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ABSTRACT

The partial learning [1], as an important part of the advanced
adaptive learning [1], provides opportunities for developing
more efficient adaptive learning [2] process than the one
occurring in the basic adaptive learning [1]. This paper
explains the representation of the learning environment
providing the partial learning, by using the introduction of the
blank nodes in the resource description framework [3, 4].
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INTRODUCTION

Our definition of PL involving the SCs [1] and SSs [1] as the
providers of the knowledge for a certain concept is different
from the representation of the AL in BAL through ALE [2]
consisting only from the ICs [2] as the knowledge providers.
In spite of our goal to represent the PL as simple as possible,
the relations of its components make it hard to do it.

We started to examine the PL's concept with multiple IC
sets [1], treating them as disjunctive, but in general, especially
for very large LEs, the ICs could belong to more than one IC
set. It is foolish to make a restriction — only one IC set for a
single IC, because this will lead to appearance of significant
number of concepts which provide duplicate knowledge and
thus increase the number of relations in the ALE. That is why
we stayed on course with the non disjunctive IC sets as shown
in Fig. 1.
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Figure 1: Example of 5 non disjunctive IC sets for a single
concept.
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According to the example, 8 ICs (X1, X2, X3, X4, X5, X7, Xs, Xo)
provide knowledge for the concept xs. The ICs belong to 5
different IC sets:

o I, ={xy, Xy X3, Xo};
I = {x2, Xs, Xo};

I3 = {X4, Xo};

L= {x/};

Is = {x1, Xa};

The concept x5 is sufficient for xs and the concept with the
most occurrences in the IC sets is xo. Although not a great
number, those 3 occurrences mean that 3 dotted lines
describing the IC sets I, I, and I5 will be needed to encircle
the concept xo. So for a larger number of occurrences of a
single IC in the IC sets, more space will be needed for this
graphical representation.

The situation complicates even further if we try to give a
visual representation of a whole ALE, even a small one, as
seen in Fig. 2.

Figure 2: Example ALE with non disjunctive IC sets.

This example of ALE describes the following IC sets
providing knowledge to a certain concept:

o [ ={xy, Xy X3, Xo} = Xe;
L = {X, X5, Xo} = Xe;

I3 = {X4, Xo} = Xe;

L= {x7} = X;

Is = {X1, Xs} = Xe;

Is = {Xs, Xo} = Xuo;

I = {Xs, X2} = X133

Is = {X6, X13} = Xus;

I = {X10, X11, X13} = X145

Lo = {Xw, X2} = Xus;

L1 = {X4, Xa} = Xu3;
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The learning arrays for the first terminal concept Xi4
determined by the ICs are the following:

®  {xy, Xy, X3, Xg, Xs, X13} — from I, and Ig;
{2, Xs, Xo, Xs, X13} — from L and I;
{X4, Xo, X6, X13} - from Izand Ig;

{X7, X6, X13} - from Iyand Ig;

{X1, Xs, Xs, X13} - from Isand Ig;

{Xs, Xo, X10, X11, X13} - from Isand Iy;

{Xg, X12, X10, X11, X13} - from I7 and 19,

®  {x4, Xs, X10, X11, X13} - from I;; and Io;
And for the second terminal concept X;s:

®  {xg, X1, X11} - from Iyand Iyg;

L4 {X4, Xg, X12, X11} - from Iy; and Io;

The most efficient way to learn a concept is determined by
the shortest array. According to these arrays, the fastest way
to learn the concept x4 is by following the array {x7, Xs, Xi3}
and in case of the concept x;s it is the array {Xs, Xi2, X11}. So in
order to learn the goal from the ALE we need total of 3 + 3 =
6 concepts.

