process creates or opens a file by using

the CreateFile function. Next, it creates a file mapping object

by using the CreateFileMapping function, specifying the file

handle and a name for the file mapping object. The names of

events, semaphores, mutexes, waitable timers, jobs, and file

mapping objects share the same namespace. Therefore, the

CreateFileMapping and OpenFileMapping functions fail if

they specify a name that is in use by an object of another type.

To share memory that is not associated with a file, a process

must use the CreateFileMapping function and specify

INVALID_HANDLE_VALUE as the File parameter instead of

an existing file handle. The corresponding file mapping object

accesses to the memory are backed by the system paging file.

We must specify a size greater than zero when we specify an

File of INVALID_HANDLE_VALUE in a call to

CreateFileMapping function. Processes that share files or

memory must create views by using the MapViewOfFile or

MapViewOfFileEx functions in order to access the mapped

file (to the whole file or only to its segment). They must

coordinate their access using semaphores, mutexes, events, or

some other mutual exclusion techniques or an error of

concurrent access will be thrown. We can classify the

memory-mapped files into two categories:

§ Persisted memory-mapped files. Sometimes there is

a need for large memory-mapped files. Usually these

files are associated with a source file on a disk.

When there is no more input/output operation with

the memory file, all data from the memory is written

to the source file on the disk.

§ Non-persisted memory-mapped files. These files are

not associated with a source file on the disk so after

the last process finishes with the operations on this

file, the file is removed from memory by the garbage

collector and all data is lost. These files are suitable

for creating shared memory for further IPCs.

Earlier we mentioned the file can be accessed by views

created to the whole file or to a part of it. Depending on what

type of files we use, there are two types of view access: for

the non-persisted ones we use stream view access and for

persisted memory-mapped files - random access views. We

can also create multiple views to the same part of the

memory-mapped file, creating a concurrent access to the

memory. The number of views may also depend from the size

of the data we use, because depending of the computer’s

hardware, maximum memory space available for memory

mapping, for example we have 2GB on 32bit computer.

The access control and partitioning to some number of pages

to these memory-mapped files is delegated by the operating

system’s memory manager.

Fig. 1 shows how we can use more than one view per process

in order to access files or parts of files.

Figure 1: Views for access to memory blocks.

B. Pipes

Pipes are another method that provide a tool for interprocess

communication. There are two types of pipes:

1) Anonymous pipes

In Unix environment, a pipeline is something very familiar to

a shell script programmer: its a set of processes that are

chained by their standard streams, one process output is

another’s input. That chain represents one anonymous pipe.

This type of pipes can only be used on a local computer

because they are not named and work only in direction. They

are useful if we have intensive communication between

threads because this kind of pipes does not introduce too

much overhead in the communication but have limited

services. They support only a single server instance and the

pipe handles can be easily passed to the child process when it

is created. In the .NET Framework, we can implement

anonymous pipes by using the AnonymousPipeServerStream

and AnonymousPipeClientStream classes.

2) Named pipes

On the named pipes we can look as some sort of add-on to the

traditional type of pipes. By their functionality they are very

similar to a FIFO queue. In the Mac operating system they are

called sockets, which is different from a TCP socket. This

concept is also present in Microsoft Windows and the Unix-

like systems, but maybe the semantics are different.

Previously we talked about unnamed or anonymous pipes, we

need to mention that they are of short life, after the process

termination they are deleted, as on the other hand named

pipes are persistent and we need to take care about their

deletion after they are no longer needed. Processes generally

attach to the named pipe (usually appearing as a file) to

perform inter-process communication (IPC). The main

difference between unnamed and named pipes is that with

latter we can have bi-directional communication from one

server and one or more clients and this communication can

exist on the local computer or over the computer network.

Named pipes also support impersonation, which enables

connecting processes to use their own permissions on remote

servers. In the .NET Framework, we can implement named

pipes by using the NamedPipeServerStream and

NamedPipeClientStream classes. The named pipes concept is

closely connected to the I/O subsystem and to the user it

appears as nothing but another file system. The main reason

The 7th International Conference for Informatics and Information Technology (CIIT 2010)

for this impression is because named pipes are written as file

system drivers. As they represent some kind of file system,

they can be remotely accessed. We can use the Common

Internet File System (CIFS) redirector to intercept file

input/output (I/O) requests and direct them to a drive or

resource on another networked computer.

C. Microsoft message queues

Microsoft Message Queue Server (MSMQ) enables easy

approach for application developers to communicate with

application programs quickly, reliably, and asynchronously

by sending and receiving messages. MSMQ are present on the

newer Windows operating systems and they work on the

concept of message exchange between the applications.