But this is not a correct method to find the fastest way to
learn the terminal concepts because we treat them separately,
as if they do not have common ICs or even IC sets. If we
observe the array {xs, Xi2, X10, X11, X13} we can conclude that
only by learning 5 concepts, we can provide all the
knowledge needed to learn the two terminal concepts. So the
problem of determining the shortest possible way of learning
the ALE's goals in the PL is not easy to solve like in the
conditions of BAL and more preparations are needed in order
to develop an effective strategy.

Not only that in the PL's ALE, the containing ICs, in
general, can provide knowledge towards more than one
concept, but the concepts inside the IC sets could be related as
well (as the case of I, where x;, provides knowledge for x1).
It means that the 4 occurrences of the concept x, in 4 different
ICs is not very complicated compared to the encirclement of
the related concepts. And this example is hard enough to
visualise even with only two terminal concepts. The
representation will look like a mess in case of large number of
terminal concepts.

To avoid these representation obstacles, primarily the
dotted lines, we came up with two more suitable and
understandable visual appearances before taking the step
towards the pure graph representation easier to implement.

DECOMPOSITION OF ALE

One method to achieve pure graph representation of ALE in
the AAL is by decomposition of its dotted line-based visual
representation, resulting in several oriented graphs.

This is very simple solution because all it is needed is the
determination of the combinations of PL processes where
only one IC set per concept is allowed. The number of those
combinations is determined by the formula (1) — the product
of the number of IC sets for every concept.
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For the example in Fig. 2. there are 5*1*2*2*1 = 20
possible combinations, hence 20 different graphs in which
every concept is provided with knowledge from only one IC
set. Some of those 20 graphs for the decomposed ALE from
the Fig. 2. are given in Fig. 3-6.

Figure 3: One possible result from the decomposition of ALE
from Fig. 2

Figure 4: One possible result from the decomposition of ALE
from Fig. 2

Figure 5: One possible result from the decomposition of ALE
from Fig. 2
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Figure 6: One possible result from the decomposition of ALE
from Fig. 2

Having the ALE decomposed with the resulting graphs, the
second step will be to compare the shortest learning arrays’
for every one of them. The one with the smallest number of
concepts will be the output of the method for the most
efficient learning way.

By comparing the resulting graphs in Fig. 3-6, it is obvious
that the smallest number of ICs in the learning array has the
last graph, totalling 7.

Given this approach, we “chopped” one complex problem
in several simple ones, relatively easy to solve with the
traditional AL methods for the knowledge delivery order in
BAL.

RDF BLANK NODES

In the theory of graphs, especially when it comes to the
weighted oriented graphs [5], the existence of two non
adjacent vertices is considered as they have two edges in
between with weight equal to 0. This treatment is useful when
representing the oriented graphs as adjacency matrix [5] —
data type suitable for further computations. Although this is
more edge's feature, rather than vertex's, it could be
interpreted as the vertex does not exist at all, of course, if it is
not adjacent to any other vertex.

This behaviour is not often used as a special case in the
implementations of the graph theory, primarily because of the
popular algorithms using the adjacency matrix, and because
in general all vertices in a graph are treated as equal with the
edges as the carriers of the differences.

The forcing of the vertex similarity came to an end with the
introduction of the blank nodes in the RDF. RDF as a major
component of the semantic web, for describing the metadata
expressions [3], is based on the oriented graphs and their
features. Having found this common ground with our
knowledge representation of the AL structures, we managed
to “translate” the relation between the concepts in the
knowledge structures in BAL, into RDF expression. The RDF
expressions generated from the BAL's ALE always have
“ProvidesKnowledgeFor” as predicate, with the IC as subject
and the concept which receives the knowledge as object. We

1 To find the shortest learning array for the resulting graph, the
appropriate strategies from BAL can be used without restrictions
2 If it does not have edge with weight greater than 0

made this generation almost fully functional in our AL system
Awareness (by using and modifying RAP [6] libraries) which
supports initializing rdf file for an ALE consisting of RDF
expressions appropriate to the relation between two of ALE's
concepts. One such example is shown in Fig. 7. During this
realization, we had no restrictions, because the BAL does not

allow one concept to be learned by different sets of ICs.

<rdf:Description rdf:about="#x5">
=nsl:ProvidesknowledgeFor=x10</nsl:ProvideskKnowledgeFor=

=</rdf:Description=

<rdf:Description rdf:about="#x7">
=nsl:ProvidesknowledgeFor=x6=</nsl :ProvideskKnowl edgeFor=

</rdf:Description=>

=<rdf:Description rdf:about="#x8"=>
<nsl:ProvidesKnowledgeFor=>xll</nsl:ProvideskKnowledgeFor>

</rdf:Description=

<rdf:Description rdf:about="#x9">
<nsl:ProvidesKnowledgeFor=x10</nsl
<nsl:ProvidesKnowledgeFor=xll</nsl

=/rdf:Description=

=rdf:Description rdf:about="#x11"=>
<nsl:ProvideskKnowledgeFor=xld</nsl
=nsl:ProvidesKnowledgeFor=x15</nsl

=</rdf:Description=

<rdf:Description rdf:about="#x12">
<nsl:ProvideskKnowledgeFor=xll</nsl
<nsl:ProvidesKnowledgeFor=x15</nsl

</rdf:Description=

<rdf:Description rdf:about="#x13">
=nsl:ProvidesKnowledgeFor=x1l4=/nsl

</rdf:Description=

:ProvideskKnowledgeFor=
:ProvidesKnowledgeFor=

:ProvidesknowledgeFor=
:ProvidesKnowledgeFor=

:ProvideskKnowledgeFor=
:ProvidesKnowledgeFor=

:ProvidesKnowledgeFor=

Figure 7: RDF expressions generated in Awareness® using the
example in Fig. 6

Although we stopped experimenting with the RDF as an
alternative realization of our knowledge structures in BAL
using Awareness, it still serves as a proof that the relations
between the concepts represented in a graph can be
transformed into RDF expressions.

The representation of ALE in Fig. 2 can not be
immediately transformed into a set of RDF expressions
because it is not a pure graph at all. But using a blank node in
the RDF expression can provide a bridge between the need
for decomposition and the RDF generation.

The purpose of the blank node in the RDF is to define the
usage of the unnamed resources in order to classify and link
the subjects with object over more than one predicate. We
will use this feature of the blank nodes to create special
concepts in the ALE for every IC set.

In PL we will refer to the blank nodes as BCs because of
the synchronized terminology, since the knowledge units of
the knowledge structures are called simply concepts. This
method of creating a new visual representation based on
graphs starts with inserting a BC between the IC set and the
concept which gains knowledge from it, while removing the
appropriate dotted line bordering the concepts for the same IC
set. All of the concepts from the IC set will now act as ICs for
the BC and the BC will act as an IC for the concept which
previously gained knowledge from the IC set. According to
this, the BC does not posses any knowledge to add, but
simply passes the gained knowledge from its ICs to another
concept.

The essential differences between the BC and the regular

concept will be expressed by Def. 1 and Fea. 1.

3 Although not correct for the original RDF, there are duplicate
predicates for the ICs X, X11 and X;, in order to make the RDF
file smaller and thus save space
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Definition 1: BC vs. regular concept

One BC can provide knowledge towards only one
regular concept, while one regular concept can
provide knowledge towards more than one BCs.

Feature 1: BCs in ALE

In ALE with inserted BCs, any two BCs can not be
adjacent, and also any two regular concepts can not
be adjacent.

The oriented graph with inserted BCs is shown in Fig. 8.
The BCs are named after the IC sets, I, I, I Iy Is I, I, Is Io I1o
and I;;, respectively.

Figure 8: ALE with inserted BCs

The generated RDF file for the example in Fig. 8 is shown
in Fig. 9.