Everyone can be producer or consumer of messages. The

underlying mechanism takes care of the message store and

access to the messages. The producer creates the message

carrying data to the destination application and places that

message on early created named queue. The destination

application takes the message whenever it is needed, even if

the producer application (process) is down. That mechanism

allows bi-directional and asynchronous communication

between the processes. Because the MSMQ mechanism is

separate system and it’s not connected to the processes, we

must take care of the messages in the queues and queues

itself. This means we must delete the messages from the

queues when they are not needed and also the message queues

themselves. The asynchronous communication differs from

most of the other methods. Communications are synchronous

when the sender of a request must wait for a response or an

acknowledgement from the receiver of the request before it

continues with its work. With asynchronous communications,

available through MSMQ, producers make requests to

receivers and then can move on executing immediately. As

mentioned earlier, with asynchronous communications, there

are no requirements that a receiver must be running for the

producer to make and send the message and this goes both

ways, there is no requirement for the producer to be running

in order the receiver to get the message.

Figure 2: MSMQ functionality.

The base mechanism of MSMQ provides a very reliable way

for the process to communicate and exchange data.

D. Microsoft remoting

Microsoft .NET remoting provides a framework that allows

objects to communicate across different application

environments. This concept provides the means of

communications through channels that have activation and its

own lifetime. The channels transport the messages from one

process to another. We use different formatters for encoding

and decoding the messages before they are placed on and

transported by the channel. One of the advantages with this

type of communication is using the XML encoding when

there are different frameworks involved in the

communication. The applications can use binary encoding as

well, where performance is critical. All XML encoding uses

the SOAP protocol in transporting messages from one process

environment to the other. The security factor was primal in

designing this method. A number of hooks are provided that

allow channel sinks to gain access to the messages and

serialized stream before the stream is transported over the

channel.

As we mentioned earlier this method also provides the control

of a object’s lifetime. .NET remoting provides a number of

activation models, but all of them fall into two categories:

§ Client-activated objects

§ Server-activated objects

The first ones work on principle of a lease time. When this

lease time expires, the object is collected by the garbage

collector and it is destroyed. The other ones are activated by a

server and they are also separated into two categories. We can

select either the object to be “single call” or “singleton”. The

second one also works on the same principle of a lease time.

The first type of object is destroyed after the first call to it

was realized. They use local ports on which the client

processes connect in order to read or write data.

This method will be presented in the next section through the

example application in Microsoft .NET.

The class in .NET that contains the methods for creating,

controlling, communicating and deleting this communication

channels is located in the System.Runtime.Remoting library.

The following code snippet written in C# language creates a

tcp channel for communication on specified port, uses

security wrapping and sets a string value to the seriazable

object:

Figure 3: Code snippet for Microsoft remoting.

After executing the application we can see from the Windows

process explorer in the “Sysinternals” toolkit that channel is

created and it’s listening on the designated port. This is

presented in Fig. 4.

The 7th International Conference for Informatics and Information Technology (CIIT 2010)

Figure 4: Sysinternals processes explorer.

III. COMPARISON BETWEEN MICROSOFT MESSAGE QUEUES

AND REMOTING

When we are faced with the dilemma of choosing the right

IPC method, the task is very difficult. By the popularity and

especially the usability in the .NET framework, only two

methods should be at top of our list. Although these

mechanisms are relatively new they are the first choice in

many situations. Microsoft message queue method has the

following properties:

§ bi-directional communication

§ asynchronous exchange of data

§ support of XML formatted messages

§ control of the queues that are handled by the

underlying mechanism

As with the remoting method, Microsoft has made a different

approach that takes care of the functionality of the whole

mechanism. The processes itself are responsible for creation,

maintenance and deletion of communication channels. The

method has these properties:

§ bi-directional communication

§ channels are established through ports

§ asynchronous exchange of data

§ dependency between the lifetime of the process that

created the channel and the lifetime of that channel

§ support of XML or seriazable objects

Depending of the environment, one method is preferred over

the other. Microsoft remoting is better on client environments

- there is no need of additional installation and configuration

of software. It’s very transparent and secure method for use

and it’s easy to set up. On the other hand MSMQs are

preferable on central location of control like a server

environment. By default Windows operating systems does not

come with MSMQ preinstalled, configured and ready to use

functionality. Also the server may require true asynchronous

communication, meaning that it should continue to function

normally and at the same time the other processes to access

the data after process-creator’s termination. MSMQ saves

resources because the same queue, early created can be used

again by another process for different purposes.

In terms of security readiness, the remoting IPC, because of

ports usage can be more vulnerable to an attack than MSMQ,

but in the recent versions of .NET framework, Microsoft has

spend a great deal of time working to provide better security

for the data exchange. We will discuss more about the

security in the next section.