The BCs are not included in the learning array, but they do
determine the learning order i.e. the way the array is formed.
They mark the disruption of the learning order according to
the following rules:

® in order to get to a BC, all of its ICs have to be
passed first;

® in order to get to a regular concept, it is enough
for only one of its BCs to be passed first;

Using these rules it is very easy to construct a learning
array in which the blank concepts are not considered. For
now, we will not consider choosing our curriculum
sequencing techniques* such as BFL or DFL [2], since their
involvement will decrease the variety of learning arrays. Also
we will not make any assumptions as the one which states
that every concept will get the learning priority according to
its index but only in the scope of their child blank concept.
Hence, the blank concepts' priorities will not be determined
by the same rule, although we will give some examples which
coincidentally match these strategies.

In order to save space, we will always treat the sub array of
the regular concepts as ordered, no matter the combination of
the concepts' indexes. So for the example on Fig. 8, it does
not matter whether the learning order prior to providing
knowledge towards the BC I; is X,, Xo, X3, X1 OF Xg, Xo, X1, X3,
the sub array will be marked according to their priority
determined by the indexes.

4 TIn our previous papers examining the process of learning in BAL
conditions, we refer to them as knowledge delivery order
strategies

=rdf.Description rdf.about= =
=nsl:BC>
=nsl:Providesknowledgefor=x6=/ns L Providesknowledgefar=
<insl:BC>
<rdf Descriptions
=gl Description rdl:aboul= 3
=ngl:BC=
=<nsl:ProvidesknowledgeFor=x6-/nsl ProvidesKnowledgeFor=-
<fnsl:BL>
= rdf. Description:=
<rdf. Description rdf.about= =
=nsl:BC=
=nsl:Providesknowledgefors g6 =<ing 1:Providesknowledgefor=
=fnslBC>
<rdf Descriptions
<rdfDescription rdf.abouts -
<nsl: B>
=n31:Providesknowledgefor=x6=/ns 1-Providesknowledgefor=
=nsl.Providesknowledgefor=x11l</ns1:Providesknowledgefor=
=</nsl:BC>
</rdf Descriptions
<rdl: Description rdl:aboul= =
<n%l: Bl >
<nsl:Providesknowledgefor=xb-=ins L:ProvidesknowledgaFor=
<nsl:ProvidesknowledgeFor=x10</nsl:ProvidesknowledgeFor=
<insl:BC>
=rdf.Description:=
<rdf.Description rdf about= =
=nsl:BC>
<nsl:Providesknow ledgeFor>x14</nsl: ProvidesnowledgeFors
<jrnsl;BC>
= /rdf-Descriptions
<rdf Description rdfabouts -
<nslBl=
=nsl.ProvidesEnowledgefor=xb=/nsl. ProvidesknowledgeFor=
</nsl:BC>
< Mrdf Description=
=pdfDescription rdfabout= =
<nsl:BL>
<nsL:Providesknowledgefor =ab-<ing 1-ProwvidesKnowledgeFor =
=nsl:Providesknowledgefor=x11</nsl:ProvidesknowledgeFor=
</nsl:BL -
= rdf. Description=
=rdf Description rdfabout= =
=nsl:BC>
<nsl:Providesknowledgefor=xi<ing 1:Providesknowledgefor=
=n%];ProvidesknowledgeFor =] 0</ns1; ProvidesKnowiedgeFor >
=insl:BC=
= rdf Descriptions
<rdfDescription rdfabouts =
=nsl:BC>
=ns51:Providesknowledgefor=xld</ns1:ProvidesknowledgeFor=
winsl BC>
< irdf Descriptions
=rdf:Description rdf:about= =
=nsl:BC=
=51 ProvidesknowledgeFfor =014 -</ns 1 ProvidesKnowledgeFor =
=<nsl:Providesknowledgefor=x15«</ns1:ProvidesKnowledgeFor=
<fnsl:BL =
= rdf Description:=
=rdf. Description rdf:about= =
=nsl:BC>
<nal:Providesknowledgefor>xll</nsl: ProvidesKnowledgeFors
<15 1 ProvidesKnowledgeFor = o] 5</nsl; ProvidesKnowledgeFor =
=insl BL >
< !rdf Description
=rdf Description rdf.about= =
=nsl:BC>
=nsl:Providesknowledgefor=xld=</ns1:ProvidesknowledgeFor=
</nsl:BC=
=frdf Description:s

Figure 9: RDF expressions generated for the ALE in Fig. 8

Here are several learning arrays for the example on Fig. 8:
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® X, X, X3 Xe Lo X5~ Lh-oxa-L->x->1L -
Xg 2 Is = Is » Xpo = I = X¢, X13 = Is = Xuo, X11 —
Iy = Tio = Xu4, X15;

® X4Xg— I = Xi— Xip > Lo = Xis > X5, X9 — s
- X190 —~ g = X4

In the first array it can be noticed that x;; does not have to
wait for I; because it is enough that I, appears with lower
index in the learning array. This satisfies the second
disruption rule. However this array unnecessary includes all
concepts of the ALE thus making the PL redundant.

The second learning array is shorter and represents a
typical example of the PL's usage where every concept does
not have to be learned in order to reach the goal. Therefore it
is shorter than the first one by the concepts xi, X, X3, Xs, X7
and x;3 which are not obligatory in the learning process, as
well as the blank concepts I, I, Is, Iy, Is, I and Is.

AAL DATABASE

The addition of BCs in our development of the AAL system
means that certain changes had to be made in our database
realization of the ALE, deriving from the previous database
design of Awareness. In Awareness database we used
dynamic creation of tables for every set of concepts with
equal structure® with the number of columns according to the
number of their ICs.

With the involvement of the PL rules, especially with the
usage of different IC sets, we could not effectively sustain the
dynamic creation of tables since the structure of a concept is
no longer constant — the number of ICs for a concept is
variable according to the chosen IC set. It implies risking the
newly created tables to have ambiguous labels and need of
additional logic of initialization in order to solve it. The usage
of the blank concepts will have a final influence of the
database design for our new AAL model.

"] ProvidesKnowledge v
 ConceptlD INT(11)
» BlankConeept! D INT{11)
v

FK_FrovideskKnowledge_Conceptl D
FK_Providesknowledge_ElankConceptiD

Tt 4
Ie n
! BlankConcept v
'rj Concept v J
1D INT{11)

ID INT{11)

» Mame LONGTEXT
» Mame LONGTEXT

_____ —J= @ ConceptlD INT{11
» Contents LONGTEXT - R i
v
¥
PRIMARY
PRIMARY
e —

Figure 9: Diagram of AALDB database
5 Equal number of ICs [2]

Our new database — AALDB, will have a design far
simpler than the Awareness database. As it can be seen in Fig.
9, all concepts, no matter the number of ICs they have, are
stored in a single table - Concept. Same is the situation with
the table BlankConcept where the affiliation with the IC is
provided for every BC.

The table ProvidesKnowledge expresses the relation
between the ICs and the BCs, by following the Def. 1 — an IC
may provide knowledge for more than one BC. The reason
for non existence of a table-relation between the tables
BlankConcept and Concept also lays in the Def. 1 —a BC can
pass knowledge only for one regular concept.

CONCLUSION

Although the two approaches for constructing the best
possible ALE's representation in AAL result in almost similar
implementations, the one using the idea of the RDF blank
nodes saves more space and it is easier to follow the PL
process with it. But this is only the impact on the theoretical
and experimental side.

When it comes to the implementation of the PL rules in the
AALDB, the addition of BCs helps in making a classification
of the regular concepts according to the IC set. Having this
done with the addition of a single table, only adds to the
simplicity and improvements it gives to the AAL operations®.
The only negative effect we came up so far is the increasing
number of rows inside every table’, although the removal of
the classification by the concepts' structure is partially
responsible for that.
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