IV. SECURITY ISSUES AND CONCERNS OF IPC USAGE

When IPC is implemented one has to take into consideration

the security issues that are raised by its use. There are serious

security risks with the IPC methods because these methods

are tightly connected with the core functions of the operating

system.

There are big number of different vulnerabilities that are

available to an attacker by IPC misconfigurations. One of the

introduced risks is execution of remote code. As some IPC

methods use memory mappings techniques, an attacker can

access the memory segment and overflow the address space

which will cause the operating system to execute the code that

is feed to this address space. They are many security checks

and controls that are done by the operating systems and in the

corporate environment – firewalls and IDS, etc., but there still

a chance for the attacker to gain access to the local computer.

At present time and maybe in the past few years a great

concern among the security community is the DoS (denial of

service) attacks and especially Dynamic DoS attacks. Because

of the nature of the IPC mechanism and the synchronous

communication over sockets and channels of some of the IPC

methods, they represent great opportunity for the attacker to

exploit this weakness. There are three possible scenarios how

an attacker can produce DoS attack using the IPC

mechanisms:

§ make numerous connections on the IPC channel’s

listening port

§ interrupt the communication and with that the

execution of the processes

§ change the data, so the processes that communicate

become irresponsive.

Because the communicating processes connect or listen on

different ports, big number of connections can make the

processes to be unable to connect and communicate with one

another and thus making the whole application stop

functioning (for synchronous communication) or some

services to became not responsive. The second one also

applies to the synchronous communication of the processes.

In the third scenario, an attacker can change the data that

passes or exists on the communication channel and make the

processes to work with corrupted data and thus leading them

to halt or stop responding.

Another possible way is the “man in the middle” attack,

meaning that someone could be eavesdropping on the

conversation between the processes and possibly will gain

access to valuable and confidential data that is exchanged

between the processes.

 !

The 7th International Conference for Informatics and Information Technology (CIIT 2010)

Many of the methods mentioned above can be achieved by

using windows process hooks that inject dll library code into

existing or new process, but they are not topic in this paper.

We will not go into detail in explanation of the possible attack

techniques because of some ethical standards and law

limitation. Instead we will make some suggestions in

improving and eradicating some of the security issues.

If there is need for inter-process communication on the server

environment it is recommended to use Microsoft message

queues in order to allow the processes to communicate

asynchronously. This way there is continuous functionality on

the services. Or if it’s decided to use other methods it’s

recommendable to use processes that do not wait for

acknowledgment of the received data. If we exchange

confidential data or some control messages with other

process, the data should be encrypt and then decrypt at the

receiver’s end. If there is big volume of data communication

the encryption/decryption process will introduce processing

delay or drop in the computer performance. In that case we

can implement some sort of local firewall for inbound

connections or we can make some security tweaks on local

operating system.

V. CONCLUSION

In this paper we have elaborated the need of inter-process

communication, some of the IPC methods, mechanisms and

their implementation. We looked at IPC methods – Microsoft

message queues and Microsoft remoting and made short

comparison of their properties. Finally we looked at the

security requirements and concerns over using these methods

and made some suggestion on how to improve the local

security of the system. Each of the IPC mechanisms discussed

has some advantages and some disadvantages; each of them is

optimal solution for a particular problem for the application

programmer.
The usability of these methods is very versatile, especially

locally on the same computer but in different environments.

Depending of the circumstances and the environments where

the processes are executed, earlier we made some notes on

how to choose the perfect IPC method in order to achieve our

desired goal with regards to the computer security. Choosing

which of the methods will be implemented is up to the

individual application programmer. We must take into

consideration the balance of the application performance and

ease of the desired use, and the technical requirements of the

application. We need to see what are our priorities and a

selection can usually be made easily.

Overall, the inter-process communication is great for

introducing reliable communication, maximum performance,

great functionality, application modularity and support and

also secure communication in our multi-process environment.

REFERENCES

[1] Microsoft MSDN library, online material, http://msdn.microsoft.com.

[2] Zoran Spasov, “SMS Center”, graduate thesis, Subtitle: Message based

communication, Institute of Informatics, 2006.

[3] Ralph Davis, Win32 Network Programming, Reading, Massachusetts:

Addison-Wesley Developers Press, 1996.

[4] Jim Beveridge and Robert Wiener, Multithreading Applications in

Win32, Reading, Massachusetts: Addison-Wesley Developers Press, 1997.

[5] Leslie Lamport, Interprocess Communication, Technical Report, SRI

International, March 1985.

[6] Jesse Burns, Fuzzing Win32 Inter-Process Communication Mechanisms,

Las Vegas, 2006.

[7] James Naftel, Kim Williams and Scott McLean, Microsoft .NET

Remoting (Pro-Developer), September 2002

[8] Ingo Rammer and Mario Szpuszta, Advanced .Net Remoting (Expert's

Voice), April 2002

 !

